1,621
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Sesquiterpene Lactones – Insights into Biosynthesis, Regulation and Signalling Roles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Acquadro, A., Barchi, L., Portis, E., Mangino, G., Valentino, D., Mauromicale, G., and Lanteri, S. 2017. Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Sci. Rep. 7:5617. doi:10.1038/s41598-017-05085-7
  • Ahern, J. R., and Whitney, K. D. 2014. Sesquiterpene lactone stereochemistry influences herbivore resistance and plant fitness in the field. Ann. Bot. 113:731–740. doi:10.1093/aob/mct297
  • Amrehn, E., Aschenbrenner, A. K., Heller, A., and Spring, O. 2016. Localization of sesquiterpene lactone biosynthesis in cells of capitate glandular trichomes of Helianthus annuus (Asteraceae). Protoplasma 253:447–455. doi:10.1007/s00709-015-0823-4
  • Andersen, T. B., Martinez-Swatson, K. A., Rasmussen, S. A., Boughton, B. A., Jørgensen, K., Andersen-Ranberg, J., Nyberg, N., Christensen, S. B., and Simonsen, H. T. 2017. Localization and in-vivo characterization of Thapsia garganica CYP76AE2 indicates a role in Thapsigargin biosynthesis. Plant Physiol. 174:56–72. doi:10.1104/pp.16.00055
  • Andersen, T. B., Rasmussen, S. A., Christensen, S. B., and Simonsen, H. T. 2019. Biosynthesis of tovarol and other sesquiterpenoids in Thapsia laciniata Rouy. Phytochemistry 157:168–174. doi:10.1016/j.phytochem.2018.10.027
  • Andolfi, A., Zermane, N., Cimmino, A., Avolio, F., Boari, A., Vurro, M., and Evidente, A. 2013. Inuloxins A–D, phytotoxic bi-and tri-cyclic sesquiterpene lactones produced by Inula viscosa: potential for broomrapes and field dodder management. Phytochemistry 86:112–120. doi:10.1016/j.phytochem.2012.10.003
  • Appezzato-da-Glória, B., Da Costa, F. B., da Silva, V. C., Gobbo-Neto, L., Rehder, V. L. G., and Hayashi, A. H. 2012. Glandular trichomes on aerial and underground organs in Chrysolaena species (Vernonieae – Asteraceae): structure, ultrastructure and chemical composition. Flora Morphol Distribut Funct Ecol Plants 207:878–887. doi:10.1016/j.flora.2012.10.003
  • Aschenbrenner, A. K., Amrehn, E., Bechtel, L., and Spring, O. 2015. Trichome differentiation on leaf primordia of Helianthus annuus (Asteraceae): morphology, gene expression and metabolite profile. Planta 241:837–846. doi:10.1007/s00425-014-2223-y
  • Aschenbrenner, A. K., Horakh, S., and Spring, O. 2013. Linear glandular trichomes of Helianthus (Asteraceae): morphology, localization, metabolite activity and occurrence. AoB PLANTS 5:plt028–plt028. doi:10.1093/aobpla/plt028
  • Badouin, H., Gouzy, J., Grassa, C. J., Murat, F., Staton, S. E., Cottret, L., Lelandais-Brière, C., Owens, G. L., Carrère, S., Mayjonade, B., Legrand, L., Gill, N., Kane, N. C., Bowers, J. E., Hubner, S., Bellec, A., Bérard, A., Bergès, H., Blanchet, N., Boniface, M.-C., Brunel, D., Catrice, O., Chaidir, N., Claudel, C., Donnadieu, C., Faraut, T., Fievet, G., Helmstetter, N., King, M., Knapp, S. J., Lai, Z., Le Paslier, M.-C., Lippi, Y., Lorenzon, L., Mandel, J. R., Marage, G., Marchand, G., Marquand, E., Bret-Mestries, E., Morien, E., Nambeesan, S., Nguyen, T., Pegot-Espagnet, P., Pouilly, N., Raftis, F., Sallet, E., Schiex, T., Thomas, J., Vandecasteele, C., Varès, D., Vear, F., Vautrin, S., Crespi, M., Mangin, B., Burke, J. M., Salse, J., Muños, S., Vincourt, P., Rieseberg, L. H., and Langlade, N. B. 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:148–152. doi:10.1038/nature22380
  • Baek, S., Utomo, J. C., Lee, J. Y., Dalal, K., Yoon, Y. J., and Ro, D.-K. 2021. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system. Metab. Eng. 64:111–121. doi:10.1016/j.ymben.2021.01.011
  • Barker, M. S., Li, Z., Kidder, T. I., Reardon, C. R., Lai, Z., Oliveira, L. O., Scascitelli, M., and Rieseberg, L. H. 2016. Most compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. Am. J. Bot. 103:1203–1211. doi:10.3732/ajb.1600113
  • Barnes, E. K., Kwon, M., Hodgins, C. L., Qu, Y., Kim, S.-W., Yeung, E. C., and Ro, D.-K. 2021. The promoter sequences of lettuce cis-prenyltransferase and its binding protein specify gene expression in laticifers. Planta 253:51. doi:10.1007/s00425-021-03566-8
  • Bellinger, M. R., Datlof, E. M., Selph, K. E., Gallaher, T. J., and Knope, M. L. 2022. A genome for Bidens hawaiensis: a member of a hexaploid Hawaiian plant adaptive radiation. J. Hered. 113:205–214. doi:10.1093/jhered/esab077
  • Bennett, M. H., Gallagher, M. D. S., Bestwick, C. S., Rossiter, J. T., and Mansfield, J. W. 1994. The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremia lactucae and Pseudomonas syringae pv. phaseolicola. Physiol. Mol. Plant Pathol. 44:321–333. doi:10.1016/S0885-5765(05)80046-3
  • Berman, P., de Haro, L. A., Jozwiak, A., Panda, S., Pinkas, Z., Dong, Y., Cveticanin, J., Barbole, R., Livne, R., Scherf, T., Shimoni, E., Levin-Zaidman, S., Dezorella, N., Petrovich-Kopitman, E., Meir, S., Rogachev, I., Sonawane, P. D., and Aharoni, A. 2023. Parallel evolution of cannabinoid biosynthesis. Nat. Plants. 9:817–831. doi:10.1038/s41477-023-01402-3
  • Bifulco, G., Bruno, I., Paloma, L. G., and Riccio, R. 1993. Edwardsolides A, B and C. New Sesquiterpenoid Lactones from the Mediterranean Octocoral Maasella edwardsi. Natural Product Letters 3:167–171. doi:10.1080/10575639308043857
  • Bird, D. A., Franceschi, V. R., and Facchini, P. J. 2003. A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell. 15:2626–2635. doi:10.1105/tpc.015396
