95
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Approaches related to the synthesis of Fmoc-Ser/Thr[GalNAc(Ac)3-α-D]-OH

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 223-251 | Received 16 Jan 2024, Accepted 16 Mar 2024, Published online: 02 Apr 2024

References

  • National Research Council. Transforming Glycoscience: A Roadmap for the Future. Washington, DC: The National Academies Press. 2012. DOI: 10.17226/13446.
  • Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002, 12(4), 43R–56R. DOI: 10.1093/glycob/12.4.43r.
  • Tarp, M. A.; Clausen, H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim. Biophys. Acta. 2008, 1780(3), 546–563. DOI: 10.1016/j.bbagen.2007.09.010.
  • Chaffey, P. K.; Guan, X.; Li, Y.; Tan, Z. Using chemical synthesis to study and apply protein glycosylation. Biochemistry 2018, 57(4), 413–428. DOI: 10.1021/acs.biochem.7b01055.
  • Lu, D.; Yin, H.; Wang, S.; Tang, F.; Huang, W.; Wang, P. Chemical synthesis of the homogeneous granulocyte-macrophage colony-stimulating factor through Se-auxiliary-mediated ligation. J. Org. Chem. 2019, 85(3), 1652–1660. DOI: 10.1021/acs.joc.9b02232.
  • Ye, F.; Zhao, J.; Xu, P.; Liu, X.; Yu, J.; Shangguan, W.; Liu, J.; Luo, X.; Li, C.; Ying, T.; et al. Synthetic homogeneous glycoforms of the SARS‐CoV‐2 spike receptor‐binding domain reveals different binding profiles of monoclonal antibodies. Angew. Chem. Int. Ed. Engl. 2021, 60(23), 12904–12910. DOI: 10.1002/anie.202100543.
  • Zhao, J.; Liu, J.; Liu, X.; Cao, Q.; Zhao, H.; Liu, L.; Ye, F.; Wang, C.; Shao, H.; Xue, D.; et al. Revealing functional significance of interleukin‐2 glycoproteoforms enabled by expressed serine ligation. Chin. J. Chem. 2022, 40(7), 787–793. DOI: 10.1002/cjoc.202100914.
  • Liu, X.; Gao, Z.; Zhao, J.; Ye, F.; Huang, P.; Wang, P. Encouraging solution to the problem of synthesizing protein α‐thioester. Chin. J. Chem. 2024, 42, 1114–1120. DOI: 10.1002/cjoc.202300762.
  • Roy, R.; Kim, J. M. Cu (II)-self-assembling bipyridyl-glycoclusters and dendrimers bearing the Tn-antigen cancer marker: syntheses and lectin binding properties. Tetrahedron 2003, 59(22), 3881–3893. DOI: 10.1016/S0040-4020(03)00438-1.
  • Qiu, D.; Koganty, R. R. A novel glycosyl donor for the synthesis of cancer specific core 5 and sialyl core 5 as glycopeptide building blocks. Tetrahedron Lett. 1997, 38(6), 961–964. DOI: 10.1016/S0040-4039(96)02490-2.
  • Yule, J. E.; Wong, T. C.; Gandhi, S. S.; Qiu, D.; Riopel, M. A.; Koganty, R. R. Steric control of N-acetylgalactosamine in glycosidic bond formation. Tetrahedron Lett. 1995, 36(38), 6839–6842. DOI: 10.1016/0040-4039(95)01442-K.
  • WO2007120614 A2.
  • Chen, X. T.; Sames, D.; Danishefsky, S. J. Exploration of modalities in building α-O-linked systems through glycal assembly: a total synthesis of the mucin-related F1α antigen. J. Am. Chem. Soc. 1998, 120(31), 7760–7769. DOI: 10.1021/ja980724z.
  • Xu, R.; Hanson, S. R.; Zhang, Z.; Yang, Y. Y.; Schultz, P. G.; Wong, C.-H. Site-specific incorporation of the mucin-type N-acetylgalactosamine-α-O-threonine into protein in Escherichia coli. J. Am. Chem. Soc. 2004, 126(48), 15654–15655. DOI: 10.1021/ja044711z.
