54
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Poly(I:C)/c-GAMP/Alum ternary adjuvant system synergistically enhances the immunogenicity of glycopeptide antigen

, , , , , & show all
Pages 252-267 | Received 29 Jan 2024, Accepted 14 Mar 2024, Published online: 28 Mar 2024

References

  • Rastogi, I.; Muralidhar, A.; McNeel, D. G. Vaccines as Treatments for Prostate Cancer. Nat. Rev. Urol. 2023, 20(9), 544–559. DOI: 10.1038/s41585-023-00739-w.
  • Li, W. H.; Li, Y. M. Chemical Strategies to Boost Cancer Vaccines. Chem. Rev. 2020, 120(20), 11420–11478. DOI: 10.1021/acs.chemrev.9b00833.
  • Li, Q.; Guo, Z. Recent Advances in Toll like Receptor-Targeting Glycoconjugate Vaccines. Molecules 2018, 23(7), 1583. DOI: 10.3390/molecules23071583.
  • Kufe, D. W. Mucins in Cancer: Function, Prognosis and Therapy. Nat. Rev. Cancer 2009, 9(12), 874–885. DOI: 10.1038/nrc2761.
  • Chen, X.; Sandrine, I. K.; Yang, M.; Tu, J.; Yuan, X. MUC1 and MUC16: Critical for Immune Modulation in Cancer Therapeutics. Front. Immunol. 2024, 15, 1356913–38361923. DOI: 10.3389/fimmu.2024.1356913.
  • Sun, L.; Zhang, Y.; Li, W.; Zhang, J.; Zhang, Y. Mucin Glycans: A Target for Cancer Therapy. Molecules 2023, 28(20), 7033–35883508. DOI: 10.3390/molecules28207033.
  • Nabavinia, M. S.; Gholoobi, A.; Charbgoo, F.; Nabavinia, M.; Ramezani, M.; Abnous, K. Anti-MUC1 Aptamer: A Potential Opportunity for Cancer Treatment. Med. Res. Rev. 2017, 37(6), 1518–1539. DOI: 10.1002/med.21462.
  • Supruniuk, K.; Radziejewska, I. MUC1 Is an Oncoprotein with a Significant Role in Apoptosis (Review). Int. J. Oncol. 2021, 59(3), 68. DOI: 10.3892/ijo.2021.5248.
  • Nath, S.; Mukherjee, P. MUC1: A Multifaceted Oncoprotein with a Key Role in Cancer Progression. Trends Mol. Med. 2014, 20(6), 332–342. DOI: 10.1016/j.molmed.2014.02.007.
  • Du, J. J.; Wang, C. W.; Xu, W. B.; Zhang, L.; Tang, Y. K.; Zhou, S. H.; Gao, X. F.; Yang, G. F.; Guo, J. Multifunctional Protein Conjugates with Built-in Adjuvant (Adjuvant-Protein-Antigen) as Cancer Vaccines Boost Potent Immune Responses. iScience 2020, 23(3), 100935–32146328. DOI: 10.1016/j.isci.2020.100935.
  • Zhou, S. H.; Li, Y. T.; Zhang, R. Y.; Liu, Y. L.; You, Z. W.; Bian, M. M.; Wen, Y.; Wang, J.; Du, J. J.; Guo, J. Alum Adjuvant and Built-in TLR7 Agonist Synergistically Enhance Anti-MUC1 Immune Responses for Cancer Vaccine. Front. Immunol. 2022, 13, 857779–35371101. DOI: 10.3389/fimmu.2022.857779.
  • Wu, X.; Yin, Z.; McKay, C.; Pett, C.; Yu, J.; Schorlemer, M.; Gohl, T.; Sungsuwan, S.; Ramadan, S.; Baniel, C.; et al. Protective Epitope Discovery and Design of MUC1-Based Vaccine for Effective Tumor Protections in Immunotolerant Mice. J. Am. Chem. Soc. 2018, 140(48), 16596–16609. DOI: 10.1021/jacs.8b08473.
  • Stergiou, N.; Urschbach, M.; Gabba, A.; Schmitt, E.; Kunz, H.; Besenius, P. The Development of Vaccines from Synthetic Tumor-Associated Mucin Glycopeptides and Their Glycosylation-Dependent Immune Response. Chem. Rec. 2021, 21 (11), 3313–3331. DOI: 10.1002/tcr.202100182.