  • Bogdanović, M., Cankar, K., Todorović, S., Dragicević, M., Simonović, A., van Houwelingen, A., Schijlen, E., Schipper, B., Gagneul, D., Hendriks, T., Quillet, M.-C., Bouwmeester, H., Bosch, D., and Beekwilder, J. 2019. Tissue specific expression and genomic organization of bitter sesquiterpene lactone biosynthesis in Cichorium intybus L. (Asteraceae). Ind. Crops Prod. 129:253–260. doi:10.1016/j.indcrop.2018.12.011
  • Bouwmeester, H. J., Kodde, J., Verstappen, F. W. a., Altug, I. G., de Kraker, J.-W., and Wallaart, T. E. 2002. Isolation and characterization of two germacrene A synthase cDNA clones from chicory. Plant Physiol. 129:134–144. doi:10.1104/pp.001024
  • Cankar, K., Bundock, P., Sevenier, R., Häkkinen, S. T., Hakkert, J. C., Beekwilder, J., van der Meer, I. M., de Both, M., and Bosch, D. 2021. Inactivation of the germacrene A synthase genes by CRISPR/Cas9 eliminates the biosynthesis of sesquiterpene lactones in Cichorium intybus L. Plant Biotechnol. J. 19:2442–2453. doi:10.1111/pbi.13670
  • Cankar, K., Hakkert, J. C., Sevenier, R., Campo, E., Schipper, B., Papastolopoulou, C., Vahabi, K., Tissier, A., Bundock, P., and Bosch, D. 2022. CRISPR/Cas9 targeted inactivation of the kauniolide synthase in chicory results in accumulation of costunolide and its conjugates in taproots. Front. Plant Sci. 13:940003. doi:10.3389/fpls.2022.940003
  • Cankar, K., Hakkert, J. C., Sevenier, R., Papastolopoulou, C., Schipper, B., Baixinho, J. P., Fernández, N., Matos, M. S., Serra, A. T., Santos, C. N., Vahabi, K., Tissier, A., Bundock, P., and Bosch, D. 2023. Lactucin synthase inactivation boosts the accumulation of anti-inflammatory 8-deoxylactucin and its derivatives in chicory (Cichorium intybus L.). J. Agric. Food Chem. 71:6061–6072. doi:10.1021/acs.jafc.2c08959
  • Cankar, K., Houwelingen, A. V., Bosch, D., Sonke, T., Bouwmeester, H., and Beekwilder, J. 2011. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett. 585:178–182. doi:10.1016/j.febslet.2010.11.040
  • Catalán, C. A. N., Borkosky, S. A., and Joseph-Nathan, P. 1996. The secondary metabolite chemistry of the subtribe Gochnatiinae (tribe Mutisieae, family Compositae). Biochem. Syst. Ecol. 24:659–718. doi:10.1016/S0305-1978(96)00063-4
  • Catania, T. M., Branigan, C. A., Stawniak, N., Hodson, J., Harvey, D., Larson, T. R., Czechowski, T., and Graham, I. A. 2018. Silencing amorpha-4,11-diene synthase genes in Artemisia annua Leads to FPP Accumulation. Front. Plant Sci. 9:547. doi:10.3389/fpls.2018.00547
  • Cavallito, C. J., and Haskell, T. H. 1945. The mechanism of action of antibiotics. The reaction of unsaturated lactones with cysteine and related compounds. J. Am. Chem. Soc. 67:1991–1994. doi:10.1021/ja01227a037
  • Chang, M. C. Y., Eachus, R. a., Trieu, W., Ro, D.-K., and Keasling, J. D. 2007. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3:274–277. doi:10.1038/nchembio875
  • Chen, H., Guo, M., Dong, S., Wu, X., Zhang, G., He, L., Jiao, Y., Chen, S., Li, L., and Luo, H. 2023. A chromosome-scale genome assembly of Artemisia argyi reveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity. Plant Commun. 4:100516. doi:10.1016/j.xplc.2023.100516
  • Conn, C. E., Bythell-Douglas, R., Neumann, D., Yoshida, S., Whittington, B., Westwood, J. H., Shirasu, K., Bond, C. S., Dyer, K. A., and Nelson, D. C. 2015. PLANT EVOLUTION. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349:540–543. doi:10.1126/science.aab1140
  • Czechowski, T., Larson, T. R., Catania, T. M., Harvey, D., Brown, G. D., and Graham, I. A. 2016. Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism. Proc. Natl. Acad. Sci. U S A. 113:15150–15155. doi:10.1073/pnas.1611567113
  • De Bruyn, C., Ruttink, T., Lacchini, E., Rombauts, S., Haegeman, A., De Keyser, E., Van Poucke, C., Desmet, S., Jacobs, T. B., Eeckhaut, T., Goossens, A., and Van Laere, K. 2023. Identification and characterization of CYP71 subclade cytochrome P450 enzymes involved in the biosynthesis of bitterness compounds in Cichorium intybus. Front. Plant Sci. 14:1200253. doi:10.3389/fpls.2023.1200253
  • Degenhardt, J., Köllner, T. G., and Gershenzon, J. 2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637. doi:10.1016/j.phytochem.2009.07.030
  • Desgagné-Penix, I., and Facchini, P. J. 2012. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant J. 72:331–344. doi:10.1111/j.1365-313X.2012.05084.x
  • Duke, S. O., and Paul, R. N. 1993. Development and fine structure of the Glandular Trichomes of Artemisia annua L. International Journal of Plant Sciences 154:107–118. doi:10.1086/297096
  • Duke, M. V., Paul, R. N., Elsohly, H. N., Sturtz, G., and Duke, S. O. 1994. Localization of Artemisinin and Artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int. J. Plant Sci. 155:365–372. doi:10.1086/297173
  • Eljounaidi, K., Cankar, K., Comino, C., Moglia, A., Hehn, A., Bourgaud, F. d. r., Bouwmeester, H., Menin, B., Lanteri, S., and Beekwilder, J. 2014. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant Sci. 223:59–68. doi:10.1016/j.plantsci.2014.03.007
  • Fahn, A. 2000. Structure and function of secretory cells. Adv. Bot. Res. 31:37–66. doi:10.1016/S0065-2296(00)31006-0
  • Fan, W., Wang, S., Wang, H., Wang, A., Jiang, F., Liu, H., Zhao, H., Xu, D., and Zhang, Y. 2022. The genomes of chicory, endive, great burdock and yacon provide insights into Asteraceae palaeo-polyploidization history and plant inulin production. Mol. Ecol. Resour. 22:3124–3140. doi:10.1111/1755-0998.13675
  • Fischer, N. H., Olivier, E. J., and Fischer, H. D. 1979. The Biogenesis and Chemistry of Sesquiterpene Lactones BT - Fortschritte Der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Fischer H. D., Fischer N. H., Franck R. W., Eds. Vienna, Springer Vienna, pp. 47–320.