  • Lemieux, R.; Ratcliffe, R. The azidonitration of tri-O-acetyl-D-galactal. Can. J. Chem. 1979, 57(10), 1244–1251. DOI: 10.1139/v79-203.
  • Grundler, G.; Schmidt, R. R. Glycosylimidate, 13. Anwendung des Trichloracetimidat‐Verfahrens auf 2‐Azidoglucose‐und 2‐Azidogalactose‐derivate. Liebigs Ann. Chem. 1984, 1984(11), 1826–1847. DOI: 10.1002/jlac.198419841108.
  • Payne, R. J.; Ficht, S.; Tang, S.; Brik, A.; Yang, Y. Y.; Case, D. A.; Wong, C. H. Extended sugar-assisted glycopeptide ligations: development, scope, and applications. J. Am. Chem. Soc. 2007, 129(44), 13527–13536. DOI: 10.1021/ja073653p.
  • Götze, S.; Fitzner, R.; Kunz, H. Gold catalysis in glycosylation reactions. Synlett 2009, 2009(20), 3346–3348. DOI: 10.1055/s-0029-1218356.
  • Brocke, C.; Kunz, H. Synthesis of tumor-associated glycopeptide antigens. Bioorg. Med. Chem. 2002, 10(10), 3085–3112. DOI: 10.1016/S0968-0896(02)00135-9.
  • Talat, S.; Thiruvikraman, M.; Kumari, S.; Kaur, K. J. Glycosylated analogs of formaecin I and drosocin exhibit differential pattern of antibacterial activity. Glycoconj. J. 2011, 28(8-9), 537–555. DOI: 10.1007/s10719-011-9353-2.
  • Ludek, O. R.; Gu, W.; Gildersleeve, J. C. Activation of glycosyl trichloroacetimidates with perchloric acid on silica (HClO4–SiO2) provides enhanced α-selectivity. Carbohydr. Res. 2010, 345(14), 2074–2078. DOI: 10.1016/j.carres.2010.07.030.
  • Dullenkopf, W.; Castro-Palomino, J. C.; Manzoni, L.; Schmidt, R. R. N-trichloroethoxycarbonyl-glucosamine derivatives as glycosyl donors. Carbohydr. Res. 1996, 296(1-4), 135–147. DOI: 10.1016/s0008-6215(96)00237-6.
  • Yu, F.; McConnell, M. S.; Nguyen, H. M. Scalable synthesis of Fmoc-protected GalNAc-threonine amino acid and TN antigen via nickel catalysis. Org. Lett. 2015, 17(8), 2018–2021. DOI: 10.1021/acs.orglett.5b00780.
  • Mayato, C.; Dorta, R. L.; Vázquez, J. T. Methyl esters: an alternative protecting group for the synthesis of O-glycosyl amino acid building blocks. Tetrahedron Lett. 2008, 49(8), 1396–1398. DOI: 10.1016/j.tetlet.2007.12.078.
  • Dangles, O.; Guibe, F.; Balavoine, G.; Lavielle, S.; Marquet, A. Selective cleavage of the allyl and (allyloxy) carbonyl groups through palladium-catalyzed hydrostannolysis with tributyltin hydride. Application to the selective protection-deprotection of amino acid derivatives and in peptide synthesis. J. Org. Chem. 1987, 52(22), 4984–4993. DOI: 10.1021/jo00231a027.
  • Adinolfi, M.; Iadonisi, A.; Ravidà, A.; Valerio, S. Remarkably efficient activation of glycosyl trichloro-and (N-phenyl) trifluoroacetimidates with bismuth (III) triflate. Tetrahedron Lett. 2006, 47(15), 2595–2599. DOI: 10.1016/j.tetlet.2006.02.034.
  • Nakahara, Y.; Iijima, H.; Shibayama, S.; Ogawa, T. Stereoselective total synthesis of glycopeptides bearing the dimeric and trimeric sialosyl-Tn epitope. Carbohydr. Res. 1992, 216, 211–225. DOI: 10.1016/0008-6215(92)84163-M.
