60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of glycosylphosphatidylinositol analogues with an unnatural β-D-glucosamine-(1→6)-myo-inositol motif

&
Received 23 Jan 2024, Accepted 09 Apr 2024, Published online: 23 Apr 2024

References

  • Ferguson, M. A. J. The Structure, Biosynthesis and Functions of Glycosylphosphatidylinositol Anchors, and the Contributions of Trypanosome Research. J. Cell Sci. 1999, 112 (Pt 17)(17), 2799–2809. DOI: 10.1242/jcs.112.17.2799.
  • Paulick, M. G.; Bertozzi, C. R. The Glycosylphosphatidylinositol Anchor: A Complex Membrane-Anchoring Structure for Proteins. Biochemistry. 2008, 47(27), 6991–7000. DOI: 10.1021/bi8006324.
  • Thomas, J. R.; Dwek, R. A.; Rademacher, T. W. Structure, Biosynthesis, and Function of Glycosylphosphatidylinositols. Biochemistry. 1990, 29(23), 5413–5422. DOI: 10.1021/bi00475a001.
  • Hwa, K. Glycosyl Phosphatidylinositol-linked Glycoconjugates: Structure, Biosynthesis and Function. Adv. Exp. Med. Biol. 2001, 491, 207–214. DOI: 10.1007/978-1-4615-1267-7_15.
  • Pittet, M.; Conzelmann, A. Biosynthesis and Function of GPI Proteins in the Yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 2007, 1771(3), 405–420. DOI: 10.1016/j.bbalip.2006.05.015.
  • Robinson, P. J. Signal Transduction by GPI-Anchored Membrane Proteins. Cell Biol. Int. Rep. 1991, 15(9), 761–767. DOI: 10.1016/0309-1651(91)90031-d.
  • Trotter, J.; Klein, C.; Krämer, E.-M. GPI-Anchored Proteins and Glycosphingolipid-Rich Rafts: Platforms for Adhesion and Signaling. Neuroscientist. 2000, 6(4), 271–284. DOI: 10.1177/107385840000600410.
  • Zhou, K. Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Transduction. Front. Plant Sci. 2019, 10, 1022. DOI: 10.3389/fpls.2019.01022.
  • Tiveron, M. C.; Nosten-Bertrand, M.; Jani, H.; Garnett, D.; Hirst, E. M.; Grosveld, F.; Morris, R. J. The Mode of Anchorage to the Cell Surface Determines Both the Function and the Membrane Location of Thy-1 Glycoprotein. J. Cell Sci. 1994, 107 (Pt 7)(7), 1783–1796. DOI: 10.1242/jcs.107.7.1783.
  • Bate, C.; Williams, A. Monoacylated Cellular Prion Protein Modifies Cell Membranes, Inhibits Cell Signaling, and Reduces Prion Formation. J. Biol. Chem. 2011, 286(11), 8752–8758. DOI: 10.1074/jbc.M110.186833.
  • Kinoshita, T. Biosynthesis and Biology of Mammalian GPI-Anchored Proteins. Open Biol. 2020, 10(3), e190290. DOI: 10.1098/rsob.190290.
  • Borges, A. R.; Link, F.; Engstler, M.; Jones, N. G. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front. Cell Dev. Biol. 2021, 9, e720536. DOI: 10.3389/fcell.2021.720536.
  • Yamada, I.; Shiota, M.; Shinmachi, D.; Ono, T.; Tsuchiya, S.; Hosoda, M.; Fujita, A.; Aoki, N. P.; Watanabe, Y.; Fujita, N.; et al. The GlyCosmos Portal: A Unified and Comprehensive Web Resource for the Glycosciences. Nat. Methods. 2020, 17(7), 649–650. DOI: 10.1038/s41592-020-0879-8.
  • Japanese Society of Carbohydrate Research Glycoscience Portal GlyCosmos Steering Committee. GlyCosmos Glycolipids. https://glycosmos.org/glycolipids (accessed January 20, 2024).
  • Murakata, C.; Ogawa, T. A Total Synthesis of GPI Anchor of Trypanosoma brucei. Tetrahedron Lett. 1991, 32(5), 671–674. DOI: 10.1016/S0040-4039(00)74856-8.
  • Murakata, C.; Ogawa, T. Stereoselective Total Synthesis of the Glycosylphosphatidylinositol (GPI) Anchor of Trypanosoma brucei. Carbohydr. Res. 1992, 235, 95–114. DOI: 10.1016/0008-6215(92)80081-b.
