1,221
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Status, Gaps and Perspectives of Powdery Mildew Resistance Research and Breeding in Cucurbits

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aalbersberg, I. W., and Stolk, J. H. 1995. Evaluation of resistance to and tolerance of powdery mildew by cucumber. Plant Variet. Seeds 8: 119–123.
  • Abu-Hammour, K., and Wittmann, D. 2010. Pollination and pollinators of Cucurbita pepo (Cucurbitaceae) in the Jordan Valley to improve seed set. Advan. Hortic. Sci. 24: 249–256.
  • Adeniji, A. A., and Coyne, D. P. 1983. Genetics and nature of resistance to powdery mildew in crosses of butternut with calabaza squash and ‘Seminole Pumpkin'. J. Amer. Soc. Hort. Sci. 108: 360–368. doi:10.21273/JASHS.108.3.360
  • Adhikari, B. N., Savory, E. A., Vaillancourt, B., Childs, K. L., Hamilton, J. P., Day, B., Buell, C. R. 2012. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS ONE 7: e34954.
  • Ahamed, K. U., Akhter, B., Islam, M. R., Ara, N., and Humauan, M. R. 2012. An assessment of morphology and yield characteristics of pumpkin (Cucurbita moschata) genotypes in northern Bangladesh. Trop. Agric. Res. Ext. 14: 7–11. doi:10.4038/tare.v14i1.4834
  • Akashi, Y., Fukuda, N., Wako, T., Masuda, M., and Kato, K. 2002. Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L., based on the analysis of five isozymes. Euphytica 125: 385–396. doi:10.1023/A:1016086206423
  • Alavilli, H., Lee, J. J., You, C.-R., Poli, Y., Kim, H.-J., Jain, A., and Song, K. 2022. GWAS reveals a novel candidate gene CmoAP2/ERF in pumpkin (Cucurbita moschata) involved in resistance to powdery mildew. Int. J. Mol. Sci. 23: 6524. doi:10.3390/ijms23126524
  • Alvarez, J. M., González-Torres, R., Mallor, C., and Gómez-Guillamón, M. L., 2005. Potential sources of resistance to Fusarium wilt and powdery mildew in melons. HortScience 40: 1657–1660. doi:10.21273/HORTSCI.40.6.1657
  • An, J. Y., Yin, M. Q., Zhang, Q., Gong, D. T., Jia, X. W., Guan, Y. J., and Hu, J. 2017. Genome survey sequencing of Luffa cylindrica L. and microsatellite high resolution melting (SSR-HRM) analysis for genetic relationship of Luffa genotypes. Int. J. Mol. Sci. 18: 1942. doi:10.3390/ijms18091942
  • Anagnostou, K., Jahn, M., and Perl-Treves, R. 2000. Inheritance and linkage analysis of resistance to zucchini yellow mosaic virus, watermelon mosaic virus, papaya ringspot virus and powdery mildew in melon. Euphytica 116: 265–270. doi:10.1023/A:1004005716806
  • Andolfo, G., Iovieno, P., Ricciardi, L., Lotti, C., Filippone, E., Pavan, S., and Ercolano, M. R. 2019. Evolutionary conservation of MLO gene promoter signatures. BMC Plant Biol. 19: 150. doi:10.1186/s12870-019-1749-3
  • Argyris, J. M., Ruiz-Herrera, A., Madriz-Masis, P., Sanseverino, W., Morata, J., Pujol, M., Ramos-Onsins, S. E., and Garcia-Mas, J. 2015. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics 16: 4. doi:10.1186/s12864-014-1196-3
  • Arnaud, G. 1921. Les Astérinées: II. Études sur les champignons (Parodiellinacées, inclus Erysiphées). Annales Des Épiphyties 7: 1–115.
  • Atarashi, H., Sakaguchi, K., Asami, H., Matsui, S., Kano, A., and Kotani, S. 2019. New powdery mildew resistance marker useful for producing powdery-mildew resistance Cucurbita maxima plant and imparting resistance against powdery mildew to plants, comprises powdery mildew resistance locus on chromosome 3. Patent Number(s): JP2019024483-A. Patent Assignee: TAKII SHUBYO KK (TAKI-Non-standard). Derwent Primary Accession Number: 2019-18590E
  • Atarashi, H., Sakaguchi, K., Asami, H., Matsui, S., Kano, A., Kotani, S., Hisanori, S., Keitaro, S., Hiroshi, A., Shintaro, M., Akihito, K., Sayaka, K., Shin, H., and Kodani, S. 2018. New powdery mildew resistance Cucurbita maxima plant has powdery mildew resistant locus on chromosome 3 comprising specific polynucleotide. Patent numbers JP6306252-B1; WO2019026924-A1; JP2019024411-A; KR2019045190-A; CN109661478-A; MX2019002442-A1; CA3070721-A1; EP3663402-A1; US2020205362-A1; KR2156692-B1.
  • Aust, H. J., and Hoyningen-Huene, J. 1986. Microclimate in relation to epidemics of powdery mildew. Annu. Rev. Phytopathol. 24: 491–510. doi:10.1146/annurev.py.24.090186.002423
  • Badri Anarjan, M., Bae, I., and Lee, S. 2021. Marker-assisted evaluation of two powdery mildew resistance candidate genes in Korean cucumber inbred lines. Agronomy 11: 2191. doi:10.3390/agronomy11112191
  • Ballantyne, B. J. 1975. Powdery mildew of cucurbitaceae: identity, distribution, host range and sources of resistance. Proc. Linn. Soc. New South Wales 99: 100–120.
  • Bardin, M., Carlier, J., and Nicot, P. C. 1999. Genetic differentiation in the French population of Erysiphe cichoracearum, a causal agent of powdery mildew of cucurbits. Plant. Pathol. 48: 531–540. doi:10.1046/j.1365-3059.1999.00380.x
  • Barnes, W., and Epps, W. 1956. Powdery mildew resistance in South Carolina cucumbers. Plant Dis. Rep. 40: 1093.
  • Barsoum, M., Kusch, S., Frantzeskakis, L., Schaffrath, U., and Panstruga, R. 2020. Ultraviolet mutagenesis coupled with next-generation sequencing as a method for functional interrogation of powdery mildew genomes. Mol. Plant. Microbe Interact. 33: 1008–1021. doi:10.1094/MPMI-02-20-0035-TA
  • Behera, T. K., Behera, S., Bharathi, L. K., John, K. J., Simon, P. W., and Staub, J. E. 2010. Bitter gourd: Botany, horticulture, breeding. Hort. Rev. 37: 101–141.
  • Behera, T. K., Sureja, A. K., Islam, S., Munshi, A. D., and Sidhu, A. S. 2012. Minor cucurbits. In Genetics, Genomics, and Breeding of Cucurbits; Wang, Y.-H., Behera, T. K., and Kole, C. Eds. CRC Press: New York, NY, pp 17–60.
  • Bélanger, R. R., Bushnell, W. R., Dik, A. J., and Carver, T. L. W. Eds. 2002. The Powdery Mildews. A Comprehensive Treatise. APS Press: St. Paul, MN.
  • Beltrán-Peña, H., Solano-Báez, A. R., Apodaca-Sánchez, M. Á., Camacho-Tapia, M., Félix-Gastélum, R., and Tovar-Pedraza, J. M. 2018. First report of Leveillula taurica causing powdery mildew on cucumber in Mexico. J. Plant Pathol. 100: 353–353. doi:10.1007/s42161-018-0061-7
  • Ben-Naim, Y., and Cohen, Y. 2015. Inheritance of resistance to powdery mildew race 1W in watermelon. Phytopathology 105: 1446–1457. doi:10.1094/PHYTO-02-15-0048-R
  • Beraldo-Hoischen, P., Hoefle, C., and López-Sesé, A. I. 2021. Fungal development and callose deposition in compatible and incompatible interactions in melon infected with powdery mildew. Pathogens 10: 873. doi:10.3390/pathogens10070873
  • Berg, J. A., Appiano, M., Martínez, M. S., Hermans, F. W. K., Vriezen, W. H., Visser, R. G. F., Bai, Y. L., and Schouten, H. J. 2015. A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol. 15: 243. doi:10.1186/s12870-015-0635-x
  • Bertrand, F. 1991. Les oïdiums des Cucurbitacées: Maintien en culture pure, étude de leur variabilité et de la sensibilité chez le melon. Ph.D. Thesis 225, University Paris XI, Orsay, France (in French).
  • Bertrand, F., Pitrat, M., Glandard, A., and Lemaire, J. M. 1992. Diversité et variabilité des champignons responsables de l’oïdium des cucurbitacées. Phytoma 438: 46–49.
  • Bharathi, L. K., Munshi, A. D., Behera, T. K., Vinod, Joseph, J. K., Bhat, K.V., Das, A.B., and Sidhu, A. S. 2012. Production and preliminary characterization of novel inter-specific hybrids derived from Momordica species. Curr. Sci. 103: 178–186.
  • Bhawna, Abdin, M. Z., Arya, L., Saha, D., Sureja, A. K., Pandey, C., and Verma, M. 2014. Population structure and genetic diversity in bottle gourd (Lagenaria siceraria (Mol.) Standl.) germplasm from India assessed by ISSR markers. Plant Syst. Evol. 300: 767–773. doi:10.1007/s00606-014-1000-5
  • Bhawna, Abdin, M. Z., Arya, L., and Verma, M. 2015. Transferability of cucumber microsatellite markers used for phylogenetic analysis and population structure study in bottle gourd (Lagenaria siceraria (Mol.) Standl.). Appl. Biochem. Biotechnol. 175: 2206–2223. doi:10.1007/s12010-014-1395-z
  • Block, M., Knaus, B. J., Wiseman, M. S., Grünwald, N. J., and Gent, D. H. 2021. Development of a diagnostic assay for race differentiation of Podosphaera macularis. Plant Dis. 105: 965–971. doi:10.1094/PDIS-06-20-1289-RE
  • Block, C. C., and Reitsma, K. R. 2005. Powdery mildew resistance in the U.S. National Plant Germplasm system cucumber collection. HortScience 40: 416–420. doi:10.21273/HORTSCI.40.2.416
  • Blumer, S. 1933. Die Erysiphaceen Mitteleuropas unter besonderer Berücksichtigung der Schweiz. Beitr. Kryptogamenflora Schweiz 7: 1–483.
  • Bohn, G. W., and Whitaker, T. W. 1964. Genetics of resistance to powdery mildew race 2 in muskmelon. Phytopathology 54: 587–591.
  • Bradshaw, M. J., Braun, U., and Pfister, D. H. 2022. Phylogeny and taxonomy of the genera of Erysiphaceae, part 1: Golovinomyces. Mycologia 114: 964–993. doi:10.1080/00275514.2022.2115419
  • Branham, S. E., Kousik, C., Mandal, M. K., and Wechter, W. P. 2021. Quantitative trait loci mapping of resistance to powdery mildew race 1 in recombinant inbred line population of melon. Plant Dis. 105: 3809–3815. doi:10.1094/PDIS-12-20-2643-RE
  • Braun, U. 1983. Descriptions of new species and combinations in Microsphaera and Erysiphe (IV). Mycotaxon 18: 113–129.
  • Braun, U. 1987. A monograph of the Erysiphales (powdery mildews). Beih. Nova Hedwigia 89: 1–700.
  • Braun, U. 1999. Some critical notes on the classification and generic concept of the Erysiphaceae. Schlechtendalia 3: 49–55.
  • Braun, U., and Cook, R. T. A. 2012. Taxonomic manual of the Erysiphales (Powdery Mildews). CBS Biodiver. Ser. 11: 1–707.
  • Braun, U., Kiehr, M., and Delhey, R. 2001. Some new records of powdery mildew fungi from Argentina. Sydowia 53: 34–43.
  • Braun, U., Shin, H. D., Takamatsu, S., Meeboon, J., Kiss, L., Lebeda, A., Kitner, M., and Götz, M. 2019. Phylogeny and taxonomy of Golovinomyces orontii revisited. Mycol. Progress 18: 335–357. doi:10.1007/s11557-018-1453-y
  • Braun, U., Shishkoff, N., and Takamatsu, S. 2001. Phylogeny of Podosphaera sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea s. lat.) inferred from rDNA ITS sequences – a taxonomic interpretation. Schlechtendalia 7: 45–52.
  • Braun, U., and Takamatsu, S. 2000. Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaerotheca (Cystotheceae) inferred from rDNA ITS sequences some taxonomic consequences. Schlechtendalia 4: 1–33.
  • Brickell, C. D. (Ed.). 1980. International Code of Nomenclature for Cultivated Plants-1980: Formulated and Adopted by the International Commission for the Nomenclature of Cultivated Plants of the I.U.B.S. Bohn, Scheltema & Holkema: Utrecht, the Netherlands; International Commission for the Nomenclature of Cultivated Plants.
  • Brown, J. K. M. 2002. Comparative genetics of avirulence and fungicide resistance in the powdery mildew fungi. In The Powdery Mildews. A Comprehensive Treatise; Bélanger, R. R., Bushnell, W. R., Dik, A. J., and Carver, W. L. T. Eds. APS Press: St. Paul, MN, pp 56–65.
  • Brzozowski, L., Holdsworth, W. L., and Mazourek, M. 2016. DMR-NY401: a new downy mildew-resistant slicing cucumber. HortScience 51: 1294–1296. doi:10.21273/HORTSCI10857-16
  • Burdon, J. J. 1993. The structure of pathogen populations in natural plant communities. Annu. Rev. Phytopathol. 31: 305–323. doi:10.1146/annurev.py.31.090193.001513
  • Burger, Y., Paris, H. S., Cohen, R., Katzir, N., Tadmor, Y., Lewinsohn, E., and Schaffer, A. A. 2010. Genetic diversity of Cucumis melo. Horticult. Rev. 36: 165–198.
  • Bushnell, W. R. 2002. The role of powdery mildew research in understanding host-parasite interaction: past, present, and future. In The Powdery Mildews. A Comprehensive Treatise. Bélanger, R. R., Bushnell, W. R., Dik, A. J., and Carver, W. L. T., Eds. APS Press: St. Paul, MN, pp 1–12.
  • Cadena-Iñiguez, J., Olguín-Hernández, G., Camacho-Tapia, M., Correia, K. C., Solano-Báez, A. R., Leyva-Mir, S. G., and Tovar-Pedraza, J. M. 2022. First Report of Neoerysiphe sechii causing powdery mildew on Sechium edule in San Luis Potosi, Mexico. Plant Dis. 106: 1069. doi:10.1094/PDIS-07-21-1432-PDN
  • Caligiore-Gei, P. F., Della-Gaspera, P., Benitez, E., and Tarnowski, C. 2022. Cucurbit powdery mildew: first insights for the identification of the causal agent and screening for resistance of squash genotypes (Cucurbita moschata (Duchesne ex Lam.) Duchesne ex Poir.) in Mendoza, Argentina. Plant Pathol. J. 38: 296–303. doi:10.5423/PPJ.OA.01.2022.0002
  • Cao, Y., Diao, Q., Chen, Y., Jin, H., Zhang, Y., and Zhang, H. 2020. Development of KASP markers and identification of a QTL underlying powdery mildew resistance in melon (Cucumis melo L.) by bulked segregant snalysis and RNA-Seq. Front. Plant Sci. 11: 593207. doi:10.3389/fpls.2020.593207
  • Cao, Y., Diao, Q., Lu, S., Zhang, Y., and Yao, D. 2022. Comparative transcriptomic analysis of powdery mildew resistant and susceptible melon inbred lines to identify the genes involved in the response to Podosphaera xanthii infection. Sci. Hortic. 304: 111305. doi:10.1016/j.scienta.2022.111305
  • Castagne, L. 1845. Catalogue des plantes qui croissant naturellement aux environs de Marseille. Imprimerie de Nicot et Pardigon, Pont-Moreau: France, p 263.
  • Castagne, L. 1851. Supplément au catalogue des plantes qui croissent naturellement aux environs de Marseille. Imprimerie de Nicot et Pardigon, Pont-Moreau, France, p 125.