  • Winterfeld, G. A.; Ito, Y.; Ogawa, T.; Schmidt, R. R. A novel and efficient route towards α‐GalNAc‐Ser and α‐GalNAc‐Thr building blocks for glycopeptide synthesis. Eur. J. Org. Chem. 1999, 1999(5), 1167–1171. DOI: 10.1002/(SICI)1099-0690(199905)1999:5<1167::AID-EJOC1167>3.0.CO;2-2.
  • Iijima, H.; Nakahara, Y.; Ogawa, T. Synthesis of the N-terminal glycopentapeptides of human glycophorin AM and AN carrying trimeric sialosyl Tn epitope. Tetrahedron Lett. 1992, 33(51), 7907–7910. DOI: 10.1016/S0040-4039(00)74775-7.
  • Nakahara, Y.; Iijima, H.; Sibayama, S.; Ogawa, T. A highly stereoselective synthesis of di- and trimeric sialosyltn epitope: A partial structure of glycophorin A. Tetrahedron Lett. 1990, 31(47), 6897–6900. DOI: 10.1016/s0040-4039(00)97201-0.
  • Wang, Z. G.; Ito, Y.; Nakahara, Y.; Ogawa, T. Experiments directed towards stereocontrolled synthesis of O-linked glycan which contains repeating lactosamine unit. Bioorg. Med. Chem. Lett. 1994, 4(23), 2805–2810. DOI: 10.1016/S0960-894X(01)80598-9.
  • Lee, D. J.; Harris, P. W.; Kowalczyk, R.; Dunbar, P. R.; Brimble, M. A. Microwave-assisted synthesis of fluorescein-labelled GalNAcα1-O-Ser/Thr (Tn) glycopeptides as immunological probes. Synthesis 2010, 2010(05), 763–769. DOI: 10.1055/s-0029-1218635.
  • Wang, Z. G.; Zhang, X. F.; Ito, Y.; Nakahara, Y.; Ogawa, T. A new strategy for stereoselective synthesis of sialic acid-containing glycopeptide fragment. Biorg. Med. Chem. 1996, 4(11), 1901–1908. DOI: 10.1016/s0968-0896(96)00172-1.
  • Macindoe, W. M.; Ijima, H.; Nakahara, Y.; Ogawa, T. Stereoselective synthesis of a blood group A type glycopeptide present in human blood mucin. Carbohydr. Res. 1995, 269(2), 227–257. DOI: 10.1016/0008-6215(94)00362-j.
  • Singh, L.; Nakahara, Y.; Ito, Y.; Nakahara, Y. An efficient access to protected disialylated glycohexaosyl threonine present on the leukosialin of activated T-lymphocytes. Carbohydr. Res. 2000, 325(2), 132–142. DOI: 10.1016/S0008-6215(99)00313-4.
  • Grigalevicius, S.; Chierici, S.; Renaudet, O.; Lo-Man, R.; Dériaud, E.; Leclerc, C.; Dumy, P. Chemoselective assembly and immunological evaluation of multiepitopic glycoconjugates bearing clustered Tn antigen as synthetic anticancer vaccines. Bioconjug. Chem. 2005, 16(5), 1149–1159. DOI: 10.1021/bc050010v.
  • Manabe, Y.; Matsumoto, T.; Ikinaga, Y.; Tsutsui, Y.; Sasaya, S.; Kadonaga, Y.; Konishi, A.; Yasuda, M.; Uto, T.; Dai, C.; et al. Revisiting glycosylations using glycosyl fluoride by BF3· Et2O: activation of disarmed glycosyl fluorides with high catalytic turnover. Org. Lett. 2021, 24(1), 6–10. DOI: 10.1021/acs.orglett.1c03233.
  • Paulsen, H.; Adermann, K. Synthese von O‐glycopeptid‐sequenzen des N‐terminus von interleukin‐2. Liebigs Ann. Chem. 1989, 1989(8), 751–769. DOI: 10.1002/jlac.198919890223.