  • Frey, M. 2020. Traps and pitfalls-unspecific reactions in metabolic engineering of Sesquiterpenoid pathways. Molecules 25:1935. doi:10.3390/molecules25081935
  • Frey, M., Klaiber, I., Conrad, J., and Spring, O. 2020. CYP71BL9, the missing link in costunolide synthesis of sunflower. Phytochemistry 177:112430. doi:10.1016/j.phytochem.2020.112430
  • Frey, M., Klaiber, I., Conrad, J., Bersch, A., Pateraki, I., Ro, D.-K., and Spring, O. 2019. Characterization of CYP71AX36 from Sunflower (Helianthus annuus L., Asteraceae). Sci. Rep. 9:14295–14295. doi:10.1038/s41598-019-50520-6
  • Frey, M., Schmauder, K., Pateraki, I., and Spring, O. 2018. Biosynthesis of Eupatolide-a metabolic route for Sesquiterpene lactone formation involving the P450 enzyme CYP71DD6. ACS Chem. Biol. 13:1536–1543. doi:10.1021/acschembio.8b00126
  • Fuentes, P., Zhou, F., Erban, A., Karcher, D., Kopka, J., and Bock, R. 2016. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. eLife 5:e13664.
  • Ghantous, A., Gali-Muhtasib, H., Vuorela, H., Saliba, N. A., and Darwiche, N. 2010. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today. 15:668–678. doi:10.1016/j.drudis.2010.06.002
  • Göpfert, J., Bülow, A. K., and Spring, O. 2010. Identification and functional characterization of a new sunflower germacrene A synthase (HaGAS3). Nat. Prod. Commun. 5:1934578X1000500. doi:10.1177/1934578X1000500507
  • Göpfert, J., Conrad, J., and Spring, O. 2006. 5-deoxynevadensin, a novel flavone in sunflower and aspects of biosynthesis during trichome development. Nat. Prod. Commun. 1:1934578X0600101. doi:10.1177/1934578X0600101104
  • Göpfert, J. C., Heil, N., Conrad, J., and Spring, O. 2005. Cytological development and sesquiterpene lactone secretion in capitate glandular trichomes of sunflower. Plant Biol. (Stuttg) 7:148–155. doi:10.1055/s-2005-837575
  • Göpfert, J. C., Macnevin, G., Ro, D.-K., and Spring, O. 2009. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol. 9:86–86. doi:10.1186/1471-2229-9-86
  • Gou, J., Hao, F., Huang, C., Kwon, M., Chen, F., Li, C., Liu, C., Ro, D.-K., Tang, H., and Zhang, Y. 2017. Discovery of a non-stereoselective cytochrome P450 catalyzing either 8α- or 8β-hydroxylation of germacrene A acid from the Chinese medicinal plant, Inula hupehensis. Plant J. 93:92–106. doi:10.1111/tpj.13760
  • Greinwald, A., Hartmann, M., Heilmann, J., Heinrich, M., Luick, R., and Reif, A. 2022. Soil and vegetation drive Sesquiterpene lactone content and profile in Arnica montana L. Flower heads from Apuseni-mountains, Romania. Front. Plant Sci. 13:813939. doi:10.3389/fpls.2022.813939
  • Gutiérrez, D. G., and Luna, M. L. 2013. A comparative study of latex-producing tissues in genera of Liabeae (Asteraceae). Flora Morphol Distribut Function Ecol Plants 208:33–44. doi:10.1016/j.flora.2012.11.001
  • Hagel, J. M., Yeung, E. C., and Facchini, P. J. 2008. Got milk? The secret life of laticifers. Trends Plant Sci. 13:631–639. doi:10.1016/j.tplants.2008.09.005
  • Han, J., Wang, H., Kanagarajan, S., Hao, M., Lundgren, A., and Brodelius, P. E. 2016. Promoting Artemisinin biosynthesis in Artemisia annua plants by substrate channeling. Mol. Plant. 9:946–948. doi:10.1016/j.molp.2016.03.004
  • Hansen, C. C., Nelson, D. R., Møller, B. L., and Werck-Reichhart, D. 2021. Plant cytochrome P450 plasticity and evolution. Mol. Plant. 14:1772. doi:10.1016/j.molp.2021.09.013
  • Hassani, D., Taheri, A., Fu, X., Qin, W., Hang, L., Ma, Y., and Tang, K. 2023. Elevation of artemisinin content by co-transformation of artemisinin biosynthetic pathway genes and trichome-specific transcription factors in Artemisia annua. Front. Plant Sci. 14:1118082. doi:10.3389/fpls.2023.1118082
  • He, X., Sun, Y., and Zhu, R.-L. 2013. The oil bodies of liverworts: unique and important organelles in land plants. Crit. Rev. Plant Sci. 32:293–302. doi:10.1080/07352689.2013.765765
  • Henquet, M. G. L., Prota, N., van der Hooft, J. J. J., Varbanova-Herde, M., Hulzink, R. J. M., de Vos, M., Prins, M., de Both, M. T. J., Franssen, M. C. R., Bouwmeester, H., and Jongsma, M. 2017. Identification of a drimenol synthase and drimenol oxidase from Persicaria hydropiper, involved in the biosynthesis of insect deterrent drimanes. Plant J. 90:1052–1063. doi:10.1111/tpj.13527
  • Hingsamer, M., Kulmer, V., de Roode, M., and Kernitzkyi, M. 2022. Environmental and socio-economic impacts of new plant breeding technologies: a case study of root chicory for inulin production. Front. Genome Ed. 4:919392. doi:10.3389/fgeed.2022.919392
  • Huang, S. H., Duke, R. K., Chebib, M., Sasaki, K., Wada, K., and Johnston, G. A. R. 2003. Bilobalide, a sesquiterpene trilactone from Ginkgo biloba, is an antagonist at recombinant α1β2γ2L GABAA receptors. Eur. J. Pharmacol. 464:1–8. doi:10.1016/s0014-2999(03)01344-x
  • Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., Swyers, M., Köllner, T. G., Vogel, H., Hammerbacher, A., Triebwasser-Freese, D., Robert, C. A. M., Verhoeven, K., Preite, V., Gershenzon, J., and Erb, M. 2016. A latex metabolite benefits plant fitness under root herbivore attack. PLoS Biol. 14:e1002332. doi:10.1371/journal.pbio.1002332