  • Castanera, R., Ruggieri, V., Pujol, M., Garcia-Mas, J., and Casacuberta, J. M. 2019. An improved melon reference genome with single-molecule sequencing uncovers a recent burst of transposable elements with potential impact on genes. Front. Plant Sci. 10: 1815. doi:10.3389/fpls.2019.01815
  • Castellanos-Morales, G., Paredes-Torres, L. M., Gamez, N., Hernandez-Rosales, H. S., Sanchez-de, l., Vega, G., Barrera-Redondo, J., Aguirre-Planter, E., Vazquez-Lobo, A., Montes-Hernandez, S., Lira-Saade, R., and Eguiarte, L. E. 2018. Historical biogeography and phylogeny of Cucurbita: Insights from ancestral area reconstruction and niche evolution. Mol. Phylogenet. Evol. 128: 38–54. doi:10.1016/j.ympev.2018.07.016
  • Castellanos-Morales, G., Ruiz-Mondragón, K. Y., Hernández-Rosales, H. S., Sánchez-de la Vega, G., Gámez, N., Aguirre-Planter, E., Montes-Hernández, S., Lira-Saade, R., and Eguiarte, L. E. 2019. Tracing back the origin of pumpkins (Cucurbita pepo ssp. pepo L.) in Mexico. Proc. R Soc. B. 286: 20191440. doi:10.1098/rspb.2019.1440
  • Cavagnaro, P. F., Senalik, D. A., Yang, L., Simon, P. W., Harkins, T. T., Kodira, C. D., Huang, S., and Weng, Y. 2010. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11: 569. doi:10.1186/1471-2164-11-569
  • Chakravarty, H. L. 1990. Cucurbits of India and their role in the development of vegetable crops. In Biology and Utilization of Cucurbitaceae; Bates, D. M., Robinson, R. W., Jeffrey, C., Eds. Cornell University Press: Ithaca, New York, pp 325–334.
  • Chen, B. H., Guo, W. L., Yang, H. L., Li, Q. F., Zhou, J. G., and Li, X. Z. 2020. Photosynthetic properties and biochemical metabolism of Cucurbita moschata genotypes following infection with powdery mildew. J. Plant Pathol. 102: 1021–1027. doi:10.1007/s42161-020-00564-9
  • Chen, Y., Jing, X., Wang, S., Wang, J., Zhang, S., and Shi, Q. 2021b. Genome-wide analysis of WRKY transcription factor family in melon (Cucumis melo L.) and their response to powdery mildew. Plant Mol. Biol. Rep. 39: 686–699. doi:10.1007/s11105-020-01271-6
  • Chen, J. F., and Kirkbride, J. 2000. A new synthetic species of Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome. Brittonia 52: 315–319. doi:10.2307/2666583
  • Chen, J. F., Staub, J. E., Tashiro, Y., Isshiki, S., and Miyazaki, S. 1997. Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica 96: 413–419. doi:10.1023/A:1003017702385
  • Chen, J. F., Staub, J. E., Qian, C. T., Jiang, J. M., Luo, X. D., and Zhuang, F. Y. 2003. Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. to C. sativus L. Theor. Appl. Genet. 106: 688–695. doi:10.1007/s00122-002-1118-7
  • Chen, Q., Yu, G., Wang, X., Meng, X., and Lv, C. 2021a. Genetics and resistance mechanism of the cucumber (Cucumis sativus L.) against powdery mildew. J. Plant Growth Regul. 40: 147–153. doi:10.1007/s00344-020-10075-7
  • Cheng, H., Kong, W., Hou, D., Lv, J., and Tao, X. 2013. Isolation, characterization, and expression analysis of CmMLO2 in muskmelon. Mol. Biol. Rep. 40: 2609–2615. doi:10.1007/s11033-012-2347-8
  • Cheng, H., Kong, W., and Lu, J. 2015. Analysis of powdery mildew resistance in wild melon MLO mutants. Hortic. Plant J. 1: 165–171.
  • Cheng, H., Kun, W., Liu, D., Su, Y., and He, Q. 2012. Molecular cloning and expression analysis of CmMlo1 in melon. Mol. Biol. Rep. 39: 1903–1907. doi:10.1007/s11033-011-0936-6
  • Cheng, J., Wei, L., Xiang, J., Zheng, T., and Wu, J. 2023. Tiangong Chuxin: an early maturing pumpkin-shaped grape cultivar. HortScience 58: 714–715. doi:10.21273/HORTSCI17134-23
  • Chikh-Rouhou, H., Garcés-Claver, A., Kienbaum, L., Ben Belgacem, A., and Gómez-Guillamón, M. L. 2022. Resistance of Tunisian melon landraces to Podosphaera xanthii. Horticulturae 8: 1172. doi:10.3390/horticulturae8121172
  • Cho, M. C., Heo, Y. C., Kim, J. S., Om, Y. H., Mok, I. G., Hong, K. H., and Pak, H. G. 2004a. A new oriental squash (Cucurbita moschata) cultivar Mansu, resistant to powdery mildew. Korean J. Breed. Sci. 36: 111–112.
  • Cho, M. C., Hong, K. H., Park, H. G., and Heo, Y. C. 2004b. A new oriental squash (Cucurbita moschata) cultivar Chensu, resistant to powdery mildew. Korean J. Breed. Sci. 36: 113–114.
  • Cho, M. C., Om, Y. H., Huh, Y. C., Mok, I. G., and Park, H. G. 2003. Two oriental squash varieties resistant to powdery mildew bred through interspecific crosses. Cucurbit Genet. Coop. Rep. 26: 40–41.
  • Cho, M.-C., Om, Y.-H., Kim, D.-H., Heo, Y.-C., Kim, J.-S., and Park, H.-G. 2005. Breeding for powdery mildew resistant varieties in Cucurbita moschata. Res. Plant Dis. 11: 106–114. doi:10.5423/RPD.2005.11.2.106
  • Cho, M. C., Om, Y. H., Huh, Y. C., Cheong, S. R., Kim, D. H., and Mok, I. G. 2009. Breeding of powdery mildew resistant squash 'Kwangmyeong'. Korean J. Hortic. Sci. Technol. 27: 332–335.
  • Choi, I. Y., Ju, H. J., Lee, K. J., and Shin, H. D. 2021. First report of powdery mildew caused by Podosphaera xanthii on Benincasa hispida in Korea. Plant Dis. 105: 3757. doi:10.1094/PDIS-02-21-0253-PDN
  • Choi, Y., Lee, J., Hwang, S., and Kim, H. 2020. PCR-based InDel marker associated with powdery mildew resistant MR-1. Agronomy 10: 1274. doi:10.3390/agronomy10091274
  • Chomicki, G., and Renner, S. S. 2015. Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytol. 205: 526–532. doi:10.1111/nph.13163
  • Chomicki, G., Schaefer, H., and Renner, S. S. 2020. Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytol. 226: 1240–1255. doi:10.1111/nph.16015
  • Chung, S.-F., Staub, J. E., and Chen, J.-F. 2006. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 49: 219–229. doi:10.1139/g05-101
  • Cieplak, M., Nucia, A., Ociepa, T., and Okoń, S. 2022. Virulence structure and genetic diversity of Blumeria graminis f. sp. avenae from different regions of Europe. Plants 11: 1358. doi:10.3390/plants11101358
  • Clarke, A. C., Burtenshaw, M. K., McLenachan, P. A., Erickson, D. L., and Penny, D. 2006. Reconstructing the origins and dispersal of the Polynesian bottle gourd (Lagenaria siceraria). Mol. Biol. Evol. 23: 893–900. doi:10.1093/molbev/msj092
  • Cohen, R., Burger, Y., and Katzir, N. 2004. Monitoring physiological races of Podosphaera xanthii (syn. Sphaerotheca fuliginea), the causal agent of powdery mildew in cucurbits: factors affecting race identification and the importance for research and commerce. Phytoparasitica 32: 174–183. doi:10.1007/BF02979784
  • Cohen, R., Hanan, A., and Paris, H. S. 2003. Single-gene resistance to powdery mildew in zucchini squash (Cucurbita pepo). Euphytica 130: 433–441. doi:10.1023/A:1023082612420
  • Cohen, R., Leibovich, G., Shtienberg, D., and Paris, H. S. 1993. Variability in the reaction of squash (Cucurbita pepo) to inoculation with Sphaerotheca fuliginea and methodology of breeding for resistance. Plant Pathol. 42: 510–516. doi:10.1111/j.1365-3059.1993.tb01530.x
  • Cohen, Y., and Eyal, H. 1988. Pathogenicity of Erysiphe cichoracearum to cucurbits. Cucurbit Genet. Coop. Rep. 11: 87–90.
  • Contin, M. 1978. Interspecific transfer of powdery mildew resistance in the genus Cucurbita. Ph.D. Thesis. Cornell University, Ithaca, New York.
  • Contreras-Soto, R., Salvatierra, A., Maldonado, C., and Mashilo, J. 2021. The genetic diversity and population structure of different geographical populations of bottle gourd (Lagenaria siceraria) accessions based on genotyping-by-sequencing. Agronomy 11: 1677. doi:10.3390/agronomy11081677
  • Corbaz, R., and Taillens, J. 1994. La tolérance des concombres à l´oïdium: une situation confuse. Revue suisse Vitic. Arboric. Hortic 26: 397–398.
  • Crosby, K. M., Jifon, J. L., and Leskovar, D. I. 2008. 'Chujuc’, a new powdery mildew-resistant U.S. western-shipper melon with high sugar and β-carotene content. HortScience 43: 1904–1906. doi:10.21273/HORTSCI.43.6.1904
  • Cui, H., Ding, Z., Fan, C., Zhu, L., Zhang, H., Gao, P., and Luan, F. 2020. Genetic mapping and nucleotide diversity of two powdery mildew resistance loci in melon (Cucumis melo). Phytopathology 110: 1970–1979.
  • Cui, H., Ding, Z., Zhu, Q. L., Wu, Y., Qiu, B. Y., and Gao, P. 2020. Population structure, genetic diversity and fruit-related traits of wild and cultivated melons based on chloroplast genome. Genet. Resour. Crop Evol. 68: 1011–1021. doi:10.1007/s10722-020-01041-z
  • Cui, H., Fan, C., Ding, Z., Wang, X., Tang, L., Bi, Y., Luan, F., and Gao, P. 2022a. CmPMRl and CmPMrs are responsible for resistance to powdery mildew caused by Podosphaera xanthii race 1 in melon. Theor. Appl. Genet. 135: 1209–1222. doi:10.1007/s00122-021-04025-4
  • Cui, H., Zhu, Z., Ding, Z., Lv, Y., Sun, L., Luan, F., and Wang, X. 2021. First report of powdery mildew caused by Podosphaera xanthii race 1 on watermelon in China. J. Plant Pathol. 103: 1029–1029. doi:10.1007/s42161-021-00843-z
  • Cui, L., Siskos, L., Wang, C., Schouten, H. J., Visser, R. G. F., and Bai, Y. 2022b. Breeding melon (Cucumis melo) with resistance to powdery mildew and downy mildew. Hortic. Plant J. 8: 545–561. doi:10.1016/j.hpj.2022.07.006
  • Dane, F. E. 1991. Cytogenetics of the Genus Cucumis. In Chromosome Engineering in Plants: Genetics, Breeding, Evolution; Tsuchiya, T., and Gupta P. K., Eds. Springer: Cham, pp 201–214.
  • Danin-Poleg, Y., Reis, N., Baudracco-Arnas, S., Pitrat, M., Staub, J. E., Oliver, M., Arus, P., de Vicente, C. M., and Katzir, N. 2000. Simple sequence repeats in Cucumis mapping and map merging. Genome 43: 963–974.
  • Danin-Poleg, Y., Reis, N., Tzuri, G., and Katzir, N. 2001. Development and characterization of microsatelite markers in Cucumis. Theor. Appl. Genet. 102: 61–72. doi:10.1007/s001220051618
  • Das, A., Singh, S., Islam, Z., Munshi, A. D., Behera, T. K., Dutta, S., Weng, Y., and Dey, S. S. 2022. Current progress in genetic and genomics-aided breeding for stress resistance in cucumber (Cucumis sativus L.). Sci. Hortic. 300: 111059. doi:10.1016/j.scienta.2022.111059
  • Davis, A. R., Levi, A., Tetteh, A., Wehner, T., Russo, V., and Pitrat, M. 2007. Evaluation of watermelon and related species for resistance to race 1W powdery mildew. J. Amer. Soc. Hort. Sci. 132: 790–795. doi:10.21273/JASHS.132.6.790
  • Davis, A. R., Levi, A., Wehner, T., and Pitrat, M. 2006. PI 525088-PMR, a melon race 1 powdery mildew-resistant watermelon line. HortScience 41: 1527–1528. doi:10.21273/HORTSCI.41.7.1527
  • Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13: 414–430. doi:10.1111/j.1364-3703.2011.00783.x
  • De Candolle, A. P. 1805. (In: De Lamarck, J. B. and De Candolle, A. P.) Flore française, Ed 3. 2: 1–600. Paris.
  • Decker-Walters, S. D., Staub, J. E., Chung, S.-M., Naata, E., and Quemada, H. D. 2002. Diversity in free-living populations of Cucurbita pepo (Cucurbitaceae) as assessed by random amplified polymorphic DNA. Syst. Bot. 27: 19–28.
  • del Pino, D., Olalla, L., Pérez-García, A., Rivera, M. E., García, S., Moreno, R., de Vicente, A., and Torés, J. A. 2002. Occurrence of races and pathotypes of cucurbit powdery mildew in southeastern Spain. Phytoparasitica 30: 459–466. doi:10.1007/BF02979750
  • De Miccolis Angelini, R. M., Pollastro, S., Rotondo, P. R., Laguardia, C., Abate, D., Rotolo, C., and Faretra, F. 2019. Transcriptome sequence resource for the cucurbit powdery mildew pathogen Podosphaera xanthii. Sci. Data 6: 95. doi:10.1038/s41597-019-0107-5
  • Demidov, A. 1842. Voyage Dans La Russie Méridionale Et La Crimée, Par La Hongrie, La Valachie Et La Moldavie, 2. Ernest Bourdain and Co.: Paris.
  • Dempewolf, H., Baute, G., Anderson, J., Kilian, B., Smith, C., and Guarino, L. 2017. Past and future use of wild relatives in crop breeding. Crop Sci. 57: 1070–1082. doi:10.2135/cropsci2016.10.0885
  • de Ruiter, W., Hofstede, R., de Vries, J., and van den Heuvel, H. 2008. Combining QTL for resistance to CYSDV and powdery mildew in a single cucumber line. In Proceedings 9thEUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, May 21–24, 2008; Pitrat, M., Ed. INRA: Avignon, France, pp 181–188.
  • Dey, S. S., Singh, A. K., Chandel, D., and Behera, T. K. 2006. Genetic diversity of bitter gourd (Momordica charantia L.) genotypes revealed by RAPD markers and agronomic traits. Sci. Hortic. 109: 21–28. doi:10.1016/j.scienta.2006.03.006
  • Dhillon, N. P. S., Laenoi, S., Srimat, S., Pruangwitayakun, S., Mallappa, A., Kapur, A., Yadav, K. K., Hegde, G., Schafleitner, R., Schreinemachers, P., and Hanson, P. 2020b. Sustainable cucurbit breeding and production in Asia using public–private partnerships by the World Vegetable Center. Agronomy 10: 1171. doi:10.3390/agronomy10081171
  • Dhillon, N. P. S., Masud, M. A. T., Pruangwitayakun, S., Natheung, M., Lertlam, S., and Jarret, R. L. 2020a. Evaluation of loofah lines for resistance to tomato leaf curl New Delhi virus and downy mildew, as well as key horticultural traits. Agriculture 10: 298. doi:10.3390/agriculture10070298
  • Dhillon, N. P. S., Monforte, A. J., Pitrat, M., Pandy, S., Singh, P. K., Reitsma, K. R., Garcia-Mas, J., Sharma, A., and McCreight, J. D. 2012. Melon landraces of India: contributions and importance. Plant Breed. Rev. 35: 85–150.
  • Dhillon, N. P. S., Sanguansil, S., Schafleitner, R., Wang, Y.-W., and McCreight, J. D. 2016a. Diversity among a wide Asian collection of bitter gourd landraces and their genetic relationships with commercial hybrid cultivars. J. Amer. Soc. Hort. Sci. 141: 475–484. doi:10.21273/JASHS03748-16
  • Dhillon, N. P. S., Sanguansil, S., Singh, S. P., Masud, M. A. T., Kumar, P., and Bharathi, L. K. 2016b. Gourds: bitter, bottle, wax, snake, sponge and ridge. In Genetics and Genomics of the Cucurbitaceae; Grumet, R., Katzir, N., and Garcia-Mas, J., Eds. Springer Intl Pub AG: Cham, Switzerland, pp 155–172.
  • Dhillon, N. P. S., Sanguansil, S., Srimat, S., Laenoi, S., Schafleitner, R., Pitrat, M., and McCreight, J. D. 2019. Inheritance of resistance to cucurbit powdery mildew in bitter gourd. HortScience 54: 1013–1016. doi:10.21273/HORTSCI13906-19
  • Dhillon, N. P. S., Sanguansil, S., Srimat, S., Schafleitner, R., Manjunath, B., Agarwal, P., Xiang, Q., Masud, M. A., Myint, T., Hanh, N. T., Cuong, T. K., Balatero, C. H., Salutan-Bautista, V., Pitrat, M., Lebeda, A., and McCreight, J. D. 2018. Cucurbit powdery mildew-resistant bitter gourd breeding lines reveal four races of Podosphaera xanthii in Asia. HortScience 53: 337–341. doi:10.21273/HORTSCI12545-17
  • Dijkhuizen, A., Kennard, W. C., Havey, M. J., and Staub, J. E. 1996. RFLP variation and genetic relationships in cultivated cucumber. Euphytica 90: 79–87. doi:10.1007/BF00025163
  • Dogimont, C., and Sari, N. 2022. Gene list for melon. Cucurbit Genet. Coop. Rep. 45: 1–47.