  • Ingale, S.; Wolfert, M. A.; Gaekwad, J.; Buskas, T.; Boons, G. J. Robust Immune Responses Elicited by a Fully Synthetic Three-Component Vaccine. Nat. Chem. Biol. 2007, 3(10), 663–667. DOI: 10.1038/nchembio.2007.25.
  • McDonald, D. M.; Wilkinson, B. L.; Corcilius, L.; Thaysen-Andersen, M.; Byrne, S. N.; Payne, R. J. Synthesis and Immunological Evaluation of Self-Adjuvanting MUC1-Macrophage Activating Lipopeptide 2 Conjugate Vaccine Candidates. Chem. Commun. (Camb) 2014, 50(71), 10273–10276. DOI: 10.1039/c4cc03510k.
  • Zhang, S.; Liu, Y.; Zhou, J.; Wang, J.; Jin, G.; Wang. Breast Cancer Vaccine Containing a Novel Toll-like Receptor 7 Agonist and an Aluminum Adjuvant Exerts Antitumor Effects. Int. J. Mol. Sci. 2022, 23(23), 15130. DOI: 10.3390/ijms232315130.
  • Zhao, Q.; Gao, Y.; Xiao, M.; Huang, X.; Wu, X. Synthesis and Immunological Evaluation of Synthetic Peptide Based Anti-SARS-CoV-2 Vaccine Candidates. Chem. Commun. (Camb) 2021, 57(12), 1474–1477. DOI: 10.1039/d0cc08265a.
  • Cai, H.; Huang, Z. H.; Shi, L.; Sun, Z. Y.; Zhao, Y. F.; Kunz, H.; Li, Y. M. Variation of the Glycosylation Pattern in MUC1 Glycopeptide BSA Vaccines and Its Influence on the Immune Response. Angew. Chem. Int. Ed. Engl. 2012, 51(7), 1719–1723. DOI: 10.1002/anie.201106396.
  • Straßburger, D.; Glaffig, M.; Stergiou, N.; Bialas, S.; Besenius, P.; Schmitt, E.; Kunz, H. Synthetic MUC1 Antitumor Vaccine with Incorporated 2,3-Sialyl-T Carbohydrate Antigen Inducing Strong Immune Responses with Isotype Specificity. Chembiochem 2018, 19(11), 1142–1146. DOI: 10.1002/cbic.201800148.
  • Xiao, A.; Zheng, X. J.; Song, C.; Gui, Y.; Huo, C. X.; Ye, X. S. Synthesis and Immunological Evaluation of MUC1 Glycopeptide Conjugates Bearing: N -Acetyl Modified STn Derivatives as Anticancer Vaccines. Org. Biomol. Chem. 2016, 14(30), 7226–7237. DOI: 10.1039/c6ob01092j.
  • Seeberger, P. H. Discovery of Semi- and Fully-Synthetic Carbohydrate Vaccines against Bacterial Infections Using a Medicinal Chemistry Approach. Chem. Rev. 2021, 121(7), 3598–3626. DOI: 10.1021/acs.chemrev.0c01210.
  • Li, Q.; Li, Z.; Deng, N.; Ding, F.; Li, Y.; Cai, H. Built-in Adjuvants for Use in Vaccines. Eur. J. Med. Chem. 2022, 227, 113917. DOI: 10.1016/j.ejmech.2021.113917.
  • Rashidijahanabad, Z.; Ramadan, S.; O’Brien, N. A.; Nakisa, A.; Lang, S.; Crawford, H.; Gildersleeve, J. C.; Huang, X. Stereoselective Synthesis of Sialyl Lewis a Antigen and the Effective Anticancer Activity of Its Bacteriophage Qβ Conjugate as an Anticancer Vaccine. Angew. Chemie - Int. Ed 2023, 62(47), e202309744.
  • Chen, D.; Srivastava, A. K.; Dubrochowska, J.; Liu, L.; Li, T.; Hoffmann, J. P.; Kolls, J. K.; Boons, G. J. A Bioactive Synthetic Outer-Core Oligosaccharide Derived from a Klebsiella Pneumonia Lipopolysaccharide for Bacteria Recognition. Chem. - A Eur. J 2023, 29, e202203408.