  • Udodong, U. E.; Madsen, R.; Roberts, C.; Fraser-Reid, B. A Ready, Convergent Synthesis of the Heptasaccharide GPI Membrane Anchor of Rat Brain Thy-1. J. Am. Chem. Soc. 1993, 115(17), 7886–7887. DOI: 10.1021/ja00070a048.
  • Campbell, A. S.; Fraser-Reid, B. First Synthesis of a Fully Phosphorylated GPI Membrane Anchor: Rat Brain Thy-1. J. Am. Chem. Soc. 1995, 117(41), 10387–10388. DOI: 10.1021/ja00146a026.
  • Lu, J.; Jayaprakash, K. N.; Schlueter, U.; Fraser-Reid, B. Synthesis of a Malaria Candidate Glycosylphosphatidylinositol (GPI) Structure: A Strategy for Fully Inositol Acylated and Phosphorylated GPIs. J. Am. Chem. Soc. 2004, 126(24), 7540–7547. DOI: 10.1021/ja038807p.
  • Mayer, T. G.; Kratzer, B.; Schmidt, R. R. Synthesis of a GPI Anchor of Yeast (Saccharomyces cerevisiae). Angew. Chem. Int. Ed. Engl. 1994, 33(21), 2177–2181. DOI: 10.1002/anie.199421771.
  • Pekari, K.; Tailler, D.; Weingart, R.; Schmidt, R. R. Synthesis of the Fully Phosphorylated GPI Anchor Pseudohexasaccharide of Toxoplasma gondii. J. Org. Chem. 2001, 66(22), 7432–7442. DOI: 10.1021/jo015840q.
  • Pekari, K.; Schmidt, R. R. A Variable Concept for the Preparation of Branched Glycosyl Phosphatidyl Inositol Anchors. J. Org. Chem. 2003, 68(4), 1295–1308. DOI: 10.1021/jo026380j.
  • Baeschlin, D. K.; Chaperon, A. R.; Charbonneau, V.; Green, L. G.; Ley, S. V.; Lücking, U.; Walther, E. Rapid Assembly of Oligosaccharides: Total Synthesis of a Glycosylphosphatidylinositol Anchor of Trypanosoma brucei. Angew. Chem. Int. Ed. 1998, 37(24), 3423–3428. DOI: 10.1002/(SICI)1521-3773(19981231)37:24<3423::AID-ANIE3423>3.3.CO;2-9.
  • Baeschlin, D. K.; Chaperon, A. R.; Green, L. G.; Hahn, M. G.; Ince, S. J.; Ley, S. V. 1,2-Diacetals in Synthesis: Total Synthesis of a Glycosylphosphatidylinositol Anchor of Trypanosoma brucei. Chem. Eur. J. 2000, 6(1), 172–186. DOI: 10.1002/(SICI)1521-3765(20000103)6:1<172::AID-CHEM172>3.3.CO;2-X.
  • Hewitt, M. C.; Snyder, D. A.; Seeberger, P. H. Rapid Synthesis of a glycosylphosphatidylinositol-based malaria vaccine using automated solid-phase oligosaccharide synthesis. J. Am. Chem. Soc. 2002, 124(45), 13434–13436. DOI: 10.1021/ja027538k.
  • Liu, X.; Kwon, Y.; Seeberger, P. H. Convergent Synthesis of a Fully Lipidated Glycosylphosphatidylinositol Anchor of Plasmodium falciparum. J. Am. Chem. Soc. 2005, 127(14), 5004–5005. DOI: 10.1021/ja042374o.
  • Tsai, Y.-H.; Götze, S.; Azzouz, N.; Hahm, H. S.; Seeberger, P. H.; Varon Silva, D. A General Method for Synthesis of GPI Anchors Illustrated by the Total Synthesis of the low-molecular-weight Antigen from Toxoplasma gondii. Angew. Chem. Int. Ed. Engl. 2011, 50(42), 9961–9964. DOI: 10.1002/anie.201103483.
  • Roller, R. F.; Malik, A.; Carillo, M. A.; Garg, M.; Rella, A.; Raulf, M.-K.; Lepenies, B.; Seeberger, P. H.; Varón Silva, D. Semisynthesis of Functional Glycosylphosphatidylinositol-Anchored Proteins. Angew. Chem. Int. Ed. Engl. 2020, 59(29), 12035–12040. DOI: 10.1002/anie.202002479.
  • Lahmann, M.; Garegg, P. J.; Konradsson, P.; Oscarson, S. Synthesis of a Polyphosphorylated GPI-Anchor Core Structure. Can. J. Chem. 2002, 80(8), 1105–1111. DOI: 10.1139/v02-160.