  • Dreiseitl, A. 2019. Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015-2017. Eur. J. Plant Pathol. 153: 801–811. doi:10.1007/s10658-018-1593-6
  • Dyche, G. H., and Kuijpers, R. J. H. 2013. New plant of Cucurbita genus e.g. Cucurbita maxima and Cucurbita moschata comprising a resistance to powdery mildew, useful for producing plants with resistance to powdery mildew. Patent Number(s): NL2009231-C. Patent Assignee: ENZA ZADEN BEHEER BV(ENZA-C). Derwent Primary Accession Number: 2013-M12581.
  • Ellinger, D., Naumann, M., Falter, C., Zwikowics, C., Jamrow, T., Manisseri, C., Somerville, S. C., and Voigt, C. A. 2013. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol. 161: 1433–1444. doi:10.1104/pp.112.211011
  • El-Sayed, A. A., Mahmoud, S. H., and El-Mohamedy, R. S. R. 2019. Breeding some cantaloupe inbred lines for resistance to powdery mildew. Biosci. Res. 16: 777–792.
  • Endl, J., Achigan-Dako, E. G., Pandey, A. K., Monforte, A. J., Pico, B., and Schaefer, H. 2018. Repeated domestication of melon (Cucumis melo) in Africa and Asia and a new close relative from India. Am. J. Bot. 105: 1662–1671. doi:10.1002/ajb2.1172
  • Epinat, C., Pitrat, M., and Bertrand, F. 1993. Genetic analysis of resistance of 5 melon lines to powdery mildews. Euphytica 65: 135–144. doi:10.1007/BF00022575
  • Erickson, D. L., Smith, B. D., Clarke, A. C., Sandweiss, D. H., and Tuross, N. 2005. An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc. Natl. Acad. Sci. U S A. 102: 18315–18320. doi:10.1073/pnas.0509279102
  • Esquinas-Alcazar, J. T., and Gulick, P. J. 1983. Genetic Resources of Cucurbitaceae - a Global Report. International Board for Plant Genetic Resources (IBPGR): Rome, Italy.
  • Fanourakis, N. E. 1984. Inheritance and linkage studies of the fruit epidermis structure and investigation of linkage relations of several traits and of meiosis in cucumber. Ph.D. Diss., University of Wisconsin: Madison, WI.
  • Fazza, A. C., Dallagnol, L. J., Fazza, A. C., Monteiro, C. C., Lima, B. M. d., Wassano, D. T., and Camargo, L. E. A. 2013. Mapping of resistance genes to races 1, 3 and 5 of Podosphaera xanthii in melon PI 414723. Crop Breed. Appl. Biotechnol. 13: 349–355. doi:10.1590/S1984-70332013000400005
  • Feng, Q., Xiao, L., He, Y., Liu, M., Wang, J., Tian, S., Zhang, X., and Yuan, L. 2021. Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene. J. Integr. Plant Biol. 63: 2038–2042. doi:10.1111/jipb.13199
  • Filipowicz, N., and Renner, S. S. 2010. The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evol. Biol. 10: 219. doi:10.1186/1471-2148-10-219
  • Filipowicz, N., Schaefer, H., and Renner, S. S. 2014. Revisiting Luffa (Cucurbitaceae) 25 years after C. Heiser: species boundaries and application of names tested with plastid and nuclear DNA sequences. Syst. Bot. 39: 205–215. doi:10.1600/036364414X678215
  • Formisano, G., Paris, H. S., Frusciante, L., and Ercolano, M. R. 2010. Commercial Cucurbita pepo squash hybrids carrying disease resistance introgressed from Cucurbita moschata have high genetic similarity. Plant Genet. Res. 8: 198–203. doi:10.1017/S1479262110000183
  • Fu, Y.B. 2017. The vulnerability of plant genetic resources conserved ex situ. Crop. Sci. 57: 2314–2328. doi:10.2135/cropsci2017.01.0014
  • Hujieda, K., and Akiya, R. 1962. Inheritance of powdery mildew resistance and spine color on fruit in cucumber. J. Jpn. Soc. Hort. Sci. 31: 30–32. doi:10.2503/jjshs.31.30
  • Fukino, N., Kunihisa, M., and Matsumoto, S. 2004. Characterization of recombinant inbred lines derived from crosses in melon (Cucumis melo L.), 'PMAR No. 5' × 'Harukei No. 3. Breed. Sci. 54: 141–145. doi:10.1270/jsbbs.54.141
  • Fukino, N., Ohara, T., Monforte, A., Sugiyama, M., Sakata, Y., Kunihisa, M., and Matsumoto, S. 2008. Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor. Appl. Genet. 118: 165–175. doi:10.1007/s00122-008-0885-1
  • Fukino, N., Yoshioka, Y., Sugiyama, M., Sakata, Y., and Matsumoto, S. 2013. Identification and validation of powdery mildew (Podosphaera xanthii) resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol. Breed. 32: 267–277. doi:10.1007/s11032-013-9867-3
  • Gajdová, J., Lebeda, A., and Navrátilová, B. 2004. Protoplast cultures of Cucumis and Cucurbita spp. In Progress in Cucurbit Genetics and Breeding Research. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding; Lebeda, A., and Paris, H. S. Eds. Palacký University in Olomouc: Olomouc, Czech Republic, pp 441–454.
  • Gao, Y. Y., Chen, H. M., Chen, D. Y., and Hao, G. F. 2023. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J. Pineal Res. 74:e12850. doi:10.1111/jpi.12850
  • Garcia-Mas, J., Monforte, A. J., and Arús, P. 2004. Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers. Plant Syst. Evol. 248: 191–203. doi:10.1007/s00606-004-0170-y
  • Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., González, V. M., Hénaff, E., Câmara, F., Cozzuto, L., Lowy, E., Alioto, T., Capella-Gutiérrez, S., Blanca, J., Cañizares, J., Ziarsolo, P., Gonzalez-Ibeas, D., Rodríguez-Moreno, L., Droege, M., Du, L., Alvarez-Tejado, M., Lorente-Galdos, B., Melé, M., Yang, L., Weng, Y., Navarro, A., Marques-Bonet, T., Aranda, M. A., Nuez, F., Picó, B., Gabaldón, T., Roma, G., Guigó, R., Casacuberta, J. M., Arús, P., and Puigdomènech, P. 2012. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. U S A. 109: 11872–11877. doi:10.1073/pnas.1205415109
  • Gent, D. H., Claassen, B. J., Gadoury, D. M., Grünwald, N. J., Knaus, B. J., Radišek, S., Weldon, W., Wiseman, M. S., and Wolfenbarger, S. N. 2020. Population diversity and structure of Podosphaera macularis in the Pacific Northwestern United States and other populations. Phytopathology 110: 1105–1116. doi:10.1094/PHYTO-12-19-0448-R
  • Ghebretinsae, A. G., Thulin, M., and Barber, J. C. 2007a. Relationships of cucumbers and melons unraveled: molecular phylogenetics of Cucumis and related genera (Benincaseae, Cucurbitaceae). Am. J. Bot. 94: 1256–1266. doi:10.3732/ajb.94.7.1256
  • Ghebretinsae, A. G., Thulin, M., and Barber, J. C. 2007b. Nomenclatural changes in Cucumis (Cucurbitaceae). Novon 17: 176–178. doi:10.3417/1055-3177(2007)17[176:NCICC]2.0.CO;2
  • Giuliani, C., Tani, C., and Bini, L. M. 2016. Micromorphology and anatomy of fruits and seeds of bitter melon (Momordica charantia L., Cucurbitaceae). Acta Soc. Bot. Pol. 85: 1–7.
  • Glawe, D. A. 2008. The powdery mildews: a review of the world´s most familiar (yet poorly known) plant pathogens. Annu. Rev. Phytopathol. 46: 27–51. doi:10.1146/annurev.phyto.46.081407.104740
  • Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205–227. doi:10.1146/annurev.phyto.43.040204.135923
  • Gong, L., Stift, G., Kofler, R., Pachner, M., and Lelley, T. 2008. Microsatellites for the Genus Cucurbita and an SSR-based Genetic Linkage Map of Cucurbita pepo L. Theor. Appl. Genet. 117: 37–48. doi:10.1007/s00122-008-0750-2
  • Gong, L., Paris, H. S., Stift, G., Pachner, M., Vollmann, J., and Lelley, T. 2013. Genetic relationships and evolution in Cucurbita as viewed with simple sequence repeat polymorphisms: the centrality of C. okeechobeensis. Genet. Resour. Crop Evol. 60: 1531–1546. doi:10.1007/s10722-012-9940-5
  • Gregorio-Cipriano, R., González, D., Félix-Gastélum, R., and Chacón, S. 2020. Neoerysiphe sechii (Ascomycota: Erysiphales): a new species of powdery mildew found on Sechium edule and Sechium mexicanum (Cucurbitaceae) in Mexico. Botany 98: 185–195. doi:10.1139/cjb-2019-0193
  • Greuter, W., Burdet, H. M., Chaloner, W. G., Demoulin, V., Grolle, R., Hawksworth, D. L., Nicolson, D. H., Silva, P. C., Stafleu, F. A., Voss, E. G., and McNeill, J., Eds. 1988. International Code of Botanical Nomenclature Adopted by the Fourteenth International Botanical Congress, Berlin, July-August 1987. Regnum Vegetabile 118. Koeltz Scientific Books: Königstein.
  • Grumet, R., Katzir, N., and Garcia-Mas, J. Eds. 2017. Genetics and Genomics of Cucurbitaceae. Springer International Publishing AG: Cham, Switzerland.
  • Grumet, R., McCreight, J. D., McGregor, C., Weng, Y., Mazourek, M., Reitsma, K., Labate, J., Davis, A., and Fei, Z. 2021. Genetic resources and vulnerabilities of major cucurbit crops. Genes (Basel) 12: 1222. doi:10.3390/genes12081222
  • Guner, N., and Wehner, T. C. 2003. Gene list for watermelon. Cucurbit Genet. Coop. Rep. 26: 76–92.
  • Guo, W. L., Chen, B. H., Chen, X. J., Guo, Y. Y., Yang, H. L., Li, X. Z., and Wang, G. Y. 2018. Transcriptome profiling of pumpkin (Cucurbita moschata Duch.) leaves infected with powdery mildew. PLoS ONE 13:e0190175. doi:10.1371/journal.pone.0190175
  • Guo, W. L., Chen, B. H., Guo, Y. Y., Yang, H. L., Mu, J. Y., Wang, G. Y., Li, X. Z., and Zhou, J. G. 2019. Improved powdery mildew resistance of transgenic Nicotiana benthamiana overexpressing the Cucurbita moschata CmSGT1 gene. Front. Plant Sci. 10: 955. doi:10.3389/fpls.2019.00955
  • Guo, W. L., Chen, B. H., Guo, Y. Y., Chen, X. J., Li, Q. F., Yang, H. L., Li, X. Z., Zhou, J. G., and Wang, G. Y. 2020. Expression of pumpkin CmbHLH87 gene improves powdery mildew resistance in tobacco. Front. Plant Sci. 11: 163. doi:10.3389/fpls.2020.00163
  • Guo, S., Zhang, J., Sun, H., Salse, J., Lucas, W. J., Zhang, H., Zheng, Y., Mao, L., Ren, Y., Wang, Z., Min, J., Guo, X., Murat, F., Ham, B.-K., Zhang, Z., Gao, S., Huang, M., Xu, Y., Zhong, S., Bombarely, A., Mueller, L. A., Zhao, H., He, H., Zhang, Y., Zhang, Z., Huang, S., Tan, T., Pang, E., Lin, K., Hu, Q., Kuang, H., Ni, P., Wang, B., Liu, J., Kou, Q., Hou, W., Zou, X., Jiang, J., Gong, G., Klee, K., Schoof, H., Huang, Y., Hu, X., Dong, S., Liang, D., Wang, J., Wu, K., Xia, Y., Zhao, X., Zheng, Z., Xing, M., Liang, X., Huang, B., Lv, T., Wang, J., Yin, Y., Yi, H., Li, R., Wu, M., Levi, A., Zhang, X., Giovannoni, J. J., Wang, J., Li, Y., Fei, Z., and Xu, Y. 2013. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 45: 51–58. doi:10.1038/ng.2470
  • Guo, S., Zhao, S., Sun, H., Wang, X., Wu, S., Lin, T., Ren, Y., Gao, L., Deng, Y., Zhang, J., Lu, X., Zhang, H., Shang, J., Gong, G., Wen, C., He, N., Tian, S., Li, M., Liu, J., Wang, Y., Zhu, Y., Jarret, R., Levi, A., Zhang, X., Huang, S., Fei, Z., Liu, W., and Xu, Y. 2019. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat. Genet. 51: 1616–1623. doi:10.1038/s41588-019-0518-4
  • Halliwell, R. S., Johnson, J. D., and Cotner, S. D. 1986. Susceptibility of squash cultivars to watermelon mosaic virus-1 and powdery mildew fungus. Texas Agric. Exp. Stat. Miscel. Public. 1617: 1–7.
  • Heluta, V. P. 1988. Novi taksonomichni kombinatsyyi v rodini Erysiphaceae. Ukrayins’k Bot. Zhurn. 45: 62–63.
  • Hammarlund, C. 1945. Beiträge zur Revision einiger imperfekter Mehltau-Arten. Erysiphe polyphaga nov. sp. Bot. Not. 1945: 101–108.
  • Han, B. K., Rhee, S. J., Jang, Y. J., Sim, T. Z., Kim, Y. J., Park, T. S., and Lee, G. P. 2016. Identification of a causal pathogen of watermelon powdery mildew in Korea and development of a genetic linkage marker for resistance in watermelon (Citrullus lanatus). Hort. Sci. Technol. 34: 912–923. (in Korean) doi:10.12972/kjhst.20160095
  • Hancock, J. F. 2004. Plant Evolution and the Origin of Crop Species, 2nd ed. CABI Publishing: Wallingford, UK.
  • Harwood, R. R., and Markarian, D. 1968a. A genetic survey of resistance to powdery mildew in muskmelon. J. Heredity 59: 213–217. doi:10.1093/oxfordjournals.jhered.a107695
  • Harwood, R. R., and Markarian, D. 1968b. The inheritance of resistance to powdery mildew in the cantaloupe variety Seminole. J. Heredity 59: 126–130. doi:10.1093/oxfordjournals.jhered.a107663
  • He, X., Li, Y., Pandey, S., Yandell, B. S., Pathak, M., and Weng, Y. 2013. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor. Appl. Genet. 126: 2149–2161. doi:10.1007/s00122-013-2125-6
  • He, Y., Wei, M., Yan, Y., Yu, C., Cheng, S., Sun, Y., Zhu, X., Wei, L., Wang, H., and Miao, L. 2022. Research advances in genetic mechanisms of major cucumber diseases resistance. Front. Plant Sci. 13: 862486. doi:10.3389/fpls.2022.862486
  • Henning, M. J., Munger, H. M., and Jahn, M. M. 2005a. 'Hannah’s Choice F-1': a new muskmelon hybrid with resistance to powdery mildew, Fusarium race 2, and potyviruses. HortScience 40: 492–493. doi:10.21273/HORTSCI.40.2.492
  • Henning, M. J., Munger, H. M., and Jahn, M. M. 2005b. 'PMR delicious 51': an improved open-pollinated melon with resistance to powdery mildew. HortScience 40: 261–262. doi:10.21273/HORTSCI.40.1.261
  • Hirata, T., Cunnington, J. H., Paksiri, U., Limkaisang, S., Shishkoff, N., Grigaliunaite, B., Sato, Y., and Takamatsu, S. 2000. Evolutionary analysis of subsection Magnicellulatae of Podosphaera section Sphaerotheca (Erysiphales) based on the rDNA internal transcribed spacer sequences with special reference to host plants. Can. J. Bot. 78: 1521–1530. doi:10.1139/b00-124
  • Hirata, T., and Takamatsu, S. 2001. Phylogeny and cross-infectivity of powdery mildew isolates (Podosphaera fuliginea s. lat.) on Cosmos and Cucumber. J. Gen. Plant Pathol. 67: 1–6. doi:10.1007/PL00012980
  • Holdsworth, W. L., LaPlant, K. E., Bell, D. C., Jahn, M. M., and Mazourek, M. 2016. Cultivar-based introgression mapping reveals wild species-derived Pm-0, the major powdery mildew resistance locus in squash. PLoS ONE 11:e0167715. doi:10.1371/journal.pone.0167715
  • Holliday, P. 1998. A Dictionary of Plant Pathology, 2nd ed. Cambridge University Press: Cambridge, UK.