  • Wen, Y.; Zhang, R. Y.; Wang, J.; Zhou, S. H.; Peng, X. Q.; Ding, D.; Zhang, Z. M.; Wei, H. W.; Guo, J. Novel Sialoglycan Linkage for Constructing Adjuvant-Protein Conjugate as Potent Vaccine for COVID-19. J. Control. Release 2023, 355, 238–247. DOI: 10.1016/j.jconrel.2023.01.062.
  • Ding, D.; Wen, Y.; Liao, C.; Yin, X.; Zhang, R.; Wang, J.; Zhou, S.; Zhang, Z.; Zou, Y.; Gao, X.; et al. Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV - 2. J. Med. Chem. 2023, 66(2), 1467–1483. DOI: 10.1021/acs.jmedchem.2c01642.
  • Pulendran, B.; S Arunachalam, P.; O'Hagan, D. T. Emerging Concepts in the Science of Vaccine Adjuvants. Nat. Rev. Drug Discov. 2021, 20(6), 454–475. DOI: 10.1038/s41573-021-00163-y.
  • Moni, S. S.; Abdelwahab, S. I.; Jabeen, A.; Elmobark, M. E.; Aqaili, D.; Ghoal, G.; Oraibi, B.; Farasani, A. M.; Jerah, A. A.; Alnajai, M. M. A.; Mohammad Alowayni, A. M. H. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines (Basel) 2023, 11(11), 1704. DOI: 10.3390/vaccines11111704.
  • Reyes, C.; Patarroyo, M. A. Adjuvants Approved for Human Use: What Do We Know and What Do We Need to Know for Designing Good Adjuvants? Eur. J. Pharmacol. 2023, 945, 175632. DOI: 10.1016/j.ejphar.2023.175632.
  • Wang, X.; Lin, M.; Zhu, L.; Ye, Z. GAS-STING: A Classical DNA Recognition Pathways to Tumor Therapy. Front. Immunol. 2023, 14, 1200245–37920470. DOI: 10.3389/fimmu.2023.1200245.
  • Zhou, S. H.; Zhang, R. Y.; You, Z. W.; Zou, Y. K.; Wen, Y.; Wang, J.; Ding, D.; Bian, M. M.; Zhang, Z. M.; Yuan, H.; Yang, G. F.; et al. pH-Sensitive and Biodegradable Mn3(PO4)2·3H2O Nanoparticles as an Adjuvant of Protein-Based Bivalent COVID-19 Vaccine to Induce Potent and Broad-Spectrum Immunity. ACS Appl. Mater. Interfaces 2023, 15(7), 8914–8926. DOI: 10.1021/acsami.2c19736.
  • Wu, J. J.; Zhao, L.; Han, B. B.; Hu, H. G.; Zhang, B. D.; Li, W. H.; Chen, Y. X.; Li, Y. M. A Novel STING Agonist for Cancer Immunotherapy and a SARS-CoV-2 Vaccine Adjuvant. Chem. Commun. (Camb) 2021, 57(4), 504–507. DOI: 10.1039/d0cc06959k.
  • Komal, A.; Noreen, M.; El-Kott, A. F. TLR3 Agonists: RGC100, ARNAX, and Poly-IC: A Comparative Review. Immunol. Res. 2021, 69(4), 312–322. DOI: 10.1007/s12026-021-09203-6.
  • Glaffig, M.; Stergiou, N.; Schmitt, E.; Kunz, H. Immunogenicity of a Fully Synthetic MUC1 Glycopeptide Antitumor Vaccine Enhanced by Poly(I:C) as a TLR3-Activating Adjuvant. ChemMedChem 2017, 12(10), 722–727. DOI: 10.1002/cmdc.201700254.
  • Zhang, R. Y.; Yin, X. G.; Zhou, S. H.; Zhang, H. W.; Lu, J.; He, C. B.; Wang, J.; Wen, Y.; Li, Y. T.; Liu, Y. L.; Feng, R. R.; Ding, D.; et al. A Protein Vaccine with Alum/c-GAMP/Poly(I:C) Rapidly Boosts Robust Immunity against SARS-CoV-2 and Variants of Concern. Chem. Commun. (Camb) 2022, 58(24), 3925–3928. DOI: 10.1039/d2cc00271j.
  • Zhang, T.; He, P.; Guo, D.; Chen, K.; Hu, Z.; Zou, Y. Research Progress of Aluminum Phosphate Adjuvants and Their Action Mechanisms. Pharmaceutics 2023, 15(6), 1756. DOI: 10.3390/pharmaceutics15061756.