  • Ali, A.; Gowda, D. C.; Vishwakarma, R. A. A New Approach to Construct Full-Length Glycosylphosphatidylinositols of Parasitic Protozoa and [4-deoxy-Man-III]-GPI Analogues. Chem. Commun. (Camb). 2005, (4), 519–521. DOI: 10.1039/b414119a.
  • Ali, A.; Vishwakarma, R. A. Total Synthesis of the Fully Lipidated Glycosylphosphatidylinositol (GPI) Anchor of Malarial Parasite Plasmodium falciparum. Tetrahedron. 2010, 66(24), 4357–4369. DOI: 10.1016/j.tet.2010.04.014.
  • Yashunsky, D. V.; Borodkin, V. S.; Ferguson, M. A. J.; Nikolaev, A. V. The Chemical Synthesis of Bioactive Glycosylphosphatidylinositols from Trypanosoma cruzi Containing an Unsaturated Fatty Acid in the Lipid. Angew. Chem. Int. Ed. Engl. 2006, 45(3), 468–474. DOI: 10.1002/anie.200502779.
  • Ding, N.; Li, X.; Chinoy, Z. S.; Boons, G. J. Synthesis of a Glycosylphosphatidylinositol Anchor Derived from Leishmania donovani that can be Functionalized by Cu-Catalyzed Azide-Alkyne Cycloadditions. Org. Lett. 2017, 19(14), 3827–3830. DOI: 10.1021/acs.orglett.7b01703.
  • Xue, J.; Guo, Z. Convergent Synthesis of a GPI Containing an Acylated Inositol. J. Am. Chem. Soc. 2003, 125(52), 16334–16339. DOI: 10.1021/ja0382157.
  • Wu, X.; Guo, Z. Convergent Synthesis of a Fully Phosphorylated GPI Anchor of the CD52 Antigen. Org. Lett. 2007, 9(21), 4311–4313. DOI: 10.1021/ol701870m.
  • Swarts, B. M.; Guo, Z. Synthesis of a Glycosylphosphatidylinositol (GPI) Anchor Carrying Unsaturated Lipid Chains. J. Am. Chem. Soc. 2010, 132(19), 6648–6650. DOI: 10.1021/ja1009037.
  • Burgula, S.; Swarts, B. M.; Guo, Z. Total Synthesis of a Glycosylphosphatidylinositol Anchor of the Human Lymphoctye CD52 Antigen. Chemistry. 2012, 18(4), 1194–1201. DOI: 10.1002/chem.201102545.
  • Swarts, B. M.; Guo, Z. Chemical Synthesis and Functionalization of Clickable Glycosylphosphatidylinositol Anchors. Chem. Sci. 2011, 2(12), 2342–2352. DOI: 10.1039/C1SC00440A.
  • Mullapudi, V. B.; Craig, K. C.; Guo, Z. Synthesis of a Bifunctionalized Glycosylphosphatidylinositol (GPI) Anchor Useful for the Study of GPI Biology. Chem. Eur. J. 2022, 29, e202203457.
  • Yan, X.; Guo, Z. Diversity-Oriented Synthesis of Glycosylphosphatidylinositol Probes based on an Orthogonally Protected Pentasaccharide. Org. Lett. 2023, 25(12), 2088–2092. DOI: 10.1021/acs.orglett.3c00448.
  • Hassner, A.; Strand, G.; Rubenstein, M.; Patchornik, A. Levulinic esters. An Alcohol Protecting Group Applicable to Some Nucleosides. J. Am. Chem. Soc. 1975, 97(6), 1614–1615. DOI: 10.1021/ja00839a077.
  • Wuts, P. G. M. Greene’s Protective Groups in Organic Synthesis, 5th ed. Wiley: Hoboken, New Jersey, 2014.
  • Nigudkar, S. S.; Demchenko, A. V. Stereocontrolled 1,2-Cis Glycosylation as the Driving Force of Progress in Synthetic Carbohydrate Chemistry. Chem. Sci. 2015, 6(5), 2687–2704. DOI: 10.1039/C5SC00280J.
  • Bock, K.; Lundt, I.; Pedersen, C. Assignment of Anomeric Structure to Carbohydrates Through Geminal 13C-H Coupling Constants. Tetrahedron Lett. 1973, 14(13), 1037–1040. DOI: 10.1016/S0040-4039(01)95898-8.
  • Lindh, I.; Stawinski, J. A General Method for the Synthesis of Glycerophospholipids and their Analogs via H-Phosphonate Intermediates. J. Org. Chem. 1989, 54(6), 1338–1342. DOI: 10.1021/jo00267a020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.