  • Hong, Y.-J., Hossain, M. R., Kim, H.-T., Park, J.-I., and Nou, I.-S. 2018. Identification of two new races of Podosphaera xanthii causing powdery mildew in melon in South Korea. Plant Pathol. J. 34: 182–190. doi:10.5423/PPJ.OA.12.2017.0261
  • Hosoya, K., Kuzuya, M., Murakami, T., Kato, K., Narisawa, K., and Ezura, H. 2000. Impact of resistant melon cultivars on Sphaerotheca fuliginea. Plant Breed. 119: 286–288. doi:10.1046/j.1439-0523.2000.00489.x
  • Howlader, J., Hong, Y., Natarajan, S., Sumi, K. R., Kim, H. T., Park, J. I., and Nou, I. S. 2020. Development of powdery mildew race 5-specific SNP markers in Cucumis melo L. using whole-genome resequencing. Hortic. Environ. Biotechnol. 61: 347–357. doi:10.1007/s13580-019-00217-6
  • Hu, Y., Gao, Y. R., Yang, L. S., Wang, W., Wang, Y. J., and Wen, Y. Q. 2019. The cytological basis of powdery mildew resistance in wild Chinese Vitis species. Plant Physiol. Biochem. 144: 244–253. doi:10.1016/j.plaphy.2019.09.049
  • Infante-Casella, M. L., Wyenandt, C. A., and Henninger, M. R. 2007. Evaluation of zucchini and yellow summer squash breeding lines and varieties for powdery mildew and downy mildew tolerance. HortScience 42: 433.
  • Infante-Casella, M., Wyenandt, A., Maxwell, N., and Samulis, R. 2008. Evaluation of pumpkin cultivars for yield and powdery mildew tolerance. HortScience 43: 1255–1256.
  • Iovieno, P., Andolfo, G., Schiavulli, A., Catalano, D., Ricciardi, L., Frusciante, L., Ercolano, M. R., and Pavan, S. 2015. Structure, evolution and functional inference on the Mildew Locus O (MLO) gene family in three cultivated Cucurbitaceae spp. BMC Genomics 16: 1112. doi:10.1186/s12864-015-2325-3
  • Ito, M., and Takamatsu, S. 2010. Molecular phylogeny and evolution of subsection Magnicellulatae (Erysiphaceae: Podosphaera) with special reference to host plants. Mycoscience 51: 34–43. doi:10.1007/S10267-009-0005-3
  • IUCN. 2023. The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org (accessed Aug 9, 2023).
  • Jaczewski, A. L. A. 1927. Karmannyi opredelitel’ gribov. II. Muchnisto-rosjanye griby. Leningrad, USSR, pp 1–491.
  • Jagger, I. 1926. Powdery mildew of muskmelon in the Imperial Valley of California in 1925. Phytopathology 16: 1009–1010.
  • Jagger, I. C., and Scott, G. W. 1937. Development of powdery mildew resistant cantaloupe No. 45. U.S. Dep. Agric. Circ. 441: 1–5.
  • Jagger, I. C., Whitker, T. W., and Porter, D. R. 1938a. A new biolologic form of powdery milder on muskmelon in the Imperial Valley in California. Plant Dis. Rep. 22: 275–276.
  • Jagger, I. C., Whitaker, T. W., and Porter, D. R. 1938b. Inheritance in Cucumis melo of resistance to powdery mildew (Erysiphe cichoracearum). Phytopathology 28: 761.
  • Jahn, M., Munger, H. M., and McCreight, J. D. 2002. Breeding cucurbit crops for powdery mildew resistance. In The Powdery Mildews. A Comprehensive Treatise; Bélanger, R. R., Bushnell, W. R., Dik, A. J., and Carver, T. L. W., Eds. APS Press: St. Paul, MN, pp 239–248.
  • Jeffrey, C. 1980. A review of the Cucurbitaceae. Bot. J. Linn. Soc 81: 233–247. doi:10.1111/j.1095-8339.1980.tb01676.x
  • Jeffrey, C. 2005. A new system of Cucurbitaceae. Bot. Zhurn. 90: 332–335.
  • Jensen, B. D. 2012. African watermelons and their uses. In Cucurbitaceae 2012. Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae; October 15-18, 2012, Antalya, Turkey; Sari, N., Solmaz, I., and Aras, V., Eds. Cukurova University: Antalya, Turkey, pp 264–272.
  • Jiao, Z., Sun, J., Wang, C., Dong, Y., Xiao, S., Gao, X., Cao, Q., Li, L., Li, W., and Gao, C. 2018. Genome-wide characterization, evolutionary analysis of WRKY genes in Cucurbitaceae species and assessment of its roles in resisting to powdery mildew disease. PLoS ONE 13:e0199851. doi:10.1371/journal.pone.0199851a
  • John, K. J., Scariah, S., Nissar, V. A. M., Latha, M., Gopalakrishnan, S., Yadav, S. R., and Bhat, K.V. 2013. On the occurrence, distribution, taxonomy and genepool relationship of Cucumis callosus (Rottler) Cogn., the wild progenitor of Cucumis melo L. from India. Genet. Resour. Crop Evol. 60: 1037–1046. doi:10.1007/s10722-012-9899-2
  • John, K. J., Roy, Y. C., Krishnaraj, M. V., Nissar, V. A. M., Latha, M., and Bhat, K. V. 2017. Ecological and morphological characterisation of two rare and endemic wild edible Cucumis species (Cucurbitaceae) of Western Ghats of India. Genet. Resour. Crop Evol. 64: 149–158. doi:10.1007/s10722-015-0340-5
  • Johnston, P. R., Quijada, L., Smith, C. A., Baral, H.-O., Hosoya, T., Baschien, C., Pärtel, K., Zhuang, W.-Y., Haelewaters, D., Park, D., Carl, S., López-Giráldez, F., Wang, Z., and Townsend, J. P. 2019. A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus 10: 1.
  • Jørgensen, I. H. 1992. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63: 141–152. doi:10.1007/BF00023919
  • Jorkesh, A., Safaei, M., and Olfati, J.-A. 2018. Resistance of Cucurbita moschata and Cucurbita pepo lines to a powdery mildew. Inter. J. Veget. Sci. 24: 501–505. doi:10.1080/19315260.2018.1440273
  • Joseph, J. K., and Antony, V. T. 2008. Ethnobotanical investigations in the genus Momordica L. in the southern Western Ghats of India. Genet. Resour. Crop Evol. 55: 713–721. doi:10.1007/s10722-007-9279-5
  • Junell, L. 1966. A revision of Sphaerotheca communis ([Schlecht.] Fr.) Poll s.lat. Sven. Bot. Tidskr. 60: 365–392.
  • Kable, P. F., and Ballantyne, B. J. 1963. Observations on the cucurbit powdery mildew in the Ithaca district. Plant Dis. Reptr. 47: 482.
  • Karakurt, Y., Güvercin, D., Önder, S., and İşler, Ö. 2020. Assessment of genetic diversity in cucumber (Cucumis sativus L.) genotypes using morphological characters and AFLP analysis. KSU Tarim Ve Doga Dergici – KSU J. Agric. Nature 23: 577–585. doi:10.18016/ksutarimdoga.vi.583844
  • Kaur, M., and Sharma, P. 2022. Recent advances in cucumber (Cucumis sativus L.). J. Hort. Sci. Biotech. 97: 3–23. doi:10.1080/14620316.2021.1945956
  • Kates, H. R., Soltis, P. S., and Soltis, D. E. 2017. Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci. Mol. Phylogenet. Evol. 111: 98–109. doi:10.1016/j.ympev.2017.03.002
  • Keinath, A. P., Baccari, G. V., and DuBose, V. B. 2010. Controlling powdery mildew in the greenhouse on hybrid Cucurbita seedlings used as a rootstocks for grafting watermelon. Phytopathology 100:S60.
  • Keinath, A. P., and DuBose, V. B. 2000. Evaluation of pumpkin cultivars for powdery and downy mildew resistance, virus tolerance, and yield. HortScience 35: 281–285. doi:10.21273/HORTSCI.35.2.281
  • Keinath, A. P., and Hassel, R. 2014. Control of Fusarium wilt of watermelon by grafting onto bottle gourd or interspecific hybrid squash despite colonization of rootstocks by Fusarium. Plant Dis. 98: 1326–1332. doi:10.1094/PDIS-01-13-0100-RE
  • Keinath, A. P., Wintermantel, W. M., and Zitter, T. A. Eds. 2017. Compendium of Cucurbit Diseases and Pests, 2nd ed. APS Press: St. Paul, MN.
  • Kenigsbuch, D., and Cohen, Y. 1989. Independent inheritance of resistance to race-1 and race-2 of Sphaerotheca fuliginea in muskmelon. Plant Dis. 73: 206–208. doi:10.1094/PD-73-0206
  • Kennard, W. C., Poetter, K., Dijkhuizen, A., Meglic, V., Staub, J. E., and Havey, M. J. 1994. Linkages among RFLP, RAPD, isozyme, disease-resistance, and morphological markers in marrow and wide crosses of cucumber. Theor. Appl. Genet. 89: 42–48. doi:10.1007/BF00226980
  • Kesh, H., and Yadav, S. 2023. Recent advances in genetics and breeding of pumpkin (Cucurbita moschata Duch.). J. Hortic. Sci. Biotech. 98: 141–158. doi:10.1080/14620316.2022.2097961
  • Khodaparast, S. A., Takamatsu, S., and Hedjaroude, G. A. 2001. Phylogenetic structure of the genus Leveillula (Erysiphales: Erysiphaceae) inferred from the nucleotide sequences of the rDNA ITS region with special reference to the L. taurica species complex. Mycol. Res. 105: 909–918. doi:10.1017/S0953756201004361
  • Khodaparast, S. A., Takamatsu, S., Harada, M., Abbasi, M., and Samadi, S. 2012. Additional rDNA ITS sequences and its phylogenetic consequences for the genus Leveillula with emphasis on conidium morphology. Mycol. Progress 11: 741–752. doi:10.1007/s11557-011-0785-7
  • Khodaparast, S. A., Takamatsu, S., Shadlou, A., Damadi, M., Pirnia, M., and Jahani, M. 2016. Notes on the genus Leveillula (Erysiphaceae): a new unrecorded species and notes on Leveillula infecting Ficus, Cucurbita and Tropaeolum in Iran. Phytotaxa 260: 267–275. doi:10.11646/phytotaxa.260.3.6
  • Khoury, C. K., Carver, D., Kates, H. R., Achicanoy, H. A., van Zonneveld, M., Thomas, E., Heinitz, C., Jarret, R., Labate, J. A., Reitsma, K., Nabhan, G. P., and Greene, S. L. 2020. Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbits (Cucurbita L.). Plants People Planet 2: 269–283. doi:10.1002/ppp3.10085
  • Kim, H., Park, J., Ishikawa, T., Kuzuya, M., Horii, M., Yashiro, K., and Nou, I. 2015a. Development of molecular marker to select resistant lines and to differentiate the races related to powdery mildew in melon (Cucumis melo L.). J. Plant Biotechnol. 42: 284–289. doi:10.5010/JPB.2015.42.4.284
  • Kim, H., Park, J., and Nou, I. 2016a. Identification of fungal races that cause powdery mildew in melon (Cucumis melo L.) and selection of resistant commercial melon cultivars against the identified races in Korea. J. Plant Biotechnol. 43: 58–65. doi:10.5010/JPB.2016.43.1.58
  • Kim, H., Park, J., Robin, A. H. K., Ishikawa, T., Kuzuya, M., Horii, M., Yashiro, K., and Nou, I. 2016b. Identification of a new race and development of DNA markers associated with powdery mildew in melon. Plant Breed. Biotech. 4: 225–233. doi:10.9787/PBB.2016.4.2.225
  • Kim, K. H., Ahn, S. G., Hwang, J. H., Choi, Y. M., Moon, H. S., and Park, Y. H. 2013. Inheritance of resistance to powdery mildew in the watermelon and development of a molecular marker for selecting resistant plants. Hortic. Environ. Biotechnol. 54: 134–140. doi:10.1007/s13580-013-0156-1
  • Kim, K. H., Hwang, J. H., Han, D. Y., Park, M. K., Kim, S. G., Choi, D., Kim, Y. J., Lee, G. P., Kim, S. T., and Park, Y. H. 2015b. Major quantitative trait loci and putative candidate genes for powdery mildew resistance and fruit-related traits revealed by an intraspecific genetic map for watermelon (Citrullus lanatus var. lanatus). PLoS ONE 10:e0145665. doi:10.1371/journal.pone.0145665
  • Kim, S. G., Ro, N.-Y., Hur, O.-S., Gwag, J.-G., Huh, Y.-C., Rhee, J.-H., Sung, J.-S., Jung, H. G., Kwon, T.-R., and Baek, H. J. 2014. Evaluation of powdery mildew resistance in Cucurbita spp. Korean J. Int. Agric. 26: 544–549. doi:10.12719/KSIA.2014.26.4.544
  • Kirkbride, J. H. 1993. Biosystematic Monograph of the Genus Cucumis (Cucurbitaceae). Parkway Publishers: Boone, NC, pp 159.
  • Kishor, D. S., Song, W. H., Noh, Y., Lee, G. P., Park, Y., Jung, J. K., Shim, E. J., and Chung, S. M. 2020. Development of SNP markers and validation assays in commercial Korean melon cultivars, using Genotyping-bysequencing and Fluidigm analyses. Sci. Hortic. 263: 109113. doi:10.1016/j.scienta.2019.109113
  • Kiss, L., Vaghefi, N., Bransgrove, K., Dearnaley, J. D. W., Takamatsu, S., Tan, Y. P., Marston, C., Liu, S.-Y., Jin, D.-N., Adorada, D. L., Bailey, J., Cabrera de Álvarez, M. G., Daly, A., Dirchwolf, P. M., Jones, L., Nguyen, T. D., Edwards, J., Ho, W., Kelly, L., Mintoff, S. J. L., Morrison, J., Németh, M. Z., Perkins, S., Shivas, R. G., Smith, R., Stuart, K., Southwell, R., Turaganivalu, U., Váczy, K. Z., Blommestein, A. V., Wright, D., Young, A., and Braun, U. 2020. Australia: a continent without native powdery mildews? The first comprehensive catalog indicates recent introductions and multiple host range expansion events, and leads to the re-discovery of Salmonomyces as a new lineage of the Erysiphales. Front. Microbiol. 11: 1571. doi:10.3389/fmicb.2020.01571
  • Kistler, L., Montenegro, A., Smith, B. D., Gifford, J. A., Green, R. E., Newsom, L. A., and Shapiro, B. 2014. Transoceanic drift and the domestication of African bottle gourds in the Americas. Proc. Natl. Acad. Sci. U S A. 111: 2937–2941. doi:10.1073/pnas.1318678111
  • Kistler, L., Newsom, L. A., Ryan, T. M., Clarke, A. C., Smith, B. D., and Perry, G. H. 2015. Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proc. Natl. Acad. Sci. U S A. 112: 15107–15112. doi:10.1073/pnas.1516109112
  • Knerr, L. D., Staub, J. E., Holder, D. J., and May, B. P. 1989. Genetic diversity in Cucumis sativus L. assessed by at 18 allozyme coding loci. Theor. Appl. Genet. 78: 119–128. doi:10.1007/BF00299764
  • Komínková, E., Dreiseitl, A., Malečková, E., Doležel, J., and Valárik, M. 2016. Genetic diversity of Blumeria graminis f. sp. hordei in Central Europe and its comparison with Australian population. PLoS ONE 11: e0167099. doi:10.1371/journal.pone.0167099
  • Kooistra, E. 1968. Powdery mildew resistance in cucumber. Euphytica 17: 236–244. doi:10.1007/BF00021216
  • Kooistra, E. 1971. Inheritance of flesh and skin colors in powdery mildew resistant cucumbers (Cucumis sativus L.). Euphytica 20: 521–523. doi:10.1007/BF00034206
  • Kousik, C. S., Donahoo, R. S., Webster, C. G., Turechek, W. W., Adkins, S. T., and Roberts, P. D. 2011. Outbreak of cucurbit powdery mildew on watermelon fruit caused by Podosphaera xanthii in Southwest Florida. Plant Dis. 95: 1586–1586. doi:10.1094/PDIS-06-11-0521
  • Kousik, C. S., and Ikerd, J. L. 2014. Evidence for cucurbit powdery mildew pathogen races based on watermelon differentials. In Cucurbitaceae 2014 Proceedings; Havey, M., Weng, Y., Day, B., and Grumet, R. Eds. ASHS: Alexandria, VA, pp 32–34.