  • Cortez, A.; Li, Y.; Miller, A. T.; Zhang, X.; Yue, K.; Maginnis, J.; Hampton, J.; Hall, D. S.; Shapiro, M.; Nayak, B.; D’Oro, U.; Li, C.; et al. Incorporation of Phosphonate into Benzonaphthyridine Toll-like Receptor 7 Agonists for Adsorption to Aluminum Hydroxide. J. Med. Chem. 2016, 59(12), 5868–5878. DOI: 10.1021/acs.jmedchem.6b00489.
  • Liu, Y.; Wang, Z.; Yu, F.; Li, M.; Zhu, H.; Wang, K.; Meng, M.; Zhao, W. The Adjuvant of α-Galactosylceramide Presented by Gold Nanoparticles Enhances Antitumor Immune Responses of MUC1 Antigen-Based Tumor Vaccines. Int. J. Nanomedicine. 2021, 16, 403–420. DOI: 10.2147/IJN.S273883.
  • Pifferi, C.; Aguinagalde, L.; Ruiz-de-Angulo, A.; Sacristán, N.; Baschirotto, P. T.; Poveda, A.; Jiménez-Barbero, J.; Anguita, J.; Fernández-Tejada, A. Development of Synthetic, Self-Adjuvanting, and Self-Assembling Anticancer Vaccines Based on a Minimal Saponin Adjuvant and the Tumor-Associated MUC1 Antigen. Chem. Sci. 2023, 14(13), 3501–3513. DOI: 10.1039/d2sc05639a.
  • Huang, Z. H.; Shi, L.; Ma, J. W.; Sun, Z. Y.; Cai, H.; Chen, Y. X.; Zhao, Y. F.; Li, Y. M. A Totally Synthetic, Self-Assembling, Adjuvant-Free MUC1 Glycopeptide Vaccine for Cancer Therapy. J. Am. Chem. Soc. 2012, 134(21), 8730–8733. DOI: 10.1021/ja211725s.
  • Xu, L.; Weng, S.; Li, S.; Wang, K.; Shen, Y.; Xu, Y.; Tang, C.; Yin, C. Engineering the Intestinal Lymphatic Transport of Oral Nanoparticles to Educate Macrophages for Cancer Combined Immunotherapy. ACS Nano. 2023, 17(12), 11817–11837. DOI: 10.1021/acsnano.3c02985.
  • Thompson, P.; Lakshminarayanan, V.; Supekar, N. T.; Bradley, J. M.; Cohen, P. A.; Wolfert, M. A.; Gendler, S. J.; Boons, G.-J. Linear Synthesis and Immunological Properties of a Fully Synthetic Vaccine Candidate Containing a Sialylated MUC1 Glycopeptide. Chem. Commun. (Camb) 2015, 51(50), 10214–10217. DOI: 10.1039/c5cc02199e.
  • Zhang, R. Y.; Zhou, S. H.; Feng, R. R.; Wen, Y.; Ding, D.; Zhang, Z. M.; Wei, H. W.; Guo, J. Adjuvant-Free COVID-19 Vaccine with Glycoprotein Antigen Oxidized by Periodate Rapidly Elicits Potent Immune Responses. ACS Chem. Biol. 2023, 18(4), 915–923. DOI: 10.1021/acschembio.3c00050.
  • Gao, Y.; Zhao, Q.; Dong, H.; Xiao, M.; Huang, X.; Wu, X. Developing Acid-Responsive Glyco-Nanoplatform Based Vaccines for Enhanced Cytotoxic T-Lymphocyte Responses Against Cancer and SARS-CoV-2. Adv. Funct. Mater 2021, 31, 2105059.
  • Shao, Y.; Sun, Z. Y.; Wang, Y.; Zhang, B. D.; Liu, D.; Li, Y. M. Designable Immune Therapeutical Vaccine System Based on DNA Supramolecular Hydrogels. ACS Appl. Mater. Interfaces. 2018, 10(11), 9310–9314. DOI: 10.1021/acsami.8b00312.
  • Cheng, K.; Ma, N.; Liang, J.; Ma, X.; Feng, Q.; Liu, G.; Xu, C.; Tang, M.; Zhang, L.; Gao, X.; et al. Site-Specific Modification of Virus-Like Particles for Exogenous Tumor Antigen Display and Minimizing Preexisting Immunity. Small 2023, 19(23), e2300125. DOI: 10.1002/smll.202300125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.