  • Ikezawa, N., Göpfert, J. C., Nguyen, D. T., Kim, S. U., O'Maille, P. E., Spring, O., and Ro, D. K. 2011. Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio- and stereoselective hydroxylations in sesquiterpene lactone metabolism. J. Biol. Chem. 286:21601–21611. doi:10.1074/jbc.M110.216804
  • Iorizzo, M., Ellison, S., Senalik, D., Zeng, P., Satapoomin, P., Huang, J., Bowman, M., Iovene, M., Sanseverino, W., Cavagnaro, P., Yildiz, M., Macko-Podgórni, A., Moranska, E., Grzebelus, E., Grzebelus, D., Ashrafi, H., Zheng, Z., Cheng, S., Spooner, D., Van Deynze, A., and Simon, P. 2016. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat. Genet. 48:657–666. doi:10.1038/ng.3565
  • Joel, D. M., Chaudhuri, S. K., Plakhine, D., Ziadna, H., and Steffens, J. C. 2011. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 72:624–634. doi:10.1016/j.phytochem.2011.01.037
  • Kalsi, P. S., Kaur, P., and Chhabra, B. R. 1979. Plant growth activity of epoxides from dehydrocostus lactone. Phytochemistry 18:1877–1878. doi:10.1016/0031-9422(79)83076-9
  • King, B. C., Vavitsas, K., Ikram, N. K. B. K., Schrøder, J., Scharff, L. B., Bassard, J.-É., Hamberger, B., Jensen, P. E., and Simonsen, H. T. 2016. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens. Sci. Rep. 6:25030–25030. doi:10.1038/srep25030
  • Knoche, H., Ourisson, G., Perold, G. W., Foussereau, J., and Maleville, J. 1969. Allergenic component of a liverwort: sesquiterpene lactone. Science 166:239–240. doi:10.1126/science.166.3902.239
  • Krupp, A., Bertsch, B., and Spring, O. 2021. Costunolide influences germ tube orientation in sunflower broomrape – a first step toward understanding chemotropism. Front. Plant Sci. 12:699068. doi:10.3389/fpls.2021.699068
  • Kupchan, S. M., Fessler, D. C., Eakin, M. A., and Giacobbe, T. J. 1970. Reactions of alpha methylene lactone tumor inhibitors with model biological nucelophiles. Science 168:376–378. doi:10.1126/science.168.3929.376
  • Kwon, M., Hodgins, C. L., Haslam, T. M., Roth, S. A., Nguyen, T.-D., Yeung, E. C., and Ro, D.-K. 2022. Germacrene a synthases for sesquiterpene lactone biosynthesis are expressed in vascular parenchyma cells neighboring laticifers in lettuce. Plants 11:1192. doi:10.3390/plants11091192
  • Kwon, M., Hodgins, C. L., Salama, E. M., Dias, K. R., Parikh, A., Mackey, A. V., Catenza, K. F., Vederas, J. C., and Ro, D. K. 2023. New insights into natural rubber biosynthesis from rubber‐deficient lettuce mutants expressing goldenrod or guayule cis‐prenyltransferase. New Phytol. 239:1098–1111. doi:10.1111/nph.18994
  • Lange, B. M. 2015. The evolution of plant secretory structures and emergence of terpenoid chemical diversity. Annu. Rev. Plant Biol. 66:139–159. doi:10.1146/annurev-arplant-043014-114639
  • Liao, B., Shen, X., Xiang, L., Guo, S., Chen, S., Meng, Y., Liang, Y., Ding, D., Bai, J., Zhang, D., Czechowski, T., Li, Y., Yao, H., Ma, T., Howard, C., Sun, C., Liu, H., Liu, J., Pei, J., Gao, J., Wang, J., Qiu, X., Huang, Z., Li, H., Yuan, L., Wei, J., Graham, I., Xu, J., Zhang, B., and Chen, S. 2022. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Mol. Plant. 15:1310–1328. doi:10.1016/j.molp.2022.05.013
  • Liu, Q., Beyraghdar Kashkooli, A., Manzano, D., Pateraki, I., Richard, L., Kolkman, P., Lucas, M. F., Guallar, V., de Vos, R. C. H., Franssen, M. C. R., van der Krol, A., and Bouwmeester, H. 2018. Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Nat. Commun. 9:4657–4657. doi:10.1038/s41467-018-06565-8
  • Liu, Q., Majdi, M., Cankar, K., Goedbloed, M., Charnikhova, T., Verstappen, F. W. A., de Vos, R. C. H., Beekwilder, J., van der Krol, S., and Bouwmeester, H. J. 2011. Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana. PLoS One. 6:e23255. doi:10.1371/journal.pone.0023255
  • Liu, Q., Manzano, D., Tanić, N., Pesic, M., Bankovic, J., Pateraki, I., Ricard, L., Ferrer, A., de Vos, R., de Krol, S. v., and Bouwmeester, H. 2014. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metab. Eng. 23:145–153. doi:10.1016/j.ymben.2014.03.005
  • Liu, B., Yan, J., Li, W., Yin, L., Li, P., Yu, H., Xing, L., Cai, M., Wang, H., Zhao, M., Zheng, J., Sun, F., Wang, Z., Jiang, Z., Ou, Q., Li, S., Qu, L., Zhang, Q., Zheng, Y., Qiao, X., Xi, Y., Zhang, Y., Jiang, F., Huang, C., Liu, C., Ren, Y., Wang, S., Liu, H., Guo, J., Wang, H., Dong, H., Peng, C., Qian, W., Fan, W., and Wan, F. 2020. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nat. Commun. 11:340. doi:10.1038/s41467-019-13926-4
  • Lu, X., Zhang, L., Zhang, F., Jiang, W., Shen, Q., Zhang, L., Lv, Z., Wang, G., and Tang, K. 2013. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol. 198:1191–1202. doi:10.1111/nph.12207
  • Lv, Z., Wang, S., Zhang, F., Chen, L., Hao, X., Pan, Q., Fu, X., Li, L., Sun, X., and Tang, K. 2016. Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of Artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant Cell Physiol. 57:1961–1971. doi:10.1093/pcp/pcw118
  • Macías, F. A., Galindo, J. C. G., Castellano, D., and Velasco, R. F. 1999. Sesquiterpene lactones with potential use as natural herbicide models (I): trans,trans- germacranolides. J. Agric. Food Chem. 47:4407–4414. doi:10.1021/jf9903612