  • Kousik, C. S., Ikerd, J. L., Mandal, M. K., Adkins, S., Webster, C. G., and Turechek, W. W. 2018a. Powdery mildew–resistant bottle gourd germplasm lines: USVL351-PMR and USVL482-PMR. HortScience 53: 1224–1227. doi:10.21273/HORTSCI13067-18
  • Kousik, C. S., Ikerd, J., Mandal, M., Adkins, S., and Turechek, W. W. 2018c. Watermelon germplasm lines USVL608-PMR, USVL255-PMR, USVL313-PMR, and USVL585-PMR with broad resistance to powdery mildew. HortScience 53: 1212–1217. doi:10.21273/HORTSCI12979-18
  • Kousik, C. S., Ikerd, J. L., and Mandal, M. 2019. Relative susceptibility of commercial watermelon varieties to powdery mildew. Crop Protect. 125: 104910. doi:10.1016/j.cropro.2019.104910
  • Kousik, C. S., Ikerd, J. L., Wechter, W. P., and Levi, A. 2014. Identification and development of multiple disease resistant (Phytophthora fruit rot and Powdery mildew) watermelon germplasm. HortScience S52: 49.
  • Kousik, C. S., Levi, A., Ling, K. S., and Wechter, W. P. 2008. Potential sources of resistance to cucurbit powdery mildew in U.S. plant introductions of bottle gourd. HortScience 43: 1359–1364. doi:10.21273/HORTSCI.43.5.1359
  • Kousik, C. S., Mandal, M., and Hassel, R. 2018b. Powdery mildew resistant rootstocks that impart tolerance to grafted susceptible watermelon scion seedlings. Plant Dis. 102: 1290–1298. doi:10.1094/PDIS-09-17-1384-RE
  • Krawinkel, M. B., and Keding, G.B. 2006. Bitter gourd (Momordica charantia): a dietary approach to hyperglycemia. Nutr. Rev. 64: 331–337. doi:10.1301/nr.2006.jul.331-337
  • Křístková, E., and Lebeda, A. 1997. Possibilities of exploration of wild Cucurbita species in the breeding via interspecific hybridization. Zahradnictví (Hort. Sci.) 24: 113–120.
  • Křístková, E., and Lebeda, A. 1998. Multiple disease resistance in genetic resources of Cucurbita pepo and C. maxima. Acta Hortic. et Regiotect. 1: 209–210.
  • Křístková, E., and Lebeda, A. 1999a. Powdery mildew of cucurbits in the Czech Republic – species, pathotype and race spectra. The First International Powdery Mildew Conference, Programme and Abstracts, Avignon, France, pp 14–15.
  • Křístková, E., and Lebeda, A. 1999b. Searching of Cucumis sativus L. genetic resources for field resistance to powdery mildew of cucurbits. Acta Hortic. 492: 371–376. doi:10.17660/ActaHortic.1999.492.51
  • Křístková, E., and Lebeda, A. 1999c. Vliv ontogenetického stadia a habitu rostlin Cucurbita pepo L. na polní odolnost k padlí tykvovitých (Influence of developmental stage and plant habit of Cucurbita pepo L. genotypes on their field resistance to the powdery mildew of cucurbits). Zahradnictví (Hort. Sci.) 26: 19–24. (In Czech with English Summary)
  • Křístková, E., and Lebeda, A. 1999d. Disease resistance of Cucurbita pepo and C. maxima genetic resources. Cucurbit Genet. Coop. Rep. 22: 53–54.
  • Křístková, E., and Lebeda, A. 2000a. Powdery mildew field infection on leaves and stems of Cucurbita pepo accessions. Acta Hortic. 510: 61–66. doi:10.17660/ActaHortic.2000.510.9
  • Křístková, E., and Lebeda, A. 2000b. Citrullus lanatus – a potential host of powdery mildew in the Czech Republic. Cucurbit Genet. Coop. Rep. 23: 46–48.
  • Křístková, E., and Lebeda, A. 2001. Aggressiveness of powdery mildew isolates on Cucurbita maxima. Cucurbit Genet. Coop. Rep. 24: 73–76.
  • Křístková, E., Lebeda, A., and Katovská, J. 2002. Response of Cucumis melo genotypes MR-1 and PI 124112 to Czech isolates of cucurbit powdery mildew. Acta Hortic. 588: 181–184. doi:10.17660/ActaHortic.2002.588.28
  • Křístková, E., Lebeda, A., and Sedláková, B. 2004. Virulence of Czech cucurbit powdery mildew isolates on Cucumis melo genotypes MR-1 and PI 124112. Sci. Hortic. 99: 257–265. doi:10.1016/S0304-4238(03)00105-5
  • Křístková, E., Lebeda, A., and Sedláková, B. 2009. Species spectra, distribution and host range of cucurbit powdery mildews in the Czech Republic, and in some other European and Middle Eastern countries. Phytoparasitica 37: 337–350. doi:10.1007/s12600-009-0045-4
  • Kusch, S., and Panstruga, R. 2017. Mlo–based resistance: an apparently universal "weapon“ to defeat powdery mildew disease. Mol. Plant. Microbe Interact. 30: 179–189. doi:10.1094/MPMI-12-16-0255-CR
  • Kuzuya, M., Hosoya, K., Yashiro, K., Tomita, K., and Ezura, H. 2003. Powdery mildew (Sphaerotheca fuliginea) resistance in melon is selectable at the haploid level. J. Exp. Bot. 54: 1069–1074. doi:10.1093/jxb/erg100
  • Kuzuya, M., Yashiro, K., Tomita, K., and Ezura, H. 2006. Powdery mildew (Podosphaera xanthii) resistance in melon is categorized into two types based on inhibition of the infection processes. J. Exp. Bot. 57: 2093–2100. doi:10.1093/jxb/erj166
  • Labo, A. U., and Khan, A. A. 2019. Incidence of powdery mildew on cucurbit plants in Katsina, Nigeria. J. Phytol. 11: 5–9.
  • Laghetti, G., and Hammer, K. 2007. The Corsican citron melon (Citrullus lanatus (Thunb.) Matsum. et Nakai subsp. lanatus var. citroides (Bailey) Mansf. ex Greb.) a traditional and neglected crop. Genet. Resour. Crop Evol. 54: 913–916. doi:10.1007/s10722-007-9220-y
  • Lai, W., Zhu, C., Yang, S., Hu, Z., Liu, S., and Zhou, Y. 2022. Comprehensive identification of the VQ family genes in cucumber and their roles in response to abiotic and biotic stresses. Sci. Hortic. 295: 110874. doi:10.1016/j.scienta.2021.110874
  • LaPlant, K. E., Wyatt, L. E., Moriarty, G., Fink-Brodnicki, M., Jahn, M., and Mazourek, M. 2016. Powdery mildew–resistant pumpkin inbred lines. HortScience 51: 1297–1300. doi:10.21273/HORTSCI10866-16
  • Lebeda, A. 1983. The genera and species spectrum of cucumber powdery mildew in Czechoslovakia. Phytopath. Z. 108: 71–79. doi:10.1111/j.1439-0434.1983.tb00565.x
  • Lebeda, A. 1984a. A contribution to the general theory of host-parasite specificity. Phytopath. Z. 110: 226–234. doi:10.1111/j.1439-0434.1984.tb00753.x
  • Lebeda, A. 1984b. Screening of wild Cucumis species for resistance to cucumber powdery mildew (Erysiphe cichoracearum and Sphaerotheca fuliginea). Sci. Hortic. 24: 241–249. doi:10.1016/0304-4238(84)90107-9
  • Lebeda, A. 1986. Padlí okurkové (Cucumber powdery mildew), Erysiphe cichoracearum, Sphaerotheca fuliginea. In Metody Testování Rezistence Zelenin Vůči Rostlinným Patogenům (Methods of Testing Vegetable Crops for Resistance to Plant Pathogens); Lebeda, A., Ed. VHJ Sempra, VŠÚZ Olomouc: Olomouc, Czechoslovakia, pp 87–91.
  • Lebeda, A., and Burdon, J. J. 2023. Studying wild plant pathosystems to understand crop plant pathosystems: status, gaps, challenges and perspectives. Phytopathology 113: 365–380. doi:10.1094/PHYTO-01-22-0018-PER
  • Lebeda, A., and Cohen, Y. 2011. Cucurbit downy mildew (Pseudoperonospora cubensis) – biology, ecology, epidemiology, host-pathogen interaction and control. Eur. J. Plant Pathol. 129: 157–192. doi:10.1007/s10658-010-9658-1
  • Lebeda, A., Kitner, M., Mieslerová, B., Křístková, E., and Pavlíček, T. 2019. The occurrence of Leveillula lactucae-serriolae on Lactuca serriola in Jordan. Phytopathol. Mediter. 58: 359–367.
  • Lebeda, A., and Křístková, E. 1994. Field resistance of Cucurbita species to powdery mildew (Erysiphe cichoracearum). J. Plant Dis. Prot. 101: 598–603.
  • Lebeda, A., and Křístková, E. 1996a. Genotypic variation in field resistance of Cucurbita pepo assortment to powdery mildew (Erysiphe cichoracearum). Genet. Resour. Crop Evol. 43: 79–84. doi:10.1007/BF00126944
  • Lebeda, A., and Křístková, E. 1996b. Variation in Cucurbita ssp. for field resistance to powdery mildew. In Cucurbits Towards 2000 - Proceedings of the VIth Eucarpia Meeting on Cucurbit Genetics and Breeding, Málaga, Spain, 28-30 May 1996; Gómez-Guillamón, M. L., Soria, C., Cuartero, J., Torés, J. A., and Fernández-Muňoz, R. Eds. Estación Experimental "La Mayora", C.S.I.C.: Málaga, Spain, pp 235–240.
  • Lebeda, A., and Křístková, E. 1997. Evaluation of Cucumis sativus L. germplasm for field resistance to the powdery mildew. Acta Phytopath. Entom. Hungarica 32: 299–305.
  • Lebeda, A., and Křístková, E. 2000. Interaction between morphotypes of Cucurbita pepo and obligate biotrophs (Pseudoperonospora cubensis, Erysiphe cichoracearum and Sphaerotheca fuliginea). Acta Hortic. 510: 219–226. doi:10.17660/ActaHortic.2000.510.35
  • Lebeda, A., Křístková, E., and Doležal, K. 1999. Peroxidase isozyme polymorphism in Cucurbita pepo cultivars with various morphotypes and different level of field resistance to powdery mildew. Sci. Hortic. 81: 103–112. doi:10.1016/S0304-4238(98)00261-1
  • Lebeda, A., Křístková, E., Kitner, M., Mieslerová, B., Jemelková, M., and Pink, D. A. C. 2014. Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding. Eur. J. Plant Pathol. 138: 597–640. doi:10.1007/s10658-013-0254-z
  • Lebeda, A., Křístková, E., Roháčková, J., Sedláková, B., Widrlechner, M. P., and Paris, H. S. 2016c. Race-specific resistance of Cucurbita germplasm to Pseudoperonospora cubensis. Euphytica 212: 145–156. doi:10.1007/s10681-016-1783-2
  • Lebeda, A., Křístková, E., Sedláková, B., Coffey, M. D., and McCreight, J. D. 2011. Gaps and perspectives of pathotype and race determination in Golovinomyces cichoracearum and Podosphaera xanthii. Mycoscience 52: 159–164. doi:10.1007/S10267-010-0098-8
  • Lebeda, A., Křístková, E., Sedláková, B., Kitner, M., and Widrlechner, M. P. 2019. Status of research, breeding and protection of cucurbits in relation to cucurbit downy mildew: their limits and perspectives. Acta Hortic. 1242: 421–426. doi:10.17660/ActaHortic.2019.1242.60
  • Lebeda, A., Křístková, E., Sedláková, B., McCreight, J. D., and Coffey, M. D. 2016a. Cucurbit powdery mildews: methodology for objective determination and denomination of races. Eur. J. Plant Pathol. 144: 399–410. doi:10.1007/s10658-015-0776-7
  • Lebeda, A., Křístková, E., Sedláková, B., and McCreight, J. D. 2016b. Initiative for international cooperation of researchers and breeders related to determination and denomination of cucurbit powdery mildew races. In Proceedings of Cucurbitaceae 2016, The XIth Eucarpia Meeting on Cucurbit Genetics & Breeding, July 24-28, 2016, Warsaw, Poland; Kozik, E. U. and Paris, H. S. Eds. Wydawnictvo SIGMA Sp. J.: Skierniewice, Poland, pp 148–152.
  • Lebeda, A., Křístková, E., Sedláková, B., and McCreight, J. D. 2018b. Initiative for uniform cucurbit powdery mildew race determination and denomination: status of race differentials. Cucurbit Genet. Coop. Rep. 41: 17–19.
  • Lebeda, A., Křístková, E., Sedláková, B., McCreight, J. D., and Coffey, M. D. 2008. New concept for determination and denomination of pathotypes and races of cucurbit powdery mildew. In Proceedings of Cucurbitaceae 2008, IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Pitrat, M. Ed. INRA: Avignon, France, pp 125–134.
  • Lebeda, A., Křístková, E., Sedláková, B., McCreight, J. D., and Kosman, E. 2018a. Virulence variation of cucurbit powdery mildews in the Czech Republic – population approach. Eur. J. Plant Pathol. 152: 309–326. doi:10.1007/s10658-018-1476-x
  • Lebeda, A., Navrátilová, B., Kubaláková, M., Doležal, K., Křístková, E., Doležel, J., and Lysák, M. 1999. Morphological and physiological characteristics of plants issued from an interspecific hybridization of Cucumis sativus × Cucumis melo. Acta Hortic. 492: 149–156. doi:10.17660/ActaHortic.1999.492.17
  • Lebeda, A., McGrath, M. T., and Sedláková, B. 2010. Fungicide resistance in cucurbit powdery mildew fungi. In Fungicides; Carisse, O. Ed. InTech: Rijeka, Croatia, pp 221–246.
  • Lebeda, A., Mieslerová, B., Huszár, J., and Sedláková, B. 2017. Padlí Kulturních a Planě Rostoucích Rostlin. Taxonomie, Biologie, Ekologie a Epidemiologie, Mechanismy Rezistence, Šlechtění Na Odolnost, Metody Experimentální Práce, Diagnostika a Ochrana Rostlin (Powdery Mildews of Crop and Wild Plants. Taxonomy, Biology, Ecology and Epidemiology, Mechanisms of Resistance, Breeding for Resistance, Methods of Experimental Work, Diagnostics and Plant Protection). Vydavatelství Agriprint, Olomouc, p 368.
  • Lebeda, A., and Sedláková, B. 2004. Disease impact and pathogenicity variation in Czech populations of cucurbit powdery mildews. In Progress in Cucurbit Genetics and Breeding Research; Proceedings Cucurbitaceae 2004: 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding; Lebeda, A., and Paris, H. S. Eds. Palacký University in Olomouc: Olomouc, Czech Republic, pp 281–287.
  • Lebeda, A., and Sedláková, B., 2006. Identification and survey of cucurbit powdery mildew races in Czech populations. In Proceedings Cucurbitaceae 2006; Holmes, G. J. Ed. Universal Press: Raleigh, NC, pp 444–452.
  • Lebeda, A., and Sedláková, B. 2010. Screening for resistance to cucurbit powdery mildews (Golovinomyces cichoracearum, Podosphaera xanthii). In Mass Screening Techniques for Selecting Crops Resistant to Disease; Spencer, M. M. and Lebeda, A. Eds. International Atomic Energy Agency (IAEA): Vienna, Austria, pp 295–307.
  • Lebeda, A., Sedláková, B., and Křístková, E. 2004. Distribution, harmfulness and pathogenic variability of cucurbit powdery mildew in the Czech Republic. Acta Fytotech. Zootech 7: 174–176.
  • Lebeda, A., Sedláková, B., and Křístková, E. 2007b. Temporal changes in pathogenicity structure of cucurbit powdery mildews populations. Acta Hortic. 731: 381–388. doi:10.17660/ActaHortic.2007.731.53
  • Lebeda, A., Sedláková, B., Křístková, E., McCreight, J. D., den Hertog, M., and Reitsma, K. 2021b. Development and availability of melon differential set for determination of virulence variation of cucurbit powdery mildews (Podosphaera xanthii and Golovinomyces orontii). Cucurbit Genet. Coop. Rep. 44: 15–19.
  • Lebeda, A., Sedláková, B., Křístková, E., and Vysoudil, M. 2009. Long-lasting changes in the species spectrum of cucurbit powdery mildew in the Czech Republic – influence of air temperature changes or random effect? In Climate Change and Plant Pathogens, Pests and Weeds; Pokorný, R., and Lebeda, A. Eds. Plant Prot. Sci. 45:S41–S47. doi:10.17221/2807-PPS
  • Lebeda, A., Sedláková, B., Křístková, E., Widrlechner, M. P., and Kosman, E. 2021a. Understanding pathogen population structure and virulence variation for efficient resistance breeding to control cucurbit powdery mildews. Plant Pathol. 70: 1364–1377. doi:10.1111/ppa.13379
  • Lebeda, A., Widrlechner, M. P., Staub, J., Ezura, H., Zalapa, J., and Křístková, E. 2007a. Cucurbits (Cucurbitaceae; Cucumis spp., Cucurbita spp., Citrullus spp.), Chapter 8. In Genetic Resources, Chromosome Engineering, and Crop Improvement Series; Volume 3–Vegetable Crops; Singh, R. Ed. CRC Press: Boca Raton, FL, pp 271–376.