  • Vuljanic, T.; Bergquist, K. E.; Clausen, H.; Roy, S.; Kihlberg, J. Piperidine is preferred to morpholine for Fmoc cleavage in solid phase glycopeptide synthesis as exemplified by preparation of glycopeptides related to HIV gp120 and mucins. Tetrahedron 1996, 52(23), 7983–8000. DOI: 10.1016/0040-4020(96)00369-9.
  • Plattner, C.; Höfener, M.; Sewald, N. One-pot azidochlorination of glycals. Org. Lett. 2011, 13(4), 545–547. DOI: 10.1021/ol102750h.
  • Leiria Campo, V.; Riul, T. B.; Oliveira Bortot, L.; Martins‐Teixeira, M. B.; Fiori Marchiori, M.; Iaccarino, E.; Ruvo, M.; Dias‐Baruffi, M.; Carvalho, I. A synthetic MUC1 glycopeptide bearing βGalNAc‐Thr as a TN antigen isomer induces the production of antibodies against tumor cells. Chembiochem 2017, 18(6), 527–538. DOI: 10.1002/cbic.201600473.
  • Winans, K. A.; King, D. S.; Rao, V. R.; Bertozzi, C. R. A chemically synthesized version of the insect antibacterial glycopeptide, diptericin, disrupts bacterial membrane integrity. Biochemistry 1999, 38(36), 11700–11710. DOI: 10.1021/bi991247f.
  • Mitchell, S. A.; Pratt, M. R.; Hruby, V. J.; Polt, R. Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J. Org. Chem. 2001, 66(7), 2327–2342. DOI: 10.1021/jo005712m.
  • Norgren, A. S.; Norberg, T.; Arvidsson, P. I. Glycosylated foldamers: synthesis of carbohydrate‐modified β3hSer and incorporation into β‐peptides. J. Pept. Sci. 2007, 13(11), 717–727. DOI: 10.1002/psc.832.
  • Heggemann, C.; Budke, C.; Schomburg, B.; Majer, Z.; Wissbrock, M.; Koop, T.; Sewald, N. Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids. 2010, 38(1), 213–222. DOI: 10.1007/s00726-008-0229-0.
  • Li, C.; Liang, H.; Zhang, Z.; Wang, Z.; Yu, L.; Liu, H.; An, F.; Wang, S.; Ma, L.; Xue, W. A catalytic Koenigs-Knorr glycosylation based on acceptor activation with In (NTf2) 3. Tetrahedron 2018, 74(29), 3963–3970. DOI: 10.1016/j.tet.2018.05.080.
  • Elofsson, M.; Kihlberg, J. Synthesis of TN and sialyl TN building blocks for solid phase glycopeptide synthesis. Tetrahedron Lett 1995, 36(41), 7499–7502. DOI: 10.1016/0040-4039(95)01515-9.
  • Lüning, B.; Norberg, T.; Tejbrant, J. Synthesis of mono- and disaccharide amino-acid derivatives for use in solid phase peptide synthesis. Glycoconj. J. 1989, 6(1), 5–19. DOI: 10.1007/BF01047886.
  • Cato, D.; Buskas, T.; Boons, G. J. Highly efficient stereospecific preparation of Tn and TF building blocks using thioglycosyl donors and the Ph2SO/Tf2O promotor system. J. Carbohydr. Chem. 2005, 24(4-6), 503–516. DOI: 10.1081/CAR-200067091.
  • Miermont, A.; Barnhill, H.; Strable, E.; Lu, X.; Wall, K. A.; Wang, Q.; Finn, M. E. G.; Huang, X. Cowpea mosaic virus capsid: a promising carrier for the development of carbohydrate based antitumor vaccines. Chemistry 2008, 14(16), 4939–4947. DOI: 10.1002/chem.200800203.
  • Lu, S. R.; Lai, Y. H.; Chen, J. H.; Liu, C. Y.; Mong, K. K. T. Dimethylformamide: an unusual glycosylation modulator. Angew. Chem. Int. Ed. Engl. 2011, 50(32), 7315–7320. DOI: 10.1002/anie.201100076.