  • Macías, F. A., Torres, A., Molinllo, J. M.G., Varela, R. M., and Castellano, D. 1996. Potential allelopathic sesquiterpene lactones from sunflower leaves. Phytochemistry 43:1205–1215. doi:10.1016/S0031-9422(96)00392-5
  • Maes, L., Van Nieuwerburgh, F. C. W., Zhang, Y., Reed, D. W., Pollier, J., Vande Casteele, S. R. F., Inzé, D., Covello, P. S., Deforce, D. L. D., and Goossens, A. 2011. Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol. 189:176–189. doi:10.1111/j.1469-8137.2010.03466.x
  • Magnusson, G., Thorén, S., Lindman, B., Merényi, G., van der Hoeven, M. G., and Swahn, C.-G. 1973. Fungal extractives. III. Two sesquiterpene lactones from Lactarius. Acta Chem. Scand. 27:1573–1578. doi:10.3891/acta.chem.scand.27-1573
  • Majdi, M., Abdollahi, M. R., and Maroufi, A. 2015. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium. Plant Cell Rep. 34:1909–1918. doi:10.1007/s00299-015-1837-2
  • Majdi, M., Ashengroph, M., and Abdollahi, M. R. 2016. Sesquiterpene lactone engineering in microbial and plant platforms: parthenolide and artemisinin as case studies. Appl. Microbiol. Biotechnol. 100:1041–1059. doi:10.1007/s00253-015-7128-6
  • Majdi, M., Charnikhova, T., and Bouwmeester, H. 2013. Genetical, developmental and spatial factors influencing parthenolide and its precursor costunolide in feverfew (Tanacetum parthenium L. Schulz Bip.). Ind. Crops Prod. 47:270–276. doi:10.1016/j.indcrop.2013.03.021
  • Mandel, J. R., Dikow, R. B., Siniscalchi, C. M., Thapa, R., Watson, L. E., and Funk, V. A. 2019. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl. Acad. Sci. U S A. 116:14083–14088. doi:10.1073/pnas.1903871116
  • Martínez-Quezada, D. M., Rivera, P., Rojas-Leal, A., Villaseñor, J. L., and Terrazas, T. 2023. Leaf secretory structures in asteraceae: a synthesis of their diversity and evolution. Bot. Rev. 89:59–90. doi:10.1007/s12229-022-09276-4
  • McEvoy, S. L., Lustenhouwer, N., Melen, M. K., Nguyen, O., Marimuthu, M. P. A., Chumchim, N., Beraut, E., Parker, I. M., and Meyer, R. S. 2023. Chromosome-level reference genome of stinkwort, Dittrichia graveolens (L.) Greuter: a resource for studies on invasion, range expansion, and evolutionary adaptation under global change. J. Hered. 114:561–569. doi:10.1093/jhered/esad033
  • Mercke, P., Bengtsson, M., Bouwmeester, H. J., Posthumus, M. A., and Brodelius, P. E. 2000. Molecular cloning, expression, and characterization of Amorpha-4,11-diene synthase, a key enzyme of Artemisinin biosynthesis in Artemisia annua L. Arch. Biochem. Biophys. 381:173–180. doi:10.1006/abbi.2000.1962
  • Michael, A. 1887. Ueber die Addition von Natriumacetessig- und Natriummalonsaureathern zu den Aethern ungesattigter Sauren. J. Prakt. Chem. 35:349–356. doi:10.1002/prac.18870350136
  • Morimoto, H., Sanno, Y., and Oshio, H. 1966. Chemical studies on heliangine. Tetrahedron 22:3173–3179. doi:10.1016/S0040-4020(01)82296-1
  • Nguyen, T. D., Faraldos, J. A., Vardakou, M., Salmon, M., O'Maille, P. E., and Ro, D. K. 2016. Discovery of germacrene A synthases in Barnadesia spinosa: the first committed step in sesquiterpene lactone biosynthesis in the basal member of the Asteraceae. Biochem. Biophys. Res. Commun. 479:622–627. doi:10.1016/j.bbrc.2016.09.165
  • Nguyen, D. T., Göpfert, J. C., Ikezawa, N., MacNevin, G., Kathiresan, M., Conrad, J., Spring, O., and Ro, D. K. 2010. Biochemical conservation and evolution of germacrene A oxidase in Asteraceae. J. Biol. Chem. 285:16588–16598. doi:10.1074/jbc.M110.111757
  • Nguyen, T.-D., Kwon, M., Kim, S.-U., Fischer, C., and Ro, D.-K. 2019. Catalytic plasticity of germacrene A oxidase underlies sesquiterpene lactone diversification. Plant Physiol. 181:945–960. doi:10.1104/pp.19.00629
  • Nützmann, H.-W., and Osbourn, A. 2014. Gene clustering in plant specialized metabolism. Curr. Opin. Biotechnol. 26:91–99. doi:10.1016/j.copbio.2013.10.009
  • Olofsson, L., Lundgren, A., and Brodelius, P. E. 2012. Trichome isolation with and without fixation using laser microdissection and pressure catapulting followed by RNA amplification: expression of genes of terpene metabolism in apical and sub-apical trichome cells of Artemisia annua L. Plant Sci. 183:9–13. doi:10.1016/j.plantsci.2011.10.019
  • Olsson, M. E., Olofsson, L. M., Lindahl, A.-L., Lundgren, A., Brodelius, M., and Brodelius, P. E. 2009. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123–1128. doi:10.1016/j.phytochem.2009.07.009
  • Onoyovwe, A., Hagel, J. M., Chen, X., Khan, M. F., Schriemer, D. C., and Facchini, P. J. 2013. Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers. Plant Cell. 25:4110–4122. doi:10.1105/tpc.113.115113
  • Ozber, N., Carr, S. C., Morris, J. S., Liang, S., Watkins, J. L., Caldo, K. M., Hagel, J. M., Ng, K. K. S., and Facchini, P. J. 2022. Alkaloid binding to opium poppy major latex proteins triggers structural modification and functional aggregation. Nat. Commun. 13:6768. doi:10.1038/s41467-022-34313-6
  • Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M. D., Tai, a., Main, a., Eng, D., Polichuk, D. R., Teoh, K. H., Reed, D. W., Treynor, T., Lenihan, J., Fleck, M., Bajad, S., Dang, G., Dengrove, D., Diola, D., Dorin, G., Ellens, K. W., Fickes, S., Galazzo, J., Gaucher, S. P., Geistlinger, T., Henry, R., Hepp, M., Horning, T., Iqbal, T., Jiang, H., Kizer, L., Lieu, B., Melis, D., Moss, N., Regentin, R., Secrest, S., Tsuruta, H., Vazquez, R., Westblade, L. F., Xu, L., Yu, M., Zhang, Y., Zhao, L., Lievense, J., Covello, P. S., Keasling, J. D., Reiling, K. K., Renninger, N. S., and Newman, J. D. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532. doi:10.1038/nature12051
  • Padilla-González, G. F., Amrehn, E., Frey, M., Gómez-Zeledón, J., Kaa, A., Da Costa, F. B., and Spring, O. 2020. Metabolomic and gene expression studies reveal the diversity, distribution and spatial regulation of the specialized metabolism of yacón (Smallanthus sonchifolius, asteraceae). Int J Mol Sci 21:4555. doi:10.3390/ijms21124555
  • Padilla-González, G. F., Frey, M., Gómez-Zeledón, J., Da Costa, F. B., and Spring, O. 2019. Metabolomic and gene expression approaches reveal the developmental and environmental regulation of the secondary metabolism of yacón (Smallanthus sonchifolius, Asteraceae). Sci. Rep. 9:13178. doi:10.1038/s41598-019-49246-2
  • Padilla-Gonzalez, G. F., dos Santos, F. A., and Da Costa, F. B. 2016. Sesquiterpene lactones: more than protective plant compounds with high toxicity. Crit. Rev. Plant Sci. 35:18–37. doi:10.1080/07352689.2016.1145956
  • Peng, Y., Lai, Z., Lane, T., Nageswara-Rao, M., Okada, M., Jasieniuk, M., O'Geen, H., Kim, R. W., Sammons, R. D., Rieseberg, L. H., and Stewart, C. N. Jr. 2014. De Novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. Plant Physiol. 166:1241–1254. doi:10.1104/pp.114.247668
  • Perry, N. B., Burgess, E. J., Rodríguez Guitián, M. A., Romero Franco, R., López Mosquera, E., Smallfield, B. M., Joyce, N. I., and Littlejohn, R. P. 2009. Sesquiterpene lactones in Arnica montana: helenalin and dihydrohelenalin chemotypes in Spain. Planta Med. 75:660–666. doi:10.1055/s-0029-1185362
  • Pickel, B., Drew, D. P., Manczak, T., Weitzel, C., Simonsen, H. T., and Ro, D.-K. 2012. Identification and characterization of a kunzeaol synthase from Thapsia garganica: implications for the biosynthesis of the pharmaceutical thapsigargin. Biochem. J. 448:261–271. doi:10.1042/BJ20120654
  • Picman, A. K. 1986. Biological activities of Sesquiterpene lactones. Biochem. Syst. Ecol. 14:255–281. doi:10.1016/0305-1978(86)90101-8
  • Pu, G.-B., Ma, D.-M., Chen, J.-L., Ma, L.-Q., Wang, H., Li, G.-F., Ye, H.-C., and Liu, B.-Y. 2009. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep. 28:1127–1135. doi:10.1007/s00299-009-0713-3
  • Qu, Y., Chakrabarty, R., Tran, H. T., Kwon, E.-J G., Kwon, M., Nguyen, T.-D., and Ro, D.-K. 2015. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis. J. Biol. Chem. 290:1898–1914. doi:10.1074/jbc.M114.616920
  • Rahimi, M., and Bouwmeester, H. 2021. Are sesquiterpene lactones the elusive KARRIKIN-INSENSITIVE2 ligand? Planta 253:54–54. doi:10.1007/s00425-021-03571-x
  • Ramirez, A. M., Saillard, N., Yang, T., Franssen, M. C. R., Bouwmeester, H. J., and Jongsma, M. A. 2013. Biosynthesis of Sesquiterpene lactones in Pyrethrum (Tanacetum cinerariifolium). PLoS One. 8:e65030. doi:10.1371/journal.pone.0065030
  • Raupp, F. M., and Spring, O. 2013. New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. J. Agric. Food Chem. 61:10481–10487. doi:10.1021/jf402392e
  • Ro, D. K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., Chang, M. C., Withers, S. T., Shiba, Y., Sarpong, R., and Keasling, J. D. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi:10.1038/nature04640
  • Roberfroid, M. B. 2007. Inulin-type fructans: functional food ingredients. J. Nutr. 137:2493S–2502S. doi:10.1093/jn/137.11.2493S
  • Rodriguez, E., Towers, G. H. N. H. N., and Mitchell, J. C. C. 1976. Biological activities of sesquiterpene lactones. Phytochemistry 15:1573–1580. doi:10.1016/S0031-9422(00)97430-2
  • Rozpądek, P., Wężowicz, K., Stojakowska, A., Malarz, J., Surówka, E., Sobczyk, Ł., Anielska, T., Ważny, R., Miszalski, Z., and Turnau, K. 2014. Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity. Chemosphere 112:217–224. doi:10.1016/j.chemosphere.2014.04.023
  • Scavo, A., Rial, C., Molinillo, J. M. G., Varela, R. M., Mauromicale, G., and Macı As, F. A. 2020. Effect of shading on the sesquiterpene lactone content and phytotoxicity of cultivated cardoon leaf extracts. J. Agric. Food Chem. 68:11946–11953. doi:10.1021/acs.jafc.0c03527
  • Schilling, E. E. 1983. Flavonoids of helianthus series Angustifolii. Biochem. Syst. Ecol. 11:341–344. doi:10.1016/0305-1978(83)90034-0
  • Schmidt, T. J. 1999. Toxic activities of sesquiterpene lactones: structural and biochemical aspects. Curr. Org. Chem. 3:577–608.
  • Schmidt, T. J. 2006. Structure-activity relationships of sesquiterpene lactones. Stud. Nat. Prod. Chem. 309–392.
  • Schreiber, T., Prange, A., Schäfer, P., Iwen, T., Grützner, R., Marillonnet, S., and Tissier, A. 2023. Efficient scar-free knock-ins of several kilobases by engineered CRISPR/Cas endonucleases. bioRxiv 2023.2011.2024.568561.