  • Lee, J. H., Jang, K. S., Lee, W. J., Choi, Y. H., and Choi, G. J. 2014. Resistance of Cucurbits to Podosphaera xanthii race 1. Hort. Sci. Technol. 32: 673–683. (in Korean) doi:10.7235/hort.2014.14027
  • Lee, H. Y., Kim, J. G., Kang, B. C., and Song, K. W. 2020. Assessment of the genetic diversity of the breeding lines and a genome wide association study of three horticultural traits using worldwide cucumber (Cucumis spp.) germplasm collection. Agronomy 10: 1736. doi:10.3390/agronomy10111736
  • Leibovich, G., Cohen, R., and Paris, R. S. 1996. Shading of plants facilitates selection for powdery mildew resistance in squash. Euphytica 90: 289–292. doi:10.1007/BF00027478
  • Levi, A., Jarret, R., Kousik, S., Wechter, P., Nimmakayala, P., and Reddy, U. K. 2017a. Genetic resources of watermelon. In Genetics and Genomics of Cucurbitaceae; Grumet, R., Katzir, N., Garcia-Mas, J. Eds. Springer International Publishing AG: Cham, Switzerland, pp 87–110.
  • Levi, A., Simmons, A. M., Massey, L., Coffey, J., Wechter, W. P., Jarret, R. L., Tadmor, Y., Nimmakayala, P., and Reddy, U. K. 2017b. Genetic diversity in the desert watermelon Citrullus colocynthis and its relationship with Citrullus species as determined by high-frequency oligonucleotides-targeting active gene markers. J. Amer. Soc. Hort. Sci. 142: 47–56. doi:10.21273/JASHS03834-16
  • Levi, A., Thies, J. A., Wechter, W. P., Harrison, H. F., Simmons, A. M., Reddy, U. K., Nimmakayala, P., and Fei, Z. 2013. High frequency oligonucleotides: targeting active gene (HFO–TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet. Resour. Crop Evol. 60: 427–440. doi:10.1007/s10722-012-9845-3
  • Levi, A., Thomas, C. E., Keinath, A. P., and Wehner, T. C. 2000. Estimation of genetic diversity among Citrullus accessions using RAPD markers. Acta Hortic. 510: 385–390. doi:10.17660/ActaHortic.2000.510.61
  • Levi, A., Thomas, C. E., Keinath, A. P., and Wehner, T. C. 2001a. Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet. Resour. Crop Evol. 48: 559–566. doi:10.1023/A:1013888418442
  • Levi, A., Thomas, C. E., Wehner, T. C., and Zhang, X. 2001b. Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience 36: 1096–1101. doi:10.21273/HORTSCI.36.6.1096
  • Li, B., Zhao, Y., Zhu, Q., Zhang, Z., Fan, C., Amanullah, S., Gao, P., and Luan, F. 2017. Mapping of powdery mildew resistance genes in melon (Cucumis melo L.) by bulked segregant analysis. Sci. Hortic. 220: 160–167. doi:10.1016/j.scienta.2017.04.001
  • Lija, M., and Beevy, S. S. 2021. A review on the diversity of Melon. Plant Sci. Today 8: 995–1003. doi:10.14719/pst.1300
  • Lira, R., Eguiarte, L., Montes, S., Zizumbo-Villarreal, D., Marín, P. C.-G., and Quesada, M. 2016. Homo sapiens–Cucurbita interaction in Mesoamerica: domestication dissemination, and diversification. In Ethnobotany of Mexico, Lira, R., Casas, A., and Blancas, J. Eds. Springer: New York, NY, pp 389–401.
  • Liu, L. Z., Chen, Y. Y., Su, Z. H., Zhang, H., and Zhu, W. M. 2010. A sequence-amplified characterized region marker for a single, dominant gene in melon PI 134198 that confers resistance to a unique race of Podosphaera xanthii in China. HortScience 45: 1407–1410. doi:10.21273/HORTSCI.45.9.1407
  • Liu, Z., Jiang, Y., Yang, X., Deng, X., Dang, J., Wang, Z., Yusop, M. R., and Abdullah, S. 2022. Characteristics of interspecific hybridization and inbred progeny of pumpkin (Cucurbita moschata Duch.) and winter squash (Cucurbita maxima Duch.). Horticulturae 8: 596. doi:10.3390/horticulturae8070596
  • Liu, C. M., Li, X. L., Yang, R. P., Mo, Y. L., Wang, Y. Q., Xian, F., Zhang, X., and Wan, F. 2014. The protective roles of S-adenosylmethionine decarboxylase (SAMDC) gene in melon resistance to powdery mildew infection. Hortic. Environ. Biotechnol. 55: 557–567. doi:10.1007/s13580-014-0026-5
  • Liu, P. N., Miao, H., Lu, H. W., Cui, J. Y., Tian, G. L., Wehner, T. C., Gu, X. F., and Zhang, S. P. 2017. Molecular mapping and candidate gene analysis for resistance to powdery mildew in Cucumis sativus stem. Genet. Mol. Res. 16:gmr16039680. doi:10.4238/gmr16039680
  • Liu, L., Yuan, X., Cai, R., Pan, J., and Zhu, L. 2008. Quantitative Trait Loci for resistance to powdery mildew in cucumber under seedling spray inoculation and leaf disc infection. J Phytopathol 156: 691–697.
  • Liu, X., Gu, X., Lu, H., Liu, P., Miao, H., Bai, Y., and Zhang, S. 2021. Identification of novel loci and cadidate genes for resistance to powdery mildew in a resequenced cucumber germplasm. Genes 12: 584. doi:10.3390/genes12040584
  • Lombello, R.A. 2020. Cytogenetical Analysis of Bitter Gourd Genome. In The Bitter Gourd Genome; Kole, C., Matsumura, H., and Behera, T. Eds. Springer: Cham, Switzerland, pp 61–72.
  • Longzhou, L., Xiaojun, Y., Run, C., Junsong, P., Huanle, H., Lihua, Y., Yuan, G., and Lihuang, Z. 2008. Quantitative trait loci for resistance to powdery mildew in cucumber under seedling spray inoculation and leaf disc infection. J. Phytopathol. 156: 691–697. doi:10.1111/j.1439-0434.2008.01427.x
  • López-Martín, M., Pérez-de-Castro, A., Picó, B., and Gómez-Guillamón, M. L. 2022. Advanced genetic studies on powdery mildew resistance in TGR-1551. Int. J. Mol. Sci. 23: 12553. doi:10.3390/ijms232012553
  • Luhová, L., Jančová, D., Frébort, I., Lebeda, A., Šebela, M., Křístková, E., and Peč, P. 1999. Amine oxidase, peroxidase, catalase and acid phosphatase activities in powdery mildew infected plants of Cucumis sativus. Phyton 39: 235–241.
  • Luitel, B. P., Kim, S. G., Sung, J. S., Hur, O. S., Yoon, M. S., Rhee, J. H., Baek, H. J., Ryu, K. Y., and Ko, H. C. 2016. Screening of pumpkin (Cucurbita spp.) germplasm for resistance to powdery mildew at various stages of seedlings growth. Res. Plant Sci. 22: 133–144. doi:10.5423/RPD.2016.22.3.133
  • Lv, J., Qi, J., Shi, Q., Shen, D., Zhang, S., Shao, G., Li, H., Sun, Z., Weng, Y., Shang, Y., Gu, X., Li, X., Zhu, X., Zhang, J., van Treuren, R., van Dooijeweert, W., Zhang, Z., and Huang, S. 2012. Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS ONE 7:e46919. doi:10.1371/journal.pone.0046919
  • Mandal, M. K., Chanda, B., and Kousik, C. S. 2021. Identification of powdery mildew resistant marker in watermelon by metabolomics and genomics approach. Phytopathology 10:S26.
  • Mandal, M. K., Suren, H., and Kousik, C. 2020. Elucidation of resistanc signaling and identification of powdery mildew resistant mapping loci (ClaPMR2) during watermelon-Podosphaera xanthii interaction using RNA-Seq and whole-genome resequencing approach. Sci. Rep. 10: 14038. doi:10.1038/s41598-020-70932-z
  • Mandal, M. K., Suren, H., Ward, B., Boroujerdi, A., and Kousik, C. 2018. Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits. J. Pineal Res. 65:e12505. doi:10.1111/jpi.12505
  • Mapuranga, J., Chang, J., and Yang, W. 2022. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. Front. Plant Sci. 13: 1102908. doi:10.3389/fpls.2022.1102908
  • Margaritopoulou, T., Kizis, D., Kotopoulis, D., Papadakis, I. E., Anagnostopoulos, C., Baira, E., Termentzi, A., Vichou, A.-E., Leifert, C., and Markellou, E. 2022. Enriched H3K4me3 marks at Pm-0 resistance-related genes prime courgette against Podosphaera xanthii. Plant Physiol. 188: 576–592. doi:10.1093/plphys/kiab453
  • Marr, K. L., Bhattarai, N. K., and Xia, Y. M. 2005. Allozymic, morphological, and phenological diversity in cultivated Luffa acutangula (Cucurbitaceae) from China, Laos, and Nepal, and allozyme divergence between L. acutangula and L. aegyptiaca. Econ. Bot. 59: 154–165. doi:10.1663/0013-0001(2005)059[0154:AMAPDI]2.0.CO;2
  • Martínez, C., Manzano, S., Megías, Z., Barrera, A., Boualem, A., Garrido, D., Bendahmane, A., and Jamilena, M. 2014. Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L). Planta 239: 1201–1215. doi:10.1007/s00425-014-2043-0
  • Martínez, C., Manzano, S., Megías, Z., Garrido, D., Picó, B., and Jamilena, M. 2013. Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC Plant Biol. 13: 139. doi:10.1186/1471-2229-13-139
  • Martínez-González, C., Castellanos-Morales, G., Barrera-Redondo, J., Sánchez-de la Vega, G., Hernández-Rosales, H. S., Gasca-Pineda, J., Aguirre-Planter, E., Moreno-Letelier, A., Escalante, A. E., Montes-Hernández, S., Lira-Saade, R., and Eguiarte, L. E. 2021. Recent and historical gene flow in cultivars, landraces, and a wild taxon of Cucurbita pepo in Mexico. Front. Ecol. Evol. 9: 656051. doi:10.3389/fevo.2021.656051
  • Mashilo, J., Shimelis, H., and Ngwepe, R. M. 2022. Genetic resources of bottle gourd (Lagenaria siceraria (Molina) Standl.] and citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. ex Greb.) - implications for genetic improvement, product development and commercialization: a review. S. Afr. J. Bot. 145: 28–47. doi:10.1016/j.sajb.2021.10.013
  • Matsuda, S., and Takamatsu, S. 2003. Evolution of host-parasite relationship of Golovinomyces (Ascomycota: Erysiphaceae) inferred from nuclear rDNA sequences. Mol. Phylogenet. Evol. 27: 314–327. doi:10.1016/s1055-7903(02)00401-3
  • Matsumura, H., Hsiao, M.-C., Lin, Y.-P., Toyoda, A., Taniai, N., Tarora, K., Urasaki, N., Anand, S. S., Dhillon, N. P. S., Schafleitner, R., and Lee, C.-R. 2020. Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication. Proc. Natl. Acad. Sci. U S A. 117: 14543–14551. doi:10.1073/pnas.1921016117
  • Matthew, D. 2022. Omics in vegetable crops: Cucurbitaceae and Amaryllidaceae. In Omics in Horticultural Crops; Rout, G. R. and Peter, K. V. Eds. Elsevier Science and Academic Press: London, UK, pp 239–280.
  • Maxted, N., Ford-Lloyd, B. V., Jury, S., Kell, S. P., and Scholten, M. A. 2006. Towards a definition of a crop wild relative. Biodivers. Conserv. 15: 2673–2685. doi:10.1007/s10531-005-5409-6
  • McCouch, S., Navabi, Z. K., Abberton, M., Anglin, N. L., Barbieri, R. L., Baum, M., Bett, K., Booker, H., Brown, G. L., Bryan, G. J., Cattivelli, L., Charest, D., Eversole, K., Freitas, M., Ghamkhar, K., Grattapaglia, D., Henry, R., Valadares Inglis, M. C., Islam, T., Kehel, Z., Kersey, P. J., King, G. J., Kresovich, S., Marden, E., Mayes, S., Ndjiondjop, M. N., Nguyen, H. T., Paiva, S. R., Papa, R., Phillips, P. W. B., Rasheed, A., Richards, C., Rouard, M., Amstalden Sampaio, M. J., Scholz, U., Shaw, P. D., Sherman, B., Staton, S. E., Stein, N., Svensson, J., Tester, M., Montenegro Valls, J. F., Varshney, R., Visscher, S., von Wettberg, E., Waugh, R., Wenzl, P., and Rieseberg, L. H. 2020. Mobilizing crop biodiversity. Mol. Plant. 13: 1341–1344. doi:10.1016/j.molp.2020.08.011
  • McCreight, J. D. 2003. Genes for resistance to powdery mildew races 1 and 2US in melon PI 313970. HortScience 38: 591–594. doi:10.21273/HORTSCI.38.4.591
  • McCreight, J. D. 2004. Notes on the change of the causal species of cucurbit powdery mildew in the U.S. Cucurbit Genet. Coop. Rep. 27: 8–23.
  • McCreight, J. D. 2006. Melon–powdery mildew interactions reveal variation in melon cultigens and Podosphaera xanthii races 1 and 2. J. Amer. Soc. Hort. Sci. 131: 59–65. doi:10.21273/JASHS.131.1.59
  • McCreight, J. D., and Coffey, M. D. 2011. Inheritance of resistance in melon PI 313970 to cucurbit powdery mildew incited by Podosphaera xanthii race S. HortScience 46: 838–840. doi:10.21273/HORTSCI.46.6.838
  • McCreight, J. D., and Coffey, M. D. 2012. New sources of resistance to cucurbit powdery mildew in melon. HortScience 47:S292.
  • McCreight, J. D., Coffey, M. D., Sedláková, B., and Lebeda, A. 2012. Cucurbit powdery mildew of melon incited by Podosphaera xanthii: Global and western U.S. perspectives. In Cucurbitaceae 2012. Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae; October 15-18, 2012, Antalya, Turkey; Sari, N., Solmaz, I., and Aras, V., Eds. Cukurova University: Antalya, Turkey, pp 181–189.
  • McCreight, J. D., Kishaba, A. N., and Bohn, G. W. 1984. AR Hale’s Best Jumbo, AR 5, and AR Topmark, melon aphid-resistant muskmelon breeding lines. HortScience 19: 309–310. doi:10.21273/HORTSCI.19.2.309
  • McCreight, J. D., Pitrat, M., Thomas, C. E., Kishaba, A. N., and Bohn, G. W. 1987. Powdery mildew resistance genes in muskmelon. J. Amer. Soc. Hort. Sci. 112: 156–160. doi:10.21273/JASHS.112.1.156
  • McDonald, B. A., and Linde, C. 2002a. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124: 163–180. doi:10.1023/A:1015678432355
  • McDonald, B. A., and Linde, C. 2002b. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40: 349–379. doi:10.1146/annurev.phyto.40.120501.101443
  • Meeboon, J., and Takamatsu, S. 2016. Notes on powdery mildews (Erysiphales) in Thailand II. Erysiphe species on Adoxaceae Anacardiaceae, Apocynaceae, Araliaceae, Aristolochiaceae, Bixaceae, Brassicaceae, Cleomaceae, Convolvulaceae, Cucurbitaceae and Euphorbiacea. Trop. Plant Pathol. 41: 357–369. doi:10.1007/s40858-016-0111-7
  • Meglic, V., and Staub, J. E. 1996. Inheritance and linkage relationships of isozyme and morphological loci in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 92: 865–872. doi:10.1007/BF00221899
  • Meglic, V., Serquen, F., and Staub, J. E. 1996. Genetic diversity in cucumber (Cucumis sativus L.): I. A reevaluation of the U.S. germplasm collection. Genet. Genet. Resour. Crop Evol. 43: 533–546. doi:10.1007/BF00138830
  • Mercier, J., Muscara, M. J., and Davis, A. R. 2014. First report of Podosphaera xanthii race 1W causing powdery mildew of watermelon in California. Plant Dis. 98: 158–158. doi:10.1094/PDIS-05-13-0552-PDN
  • Miazzi, M., Laguardia, C., and Faretra, F. 2011. Variation in Podosphaera xanthii on cucurbits in Southern Italy. J. Phytopathol. 159: 538–545. doi:10.1111/j.1439-0434.2011.01801.x
  • Mieslerová, B., Cook, R. T. A., Wheater, C. P., and Lebeda, A. 2022. Ecology of powdery mildews – influence of abiotic factors on their development and epidemiology. Critic. Rev. Plant Sci. 41: 365–390. doi:10.1080/07352689.2022.2138044
  • Minocha, S. 2015. An overview of Lagenaria siceraria (Bottle gourd). J. Biomed. Pharm. Res. 4: 4–10.