  • Lamarre, M.; Tremblay, T.; Bansept, M. A.; Robitaille, K.; Fradet, V.; Giguère, D.; Boudreau, D. A glycan-based plasmonic sensor for prostate cancer diagnosis. Analyst 2021, 146(22), 6852–6860. DOI: 10.1039/d1an00789k.
  • Witczak, Z. J.; Czernecki, S. Synthetic applications of selenium-containing sugars. Adv. Carbohydr. Chem. Biochem. 1998, 53, 143–199. DOI: 10.1016/s0065-2318(08)60044-x.
  • Ravindranathan Kartha, K. P.; Kärkkäinen, T. S.; Marsh, S. J.; Field, R. A. Iodine and its Interhalogen Compounds: Versatile Reagents in Carbohydrate Chemistry XIII. General Activation ofArmed’Glycosyl Donors. Synlett 2001, 2001(02), 0260–0262. DOI: 10.1055/s-2001-10771.
  • Jiaang, W. T.; Chang, M. Y.; Tseng, P. H.; Chen, S. T. A concise synthesis of the O-glycosylated amino acid building block; using phenyl selenoglycoside as a glycosyl donor. Tetrahedron Lett. 2000, 41(17), 3127–3130. DOI: 10.1016/S0040-4039(00)00367-1.
  • Kärkkäinen, T. S.; Kartha, K. R.; MacMillan, D.; Field, R. A. Iodine-mediated glycosylation en route to mucin-related glyco-aminoacids and glycopeptides. Carbohydr. Res. 2008, 343(10-11), 1830–1834. DOI: 10.1016/j.carres.2008.03.034.
  • Wei, G.; Lv, X.; Du, Y. FeCl3-catalyzed α-glycosidation of glycosamine pentaacetates. Carbohydr. Res. 2008, 343(18), 3096–3099. DOI: 10.1016/j.carres.2008.09.003.
  • Wojnar, J. M.; Evans, C. W.; DeVries, A. L.; Brimble, M. A. Synthesis of an isotopically-labelled Antarctic fish antifreeze glycoprotein probe. Aust. J. Chem. 2011, 64(6), 723–731. DOI: 10.1071/CH10464.
  • Galesic, A.; Rakshit, A.; Cutolo, G.; Pacheco, R. P.; Balana, A. T.; Moon, S. P.; Pratt, M. R. Comparison of N-acetyl-glucosamine to other monosaccharides reveals structural differences for the inhibition of α-synuclein aggregation. ACS Chem. Biol. 2021, 16(1), 14–19. DOI: 10.1021/acschembio.0c00716.
  • Yu, B. Gold (I)-catalyzed glycosylation with glycosyl o-alkynylbenzoates as donors. Acc. Chem. Res. 2018, 51(2), 507–516. DOI: 10.1021/acs.accounts.7b00573.
  • Liu, X.; Liu, J.; Wu, Z.; Chen, L.; Wang, S.; Wang, P. Photo-cleavable purification/protection handle assisted synthesis of giant modified proteins with tandem repeats. Chem. Sci. 2019, 10(37), 8694–8700. DOI: 10.1039/c9sc03693h.
  • Das, J.; Schmidt, R. R. Convenient Glycoside Synthesis of Amino Sugars: Michael‐Type Addition to 2‐Nitro‐D‐galactal. Eur. J. Org. Chem. 1998, 1998(8), 1609–1613. DOI: 10.1002/(SICI)1099-0690(199808)1998:8<1609::AID-EJOC1609>3.0.CO;2-1.
  • Bovin, N. V.; Zurabyan, S. É.; Khorlin, A. Y. Addition of halogenoazides to glycals. Carbohydr. Res. 1981, 98(1), 25–35. DOI: 10.1016/S0008-6215(00)87138-4.
  • Winterfeld, G. A.; Khodair, A. I.; Schmidt, R. R. O‐Glycosyl Amino Acids by 2‐Nitrogalactal Concatenation − Synthesis of a Mucin‐Type O‐Glycan. Eur. J. Org. Chem. 2003, 2003(6), 1009–1021. DOI: 10.1002/ejoc.200390142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.