  • Seaman, F. C. 1982. Sesquiterpene lactones as taxonomic characters in the asteraceae. Bot. Rev. 48:121–594. doi:10.1007/BF02919190
  • Seemann, A., Wallner, T., Poschlod, P., and Heilmann, J. 2010. Variation of Sesquiterpene lactone contents in different Arnica montana populations: influence of ecological parameters. Planta Med. 76:837–842. doi:10.1055/s-0029-1240797
  • Sessa, R. A., Bennett, M., Lewis, M., Mansfield, J., and Beale, M. 2000. Metabolite profiling of sesquiterpene lactones from Lactuca species. Major latex components are novel oxalate and sulfate conjugates of lactucin and its derivatives. J. Biol. Chem. 275:26877–26884. doi:10.1016/S0021-9258(19)61456-0
  • Shen, F., He, H., Huang, X., Deng, Y., and Yang, X. 2023a. Insights into the convergent evolution of fructan biosynthesis in angiosperms from the highly characteristic chicory genome. New Phytol. 238:1245–1262. doi:10.1111/nph.18796
  • Shen, F., Qin, Y., Wang, R., Huang, X., Wang, Y., Gao, T., He, J., Zhou, Y., Jiao, Y., Wei, J., Li, L., and Yang, X. 2023b. Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae. Nat. Commun. 14:4334–4334. doi:10.1038/s41467-023-40002-9
  • Shen, Q., Zhang, L., Liao, Z., Wang, S., Yan, T., Shi, P., Liu, M., Fu, X., Pan, Q., Wang, Y., Lv, Z., Lu, X., Zhang, F., Jiang, W., Ma, Y., Chen, M., Hao, X., Li, L., Tang, Y., Lv, G., Zhou, Y., Sun, X., Brodelius, P. E., Rose, J. K. C., and Tang, K. 2018. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and Artemisinin biosynthesis. Mol. Plant. 11:776–788. doi:10.1016/j.molp.2018.03.015
  • Shibaoka, H. 1961. Studies on the mechanism of growth inhibiting effect of light. Plant Cell Physiol 2:175–197.
  • Singh, I. P., Talwar, K. K., Arora, J. K., Chhabra, B. R., and Kalsi, P. S. 1992. A biologically active guaianolide from Saussurea lappa. Phytochemistry 31:2529–2531. doi:10.1016/0031-9422(92)83317-R
  • Spring, O. 2000. Chemotaxonomy based on metabolites from glandular trichomes. Adv Bot Res 31:153–174.
  • Spring, O. 2021. Sesquiterpene lactones in sunflower oil. LWT 142:111047–111047. doi:10.1016/j.lwt.2021.111047
  • Spring, O., Albert, K., and Gradmann, W. 1981. Annuithrin, a new biologically active germacranolide from Helianthus annuus. Phytochemistry 20:1883–1885. doi:10.1016/0031-9422(81)84027-7
  • Spring, O., and Bienert, U. 1987. Capitate glandular hairs from sunflower leaves: development, distribution and sesquiterpene lactone content. J. Plant Physiol. 130:441–448. doi:10.1016/S0176-1617(87)80209-2
  • Spring, O., Bienert, U., and Klemt, V. 1987. Sesquiterpene lactones in glandular trichomes of sunflower leaves. J. Plant Physiol. 130:433–439. doi:10.1016/S0176-1617(87)80208-0
  • Spring, O., and Hager, A. 1982. Inhibition of elongation growth by two sesquiterpene lactones isolated from Helianthus annuus L. - possible molecular mechanism. Planta 156:433–440. doi:10.1007/BF00393314
  • Spring, O., Priester, T., and Hager, A. 1986. Light-induced accumulation of sesquiterpene lactones in sunflower seedlings. J. Plant Physiol. 123:79–89. doi:10.1016/S0176-1617(86)80068-2
  • Spring, O., and Schilling, E. E. 1991. The sesquiterpene lactone chemistry of Helianthus sect. Atrorubentes (Asteraceae: Heliantheae). Biochem. Syst. Ecol. 19:59–79. doi:10.1016/0305-1978(91)90114-F
  • Spring, O., Schmauder, K., Lackus, N. D., Schreiner, J., Meier, C., Wellhausen, J., Smith, L. V., and Frey, M. 2020. Spatial and developmental synthesis of endogenous sesquiterpene lactones supports function in growth regulation of sunflower. Planta 252:2. doi:10.1007/s00425-020-03409-y
  • Spring, O., Zitterell-Haid, B., Bierner, M. W., and Mabry, T. J. 1994. Chemistry of glandular trichomes in Hymenoxys and related genera. Biochem. Syst. Ecol. 22:171–195. doi:10.1016/0305-1978(94)90007-8
  • Stojanović, M., Savić, S., Delcourt, A., Hilbert, J.-L., Hance, P., Dragišić Maksimović, J., and Maksimović, V. 2023. Phenolics and Sesquiterpene lactones profile of red and green lettuce: combined effect of cultivar, microbiological fertiliser, and season. Plants (Basel) 12:2616. doi:10.3390/plants12142616
  • Sy, L. K., and Brown, G. D. 2002. The mechanism of the spontaneous autoxidation of dihydroartemisinic acid. Tetrahedron 58:897–908. doi:10.1016/S0040-4020(01)01193-0
  • Takahashi, S., Yeo, Y. S., Zhao, Y., O'Maille, P. E., Greenhagen, B. T., Noel, J. P., Coates, R. M., and Chappell, J. 2007. Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. J. Biol. Chem. 282:31744–31754. doi:10.1074/jbc.M703378200
  • Takei, S., Uchiyama, Y., Bürger, M., Suzuki, T., Okabe, S., Chory, J., and Seto, Y. 2023. A divergent Clade KAI2 protein in the root parasitic plant Orobanche minor is a highly sensitive strigolactone receptor and is involved in the perception of Sesquiterpene lactones. Plant Cell Physiol. 64:996–1007. doi:10.1093/pcp/pcad026
  • Teoh, K. H., Polichuk, D. R., Reed, D. W., and Covello, P. S. 2009. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. This paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada – Plant Biotechnology Institute. Botany 87:635–642. doi:10.1139/B09-032
  • Teoh, K. H., Polichuk, D. R., Reed, D. W., Nowak, G., and Covello, P. S. 2006. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 580:1411–1416. doi:10.1016/j.febslet.2006.01.065
  • Toda, Y., Okada, K., Ueda, J., and Miyamoto, K. 2019. Dehydrocostus lactone, a naturally occurring polar auxin transport inhibitor, inhibits epicotyl growth by interacting with auxin in etiolated Pisum sativum seedlings. Acta Agrobot. 72:doi:10.5586/aa.1779
  • Toh, S., Holbrook-Smith, D., Stogios, P. J., Onopriyenko, O., Lumba, S., Tsuchiya, Y., Savchenko, A., and McCourt, P. 2015. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350:203–207. doi:10.1126/science.aac9476
  • Tostes, J. B. F., Carvalho, A. L. D., Ribeiro da Silva, A. J., Mourão, P. J. P., Rossi, Á. D., Tanuri, A., and Siani, A. C. 2021. Phorbol esters from the latex of Euphorbia umbellata: bioguided isolation of highly potent HIV-1 latency interrupters in virus reservoir cells. J. Nat. Prod. 84:1666–1670. doi:10.1021/acs.jnatprod.0c01092
  • Tsuchiya, Y., Yoshimura, M., Sato, Y., Kuwata, K., Toh, S., Holbrook-Smith, D., Zhang, H., McCourt, P., Itami, K., Kinoshita, T., and Hagihara, S. 2015. PARASITIC PLANTS. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349:864–868. doi:10.1126/science.aab3831
  • Tu, Y. 2016. Artemisinin - a gift from traditional Chinese medicine to the World (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 55:10210–10226. doi:10.1002/anie.201601967
  • Vahabi, K., Balcke, G. U., Hakkert, J. C., van der Meer, I., Athmer, B., and Tissier, A. F. 2024. Metabolome and transcriptome profiling of root chicory provide insights into laticifer development and specialized metabolism. bioRxiv 2024.2001.2002.573856.