  • Misra, S., Srivastava, A. K., Verma, S., Pandey, S., Bargali, S. S., Rana, T. S., and Nair, K. N. 2017. Phenetic and genetic diversity in Indian Luffa (Cucurbitaceae) inferred from morphometric, ISSR and DAMD markers. Genet. Resour. Crop Evol. 64: 995–1010. doi:10.1007/s10722-016-0420-1
  • Montero-Pau, J., Esteras, C., Banca, J., Ziarsolo, P., Cañizares, J., and Picó, B. 2017. Genetics and genomics of Cucurbita spp. In Genetics and Genomics of Cucurbitaceae; Grumet, R., Katzir, N., and Garcia-Mas, J. Eds. Springer International Publishing AG: Cham, Switzerland, pp 211–228.
  • Montes-Hernandez, S., and Eguiarte, L. E. 2002. Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in western Mexico. Am. J. Bot. 89: 1156–1163. doi:10.3732/ajb.89.7.1156
  • Morimoto, Y., Maundu, P., Fujimaki, H., and Morishima, H. 2005. Diversity of landraces of the white-flowered gourd (Lagenaria siceraria) and its wild relatives in Kenya: fruit and seed morphology. Genet. Resour. Crop Evol. 52: 737–747. doi:10.1007/s10722-004-6119-8
  • Morimoto, Y., Maundu, P., Kawase, M., Fujimaki, H., and Morishima, H. 2006. RAPD polymorphism of the white-flowered gourd (Lagenaria siceraria (Molina) Standl. landraces and its wild relatives in Kenya. Genet. Resour. Crop Evol. 53: 963–974. doi:10.1007/s10722-004-7070-4
  • Morishita, M., Sugiyama, K., Saito, T., and Sakata, Y. 2002. An improved evaluation method for screening and selecting powdery mildew resistant cultivars and lines of cucumber (Cucumis sativus L.). J. Jpn. Hort. Sci. 71: 94–100. doi:10.2503/jjshs.71.94
  • Morishita, M., Sugiyama, K., Saito, T., and Sakata, Y. 2003. Powdery mildew resistance in cucumber. JARQ 37: 7–14. doi:10.6090/jarq.37.7
  • Naegele, R. P., and Wehner, T. C. 2017. Genetic resources of cucumber. In Genetics and Genomics of Cucurbitaceae; Grumet, R., Katzir, N., and Garcia-Mas, J. Eds. Springer International Publishing AG: Cham, Switzerland, pp 61–86.
  • Natarajan, S., Kim, H. T., Thamilarasan, S. K., Veerappan, K., Park, J. I., and Nou, I. S. 2016. Whole genome re-sequencing and characterization of powdery mildew disease-associated allelic variation in melon. PLoS ONE 11:e0157524. doi:10.1371/journal.pone.0157524
  • NatureServe Explorer. 2023. www.natureserve.org (accessed Aug. 9, 2023).
  • Navrátilová, B., Skálová, D., Ondřej, V., Kitner, M., and Lebeda, A. 2011. Biotechnological methods utilized in Cucumis sp. research – A review. Hortic. Sci. 38: 150–158. doi:10.17221/143/2010-HORTSCI
  • Nee, M. 1990. The Domestication of Cucurbita (Cucurbitaceae). Econ. Bot. 44: p. 56–68.
  • Nesom, G. L. 2011. Toward consistency of taxonomic rank in wild/domesticated Cucurbitaceae. Phytoneuron 13: 1–33.
  • Neuhausen, S. L. 1992. Evaluation of restriction fragment length polymorphism in Cucumis melo. Theor. Appl. Genet. 83: 379–384. doi:10.1007/BF00224286
  • Ngwepe, R. M., Mashilo, J., and Shimelis, H. 2019. Progress in genetic improvement of citron watermelon (Citrullus lanatus var. citroides): a review. Genet. Resour. Crop Evol. 66: 735–758. doi:10.1007/s10722-018-0724-4
  • Ngwerume, F. C. 2004. Cucurbita moschata. In PROTA 2. Plant Resources of Tropical Africa; Grubben, G. J. H., and Denton, O. A. Eds. PROTA Foundation–Backhuys–CTA: Wageningen, the Netherlands, p 668.
  • Nie, J. T., He, H. L., Peng, J. L., Yang, X. Q., Bie, B. B., Zhao, J. L., Wang, Y. L., Si, L. T., Pan, J. S., and Cai, R. 2015a. Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol. Breed. 35: 7.
  • Nie, J. T., Wang, Y. L., He, H. L., Guo, C. L., Zhu, W. Y., Pan, J., Li, D. D., Lian, H. L., Pan, J. S., and Cai, R. 2015b. Loss-of-function mutations in CsMLO1confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front. Plant Sci. 6: 1155. doi:10.3389/fpls.2015.01155
  • Nie, J. T., Wang, H. Z., Zhang, W. H., Teng, X., Yu, C., Cai, R., and Wu, G. 2021. Characterization of lncRNAs and mRNAs involved in powdery mildew resistance in cucumber. Phytopathology 111: 1613–1624. doi:10.1094/PHYTO-11-20-0521-R
  • Niks, R. E., and Marcel, T. C. 2009. Nonhost and basal resistance: how to explain specificity? New Phytol. 182: 817–828. doi:10.1111/j.1469-8137.2009.02849.x
  • Ning, X. F., Wang, X. L., Gao, X. W., Zhang, Z. Q., Zhang, L. H., Yan, W. L., and Li, G. 2014. Inheritances and location of powdery mildew resistance gene in melon Edisto 47. Euphytica 195: 345–353. doi:10.1007/s10681-013-1000-5
  • Norton, J. D., Boyhan, G. E., Smith, D. A., and Abrahams, D. R. 1995. Au-sweet scarlet watermelon. HortScience 30: 393–394. doi:10.21273/HORTSCI.30.2.393
  • Nunes, E. W. L. P., Esteras, C., Ricarte, A. O., Martínez-Perez, E., Gómez-Guillamón, M. L., Nunes, G. H. S., and Picó, M. B. 2017a. Brazilian melon landraces resistant to Podosphaera xanthii are unique germplasm resources. Ann. Appl. Biol. 171: 214–228. doi:10.1111/aab.12370
  • Nunes, E.W.L.P., Martínez, E.M., Aragão, F.A.S., Esteras, C., Nunes, G.H.S., and Picó, M.B. 2017b. Inheritance of resistance to Podosphaera xanthii in melon accessions AM-55 and AC-15. Acta Hortic. 1151: 63–68. doi:10.17660/ActaHortic.2017.1151.11
  • Nunes, E.W.L.P., Ricarte, A.O., Martínez, E.M., Esteras, C., Nunes, G.H.S., and Picó, M.B. 2017c. Morphological and molecular characterization of new melon germplasm resistant to Podosphaera xanthii. Acta Hortic. 1151: 69–74. doi:10.17660/ActaHortic.2017.1151.12
  • Palomares-Rius, F. J., Garcés-Claver, A., Picó, M. B., Esteras, C., Yuste-Lisbona, F. J., and Gómez-Guillamón, M. L. 2018. 'Carmen’, a yellow canary melon breeding line resistant to Podosphaera xanthii, Aphis gossypii, and Cucurbit Yellow Stunting Disorder Virus. HortScience 53: 1072–1075. doi:10.21273/HORTSCI13013-18
  • Palti, J. 1961. Problems of plant disease forecasting in an arid zone. Plant Dis. Rep. 45: 31–37.
  • Pan, W., Cheng, Z., Han, Z., Yang, H., Zhang, W., and Zhang, H. 2022. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing of watermelon assisted by genes encoding developmental regulators. J. Zhejiang Univ. Sci. B 23: 339–344. doi:10.1631/jzus.B2200119
  • Pandey, S., Ansari, W. A., Choudhary, B. R., Pandey, M., Jena, S. N., Singh, A. K., Dubey, R. K., and Singh, B. 2017. Microsatellite analysis of genetic diversity and population structure of hermaphrodite ridge gourd (Luffa hermaphrodita). 3 Biotech 8: 17. doi:10.1007/s13205-017-1030-0
  • Pandey, A., and Rajkumar, S. 2021. A new potential variety of cultivated melon (Cucumis melo L.) from north western India. Genet. Resour. Crop Evol. 68: 785–794. doi:10.1007/s10722-020-00997-2
  • Panstruga, R., and Moscou, M. J. 2020. What is the molecular basis of nonhost resistance? Mol. Plant. Microbe Interact. 33: 1253–1264. doi:10.1094/MPMI-06-20-0161-CR
  • Panstruga, R., and Schulze-Lefert, P. 2002. Live and let live: insights into powdery mildew disease and resistance. Mol. Plant Pathol. 3: 495–502. doi:10.1046/j.1364-3703.2002.00145.x
  • Paris, H. S. 2015. Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Ann. Bot. 116: 133–148. doi:10.1093/aob/mcv077
  • Paris, H. S. 2016. Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): progress and challenges. Euphytica 208: 415–438. doi:10.1007/s10681-015-1605-y
  • Paris, H. S. 2017. Genetic resources of pumpkins and squash, Cucurbita spp. In Genetics and Genomics of Cucurbitaceae; Grumet, R., Katzir, N., and Garcia-Mas, J. Eds. Springer International Publishing AG: Cham, Switzerland, pp 111–154.
  • Paris, H. S. 2018. Consumer-oriented exploitation and conservation of genetic resources of pumpkins and squash, Cucurbita. Israel J. Plant Sci. 65: 202–221. doi:10.1163/22238980-00001036
  • Paris, H. S., and Brown, R. N. 2005. The genes of pumpkin and squash. HortScience 40: 1620–1630. doi:10.21273/HORTSCI.40.6.1620
  • Paris, H. S., Burger, Y., and Schaffer, A. A. 2006. Genetic variability and introgression of horticulturally valuable traits in squash and pumpkins of Cucurbita pepo. Isr. J. Plant Sci. 54: 223–231. doi:10.1560/IJPS_54_3_223
  • Paris, H. S., and Cohen, R. 2002. Powdery mildew-resistant summer squash hybrids having higher yields than their susceptible, commercial counterparts. Euphytica 124: 121–128. doi:10.1023/A:1015623013740
  • Paris, H. S., Daunay, M., Ch., and Janick, J. 2012a. Occidental diffusion of cucumber (Cucumis sativus) 500–1300 CE: two routes to Europe. Ann. Bot. 109: 117–126. doi:10.1093/aob/mcr281
  • Paris, H. S., and Kabelka, E. 2008-2009. Gene list of Cucurbita species, 2009. Cucurbit Genet. Coop. Rep. 31–32: 44–69.
  • Paris, H. S., Lebeda, A., Křístková, E., Andres, T. C., and Nee, M. H. 2012b. Parallel evolution under domestication and phenotypic differentiation of the cultivated subspecies of Cucurbita pepo (Cucurbitaceae). Econ. Bot. 66: 71–90. doi:10.1007/s12231-012-9186-3
  • Paris, H. S., and Padley, L. D. Jr., 2014-2015. Gene List for Cucurbita species, 2014. Cucurbit Genet. Coop. Rep. 37–38: 1–14. https://cucurbit.info/wp-content/uploads/2018/ 10/gene14 squash.pdf (accessed Jan. 29, 2023).
  • Park, B. S., Jang, S., Yu, Y., Choi, G. J., Kang, B. C., and Seo, S. K. 2020. QTL mapping and molecular markers of powdery mildew resistance in pumpkin (Cucurbita moschata). Hort. Sci. Technol. 38: 717–729. doi:10.7235/HORT.20200065
  • Parra, L., Maisonneuve, B., Lebeda, A., Schut, J., Christopoulou, M., Jeuken, M., McHale, L., Truco, M.-J., Crute, I., and Michelmore, R. 2016. Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 210: 309–326. doi:10.1007/s10681-016-1687-1
  • Parvathi, M. S., Antony, P. D., and Kutty, M. S. 2022. Multiple stressors on vegetable production: insigths for trait-based crop improvement in cucurbits. Front. Plant Sci. 13: 861637. doi:10.3389/fpls.2022.861637
  • Pautasso, M., Döring, T. F., Garbelotto, M., Pellis, L., and Jeger, M. J. 2012. Impacts of climate change on plant diseases – opinions and trends. Eur. J. Plant Pathol. 133: 295–313. doi:10.1007/s10658-012-9936-1
  • Pavan, S., Jacobsen, E., Visser, R. G. F., and Bai, Y. 2009. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 25: 1–12. doi:10.1007/s11032-009-9323-6
  • Perchepied, L., Bardin, M., Dogimont, C., and Pitrat, M. 2005. Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95: 556–565. doi:10.1094/PHYTO-95-0556
  • Pérez-García, A., Romero, D., Fernández-Ortuño, D., López-Ruiz, F., De Vicente, A., and Torés, J. A. 2009. The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Mol. Plant Pathol. 10: 153–160. doi:10.1111/j.1364-3703.2008.00527.x
  • Perez, G. A., Tongyoo, P., Chunwongse, J., de Jong, H., Wongpraneekul, A., Sinsathapornpong, W., and Chuenwarin, P. 2021. Genetic diversity and population structure of ridge gourd (Luffa acutangula) accessions in a Thailand collection using SNP markers. Sci. Rep. 11: 15311. doi:10.1038/s41598-021-94802-4
  • Périn, C., Hagen, S., De Conto, V., Katzir, N., Danin-Poleg, Y., Portnoy, V., Baudracco-Arnas, S., Chadoeuf, J., Dogimont, C., and Pitrat, M. 2002. A reference map of Cucumis melo based on two recombinant inbred line populations. Theor. Appl. Genet. 104: 1017–1034. doi:10.1007/s00122-002-0864-x
  • Pierce, L. K., and Wehner, T. C. 1990. Review of genes and linkage groups in cucumber. HortScience 25: 605–615. doi:10.21273/HORTSCI.25.6.605
  • Pirondi, A., Kitner, M., Iotti, M., Sedláková, B., Lebeda, A., and Collina, M. 2016. Genetic structure and phylogeny of Italian and Czech populations of the cucurbit powdery mildew fungus Golovinomyces orontii inferred by multilocus sequence typing. Plant Pathol. 65: 959–967. doi:10.1111/ppa.12480
  • Pirondi, A., Pérez-García, A., Battistini, G., Muzzi, E., Brunelli, A., and Collina, M. 2015a. Seasonal variations in the occurrence of Golovinomyces orontii and Podosphaera xanthii, causal agents of cucurbit powdery mildew in Northern Italy. Ann. Appl. Biol. 167: 298–313. doi:10.1111/aab.12225
  • Pirondi, A., Vela-Corcía, D., Dondini, L., Brunelli, A., Pérez-García, A., and Collina, M. 2015b. Genetic diversity analysis of the cucurbit powdery mildew fungus Podosphaera xanthii suggests a clonal population structure. Fungal Biol. 119: 791–801. doi:10.1016/j.funbio.2015.05.003
  • Pitrat, M. 1991. Linkage groups in Cucumis melo L. J. Heredity 82: 406–411. doi:10.1093/oxfordjournals.jhered.a111112
  • Pitrat, M. 2013. Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant Biotech. 30: 273–278. doi:10.5511/plantbiotechnology.13.0813a
  • Pitrat, M. 2017. Melon genetic resources: phenotypic diversity and horticultural taxonomy. In Genetics and Genomics of the Cucurbitaceae, Vol. 20; Grumet, R., Katzir, N., Garcia-Mas, J. Eds. Springer: Cham, Switzerland, pp 25–60.
  • Pitrat, M., and Besombes, D. 2008. Inheritance of Podosphaera xanthii resistance in melon line ‘90625'. In Cucurbitaceae 2008, IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Pitrat, M. Ed. INRA: Avignon, France, pp 135–142.
  • Pitrat, M., and de Vaulx, D. 1979. Recherche de géniteurs de résistance à l´oïdium et aux Virus de la Mosaïque du Concombre et de la Mosaïque de la Pastèque chez Cucurbita sp. Ann. Amélior. Plantes 29: 439–445.
  • Pitrat, M., Dogimont, C., and Bardin, M. 1998. Resistance to fungal diseases of foliage in melon. In Cucurbitaceae ´98. Evaluation and Enhancement of Cucurbit Germplasm; McCreight, J. D. Ed. A.S.H.S. Press: Alexandria, VA, pp 167–173.
  • Pitrat, M., Hanelt, P., Hammer, K., Katzir, N., and Paris, H. S. 2000. Some comments on infraspecific classification of cultivars of melon. Acta Hortic. 510: 29–36. doi:10.17660/ActaHortic.2000.510.4
  • Plants of the World Online. 2023. www.powo.science.kew.org (accessed Aug. 9, 2023).