  • Varshney, K., and Gutjahr, C. 2023. KAI2 can do: Karrikin receptor function in plant development and response to abiotic and biotic factors. Plant Cell Physiol. 64:984–995. doi:10.1093/pcp/pcad077
  • Vertrees, G. L., and Mahlberg, P. G. 1978. Structure and ontogeny of laticifers in Cichorium intybus (Compositae). Am. J. Botany 65:764–771. doi:10.1002/j.1537-2197.1978.tb06135.x
  • Waegneer, E., Rombauts, S., Baert, J., Dauchot, N., De Keyser, A., Eeckhaut, T., Haegeman, A., Liu, C., Maudoux, O., Notté, C., Staelens, A., Van der Veken, J., Van Laere, K., and Ruttink, T. 2023. Industrial chicory genome gives insights into the molecular timetable of anther development and male sterility. Front. Plant Sci. 14:1181529. doi:10.3389/fpls.2023.1181529
  • Wallaart, T. E., Bouwmeester, H. J., Hille, J., Poppinga, L., and Maijers, N. C. 2001a. Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465. doi:10.1007/s004250000428
  • Weid, M., Ziegler, J., and Kutchan, T. M. 2004. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc. Natl. Acad. Sci. U S A. 101:13957–13962. doi:10.1073/pnas.0405704101
  • Werker, E. 2000. Trichome diversity and development. Adv Botan Res. 31:1–35. doi:10.1016/S0065-2296(00)31005-9
  • Wu, W., Huang, H., Su, J., Yun, X., Zhang, Y., Wei, S., Huang, Z., Zhang, C., and Bai, Q. 2022. Dynamics of germination stimulants dehydrocostus lactone and costunolide in the root exudates and extracts of sunflower. Plant Signal. Behav. 17:2025669–2025669. doi:10.1080/15592324.2022.2025669
  • Wulfkuehler, S., Gras, C., and Carle, R. 2014. Influence of light exposure during storage on the content of sesquiterpene lactones and photosynthetic pigments in witloof chicory (Cichorium intybus L. var. foliosum Hegi). LWT Food Sci. Technol. 58:417–426. doi:10.1016/j.lwt.2014.04.017
  • Xin, H., Ji, F., Wu, J., Zhang, S., Yi, C., Zhao, S., Cong, R., Zhao, L., Zhang, H., and Zhang, Z. 2023. Chromosome-scale genome assembly of marigold (Tagetes erecta L.): an ornamental plant and feedstock for industrial lutein production. Hortic. Plant J. 9:1119–1130. doi:10.1016/j.hpj.2023.04.001
  • Yokotani-Tomita, K., Kato, J., Kosemura, S., Yamamura, S., Kushima, M., Kakuta, H., and Hasegawa, K. 1997. Light-induced auxin-inhibiting substance from sunflower seedlings. Phytochemistry 46:503–506. doi:10.1016/S0031-9422(97)00307-5
  • Yokotani-Tomita, K., Kato, J., Yamada, K., Kosemura, S., Yamamura, S., Bruinsma, J., and Hasegawa, K. 1999. 8-epixanthatin, a light-induced growth inhibitor, mediates the phototropic curvature in sunflower (Helianthus annuus) hypocotyls. Physiol. Plant. 106:326–330. doi:10.1034/j.1399-3054.1999.106310.x
  • Zabel, S., Brandt, W., Porzel, A., Athmer, B., Bennewitz, S., Schäfer, P., Kortbeek, R., Bleeker, P., and Tissier, A. 2021. A single cytochrome P450 oxidase from Solanum habrochaites sequentially oxidizes 7-epi-zingiberene to derivatives toxic to whiteflies and various microorganisms. Plant J. 105:1309–1325. doi:10.1111/tpj.15113
  • Zakariya, A. M., Saiman, M. Z., Simonsen, H. T., and Ikram, N. K. K. 2023. Current state, strategies, and perspectives in enhancing artemisinin production. Phytochem. Rev. doi:10.1007/s11101-023-09897-6
  • Zhang, Y., Teoh, K. H., Reed, D. W., Maes, L., Goossens, A., Olson, D. J. H., Ross, A. R. S., and Covello, P. S. 2008. The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of Artemisinin in Artemisia annua. J. Biol. Chem. 283:21501–21508. doi:10.1074/jbc.M803090200
  • Zhang, L., F. Jing, F. Li, M. Li, Y. Wang, G. Wang, X. Sun and K. Tang (2009). Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol. Appl. Biochem. 52(3):199–207.
  • Zhang, B., Wang, Z., Han, X., Liu, X., Wang, Q., Zhang, J., Zhao, H., Tang, J., Luo, K., Zhai, Z., Zhou, J., Liu, P., He, W., Luo, H., Yu, S., Gao, Q., Zhang, L., and Li, D. 2022. The chromosome-scale assembly of endive (Cichorium endivia) genome provides insights into the sesquiterpenoid biosynthesis. Genomics 114:110400–110400. doi:10.1016/j.ygeno.2022.110400