  • Polonio, Á., Pineda, M., Bautista, R., Martínez-Cruz, J., Pérez-Bueno, M. L., Barón, M., and Pérez-García, A. 2019. RNA-seq analysis and fluoroscence imaging of melon powdery mildew disease reveal an orchestrated reprogramming of host physiology. Sci. Rep. 9: 7978. doi:10.1038/s41598-019-44443-5
  • Porterfield, R., and Meru, G. 2017. Candidate susceptibility genes for powdery and downy mildew in watermelon and squash. J. Phylogenetics Evol. Biol. 5: 186.
  • Prasanth, K., Sadashiva, A.T., Pitchaimuthu, M., and Varalakshmi, B. 2020. Genetic diversity, variability and correlation studies in bitter gourd (Momordica charantia L.). Indian J. Plant Genet. Resour. 33: 179–185. doi:10.5958/0976-1926.2020.00026.1
  • Qi, J., Liu, X., Shen, D., Miao, H., Xie, B., Li, X., Zeng, P., Wang, S., Shang, Y., Gu, X., Du, Y., Li, Y., Lin, T., Yuan, J., Yang, X., Chen, J., Chen, H., Xiong, X., Huang, K., Fei, Z., Mao, L., Tian, L., Städler, T., Renner, S. S., Kamoun, S., Lucas, W. J., Zhang, Z., and Huang, S. 2013. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 45: 1510–1515. doi:10.1038/ng.2801
  • Qie, Y., Sheng, Y., Xu, H., Jin, Y., Ma, F., Li, L., Li, X., and An, D. 2019. Identification of a new powdery mildew resistance gene pmDHT a tor closely linked to the Pm5 locus in the Chinese wheat landrace Dahongtou. Plant Dis. 103: 2645–2651. doi:10.1094/PDIS-02-19-0401-RE
  • Qiu, P. L., Qi, X. F., Li, Y., Braun, U., and Liu, S. Y. 2020. Epitypification and molecular confirmation of Erysiphe cucurbitacearum as a synonym of Golovinomyces tabaci. Mycoscience 61: 30–36. doi:10.1016/j.myc.2019.09.002
  • Rabelo, H. O., Santos, L. S., Diniz, G. M. M., Marin, M. V., Braz, L. T., and McCreight, J. D. 2017. Cucurbits powdery mildew race identity and reaction of melon genotypes. Pesqui. Agropecu. Trop. 47: 440–447. doi:10.1590/1983-40632017v4749537
  • Rawat, S., and Meena, S. 2014. Publish or perish: where are we heading? J. Res. Med. Sci. 19: 87–89.
  • Rennberger, G., Kousik, C. S., and Keinath, A. P. 2018. First report of powdery mildew on Cucumis zambianus, Cucurbita digitata, and Melothria scabra caused by Podosphaera xanthii in the United States. Plant Dis. 102: 246–246. doi:10.1094/PDIS-06-17-0916-PDN
  • Renner, S. S. 2017. A valid name for the Xishuangbanna gourd, a cucumber with carotene-rich fruits. PhytoKeys 85: 87–94. doi:10.3897/phytokeys.85.17371
  • Renner, S. S., Chomicki, G., and Greuter, W. 2014. Proposal to conserve the name Momordica lanata (Citrullus lanatus) (watermelon, Cucurbitaceae), with a conserved type, against Citrullus battich. Taxon 63: 941–942. doi:10.12705/634.29
  • Renner, S. S., and Schaefer, H. 2017. Phylogeny and evolution of the Cucurbitaceae. In Genetics and Genomics of Cucurbitaceae; Grumet, R., Katzir, N., and Garcia-Mas, J. Eds. Springer: Cham, Switzerland, pp 14–23.
  • Renner, S. S., Schaefer, H., and Kocyan, A. 2007. Phylogenetics of Cucumis (Cucurbitaceae): Cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evol. Biol. 7: 58. doi:10.1186/1471-2148-7-58
  • Renner, S. S., Sousa, A., and Chomicki, G. 2017. Chromosome numbers, Sudanese wild forms, and classification of the watermelon genus Citrullus, with 50 names allocated to seven biological species. Taxon 66: 1393–1405. doi:10.12705/666.7
  • Reyad, N. E.-H A., Azoz, S. N., Ali, A. M., and Sayed, E. G. 2022. Mitigation of powdery mildew disease by integrating biocontrol agents and shikimic acid with modulation of antioxidant defense system, anatomical characterization, and improvement of squash plant productivity. Horticulturae 8: 1145. doi:10.3390/horticulturae8121145
  • Rhodes, A. M. 1959. Species hybridization and interspecific gene transfer in the genus Cucurbita. Proc. Am. Soc. Hortic. Sci. 74: 546–551.
  • Rhodes, A. M. 1964. Inheritance of powdery mildew resistance in the genus Cucurbita. Plant Dis. Rep. 48: 54–55.
  • Richardson, J. B. 1972. The Pre-Columbian distribution of the bottle gourd (Lagenaria siceraria): a re-evaluation. Econ. Bot. 26: 265–273. doi:10.1007/BF02861040
  • Robinson, R. W., and Decker-Walters, D. S. 1997. Cucurbits. CAB International: Wallingford, UK.
  • Robinson, R. W., Provvidenti, R., and Shail, J. W. 1975. Inheritance of susceptibility to powdery mildew in the watermelon. J. Heredity 66: 310–311. doi:10.1093/oxfordjournals.jhered.a108636
  • Romero, D., Eugenia Rivera, M., Cazorla, F. M., Codina, J. C., Fernández-Ortuño, D., Torés, J. A., Pérez-García, A., and de Vicente, A. 2008. Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon-powdery mildew (Podosphaera fusca) interactions. J. Plant Physiol. 165: 1895–1905. doi:10.1016/j.jplph.2008.04.020
  • Rubatzky, V. E., and Yamaguchi, M. 1997. World Vegetables. Principles, Production, and Nutritive Values, 2nd ed. Chapman & Hall: New York.
  • Ruggieri, V., Alexiou, K. G., Morata, J., Argyris, J., Pujol, M., Yano, R., Nonaka, S., Ezura, H., Latrasse, D., Boualem, A., Benhamed, M., Bendahmane, A., Cigliano, R. A., Sanseverino, W., Puigdomènech, P., Casacuberta, J. M., and Garcia-Mas, J. 2018. An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Sci. Rep. 8: 8088. doi:10.1038/s41598-018-26416-2
  • Sakata, Y., Kubo, N., Morishita, M., Kitadani, E., Sugiyama, M., and Hirai, M. 2006. QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L). Theor. Appl. Genet. 112: 243–250. doi:10.1007/s00122-005-0121-1
  • Sales Júnior, R., Nunes, G. H., Michereff, S. J., Pereira, E. W., and Guimarães, I. M. 2011. Reaction of families and lines of melon to powdery mildew. Hortic. Bras. 29: 382–386. doi:10.1590/S0102-05362011000300021
  • Salmon, E. 1900. A monograph of the Erysiphaceae. Mem. Torrey Bot. Club 9: 1–292.
  • Salmon, E. S. 1906. On Oidiopsis taurica (Lév.), an endophytic member of the Erysiphaceae. Ann. Bot. os-20: 187–200. doi:10.1093/oxfordjournals.aob.a089091
  • Sánchez-de la Vega, G., Castellanos-Morales, G., Gámez, N., Hernández-Rosales, H. S., Vázquez-Lobo, A., Aguirre-Planter, E., Jaramillo-Correa, J. P., Montes-Hernández, S., Lira-Saade, R., and Eguiarte, L. E. 2018. Genetic resources in the “Calabaza Pipiana” squash (Cucurbita argyrosperma) in Mexico: genetic diversity, genetic differentiation and distribution models. Front. Plant Sci. 9: 400. doi:10.3389/fpls.2018.00400
  • Sanjur, O. I., Piperno, D. R., Andres, T. C., and Wessel-Beaver, L. 2002. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc. Natl. Acad. Sci. U S A. 99: 535–540. doi:10.1073/pnas.012577299
  • Saur, I. M. L., and Hückelhoven, R. 2021. Recognition and defence of plant-infecting fungal pathogens. J. Plant Physiol. 256: 153324. doi:10.1016/j.jplph.2020.153324
  • Sawada, K. 1928. Descriptive catalogue of the Formosan fungi IV. Bull. Dept. Agr. Govt. Res. Inst. Formosa 35: 1–123.
  • Schachtel, G. A., Dinoor, A., Herrmann, A., and Kosman, E. 2012. Comprehensive evaluation of virulence and resistance data: a new analysis tool. Plant Dis. 96: 1060–1063. doi:10.1094/PDIS-02-12-0114-SR
  • Schaefer, H., Heibl, C., and Renner, S. S. 2009. Gourds afloat: A dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc. Biol. Sci. 276: 843–851. doi:10.1098/rspb.2008.1447
  • Schaefer, H., and Renner, S. S. 2010. A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. Mol. Phylogenet. Evol. 54: 553–560. doi:10.1016/j.ympev.2009.08.006
  • Schaefer, H., and Renner, S. S. 2011. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 60: 122–138. doi:10.1002/tax.601011
  • Schnathorst, W. C. 1965. Environmental relationships in powdery mildews. Annu. Rev. Phytopathol. 3: 343–366. doi:10.1146/annurev.py.03.090165.002015
  • Schouten, H. J., Krauskopf, J., Visser, R. G. F., and Bai, Y. L. 2014. Identification of candidate genes required for susceptibility to powdery or downy mildew in cucumber. Euphytica 200: 475–486. doi:10.1007/s10681-014-1216-z
  • Schweinfurth, G. 1883. The flora of ancient Egypt. Nature 28: 109–114.
  • Sebastian, P., Schaefer, H., Telford, I. R. H., and Renner, S. S. 2010. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc. Natl. Acad. Sci. U S A. 107: 14269–14273. doi:10.1073/pnas.1005338107
  • Sedlářová, M., Kubienová, L., Drábková-Trojanová, Z., Luhová, L., Lebeda, A., and Petřivalský, M. 2016. The role of nitric oxide in development and pathogenesis of biotrophic phytopathogens – downy and powdery mildews. In Nitric Oxide and Signaling in Plants, Vol. 77; Wendehenne, D., Ed., Academic Press: London, pp 263–283.
  • Sedlářová, M., Lebeda, A., Mikšíková, P., Duchoslav, M., Sedláková, B., and McCreight, J. D. 2009. Histological aspects of Cucumis melo PI 313970 resistance to Podosphaera xanthii and Golovinomyces cichoracearum. J. Plant Dis. Prot. 116: 169–176. doi:10.1007/BF03356306
  • Seshadri, V. S., and More, T. A. 2009. Cucurbit Vegetables – Biology, Production and Utilization. New Delhi: Studium Press, pp 482.
  • Shanmugasundaram, S., Williams, P. H., and Peterson, C. E. 1971a. Inheritance of resistance to powdery mildew in cucumber. Phytopathology 61: 1218–1221. doi:10.1094/Phyto-61-1218
  • Shanmugasundaram, S., Williams, P. H., and Peterson, C. E. 1971b. Inheritance of fruit spine color in cucumber-D. HortScience 6: 213–214. doi:10.21273/HORTSCI.6.3.213
  • Shanmugasundaram, S., Williams, P. H., and Peterson, C. E. 1972. A recessive cotyledon marker gene in cucumber with pleiotropic effect. HortScience 7: 555–556. doi:10.21273/HORTSCI.7.6.555b
  • Sharma, S., Dar, A. A., Gupta, S., and Singh, R. 2021. Evaluation of resistant genotypes and their characterization using molecular markers linked for powdery mildew resistance in cucumber (Cucumis sativus L.). Plant Genet. Resour. 19: 497–502. doi:10.1017/S1479262121000605
  • Shimizu, S., Kanazawa, K., and Kato, A. 1963. Studies on the breeding of cucumber for resistance to downy mildew. Difference of resistance to downy mildew among the cucumber varieties and the utility of the cucumber variety resistance to downy mildew. Bul. Hort. Res. Sta. Jpn. 2: 80–81.
  • Shimomura, K., Sugiyama, M., Kawazu, Y., and Yoshioka, Y. 2021. Identification of quantitative trait loci for powdery mildew resistance in highly resistant cucumber (Cucumis sativus L.) using ddRAD-seq analysis. Breed. Sci. 71: 326–333. doi:10.1270/jsbbs.20141
  • Shin, A. Y., Koo, N., Kim, S., Sim, Y. M., Choi, D., Kim, Y. M., and Kwon, S. Y. 2019. Draft genome sequences of two oriental melons, Cucumis melo L. var. makuwa. Sci. Data 6: 220. doi:10.1038/s41597-019-0244-x
  • Shishkoff, N. 2000. The name of the cucurbit powdery mildew: Podosphaera (sect. Sphaerotheca) xanthii (Castag.) U. Braun & N. Shish. comb. nov. Phytopathology 90:S133.
  • Simko, I., Jia, M., Venkatesh, J., Kang, B.-C., Weng, Y., Barcaccia, G., Lanteri, S., Bhattarai, G., and Foolad, M. R. 2021. Genomics and marker-assisted improvement of vegetable crops. Crit. Rev. Plant Sci. 40: 303–365. doi:10.1080/07352689.2021.1941605
  • Singh, D., Singh, A., and Singh, A. 2021. Wide Hybridization. Plant Breeding and Cultivar Development. Academic Press: London, UK, pp 159–178.
  • Sitterly, W. R. 1972. Breeding for disease resistance in cucurbits. Annu. Rev. Phytopathol. 10: 471–490. doi:10.1146/annurev.py.10.090172.002351
  • Sitterly, W. R., 1978. Powdery mildews of cucurbits. In The Powdery Mildews; Spencer, D. M. Ed. Academic Press: London, UK, pp 359–379.
  • Skálová, D., Lebeda, A., and Navrátilová, B. 2004. Embryo and ovule cultures in Cucumis species and their utilization in interspecific hybridization. In Progress in Cucurbit Genetics and Breeding Research. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding; Lebeda, A. and Paris, H. S. Eds. Palacký University in Olomouc: Olomouc, Czech Republic, pp 415–430.
  • Smith, B. D. 2006. Eastern North America as an independent center of plant domestication. Proc. Natl. Acad. Sci. U S A. 103: 12223–12228. doi:10.1073/pnas.0604335103
  • Smith, P. 1948. Powdery mildew resistance in cucumber. Phytopathology 38: 1027–1028.
  • Spanu, P. D., and Kämper, J. 2010. Genomics of biotrophy in fungi and oomycetes - emerging patterns. Curr. Opin. Plant Biol. 13: 409–414. doi:10.1016/j.pbi.2010.03.004
  • Spanu, P. D., and Panstruga, R. 2017. Editorial: biotrophic plant-microbe interactions. Front. Plant Sci. 8: 192. doi:10.3389/fpls.2017.00192
  • Spencer, D. M. E. 1978. The Powdery Mildews. Academic Press: London, UK.
  • Spring, O., Gomez-Zeledon, J., Hadziabdic, D., Trigiano, R. N., Thines, M., and Lebeda, A. 2018. Biological characteristics and assessment of virulence diversity in pathosystems of economically important biotrophic oomycetes. Crit. Rev. Plant Sci. 37: 439–495. doi:10.1080/07352689.2018.1530848
  • Srivastava, D., Khan, N. A., Shamim, M., Yadav, P., Pandey, P., and Singh, K. N. 2014. Assessment of the Genetic Diversity in Bottle Gourd (Lagenaria siceraria [Molina] Standl.) Genotypes Using SDS-PAGE and RAPD Markers. Natl. Acad. Sci. Lett. 37: 155–161. doi:10.1007/s40009-013-0207-2
  • Staub, J. E., Box, J., Meglic, V., Horejsi, T. F., and McCreight, J.D. 1997. Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genet. Resour. Crop Evol. 44: 257–269. doi:10.1023/A:1008639616331
  • Staub, J. E., Danin-Poleg, Y., Fazio, G., Horejsi, T., Reis, N., and Katzir, N. 2000. Comparative analysis of cultivated melon groups (Cucumis melo L.) using random amplified polymorphic DNA and simple sequence repeat markers. Euphytica 115: 225–241. doi:10.1023/A:1004054014174
  • Suh, S. K., and Cho, M. 2017. New Cucurbita pepo variety (CTC12873BP) resistant to powdery mildew and resistant to infection of virus e.g. zucchini yellow mosaic virus and watermelon mosaic virus, does not have thin appearance in neck portion. Patent Number(s): KR2017013006-A. Patent Assignee: SUH S K(SUHS-Individual. Derwent Primary Accession Number: 2017-123583
  • Sun, J., Dong, Y., Wang, C., Xiao, S., Jiao, Z., and Gao, C. 2021. Identification and characterization of melon circular RNAs involved in powdery mildew responses through comparative transcriptome analysis. PeerJ 9:e11216. doi:10.7717/peerj.11216
  • Sun, J., Lv, D., Chen, Y., Pan, J., Cai, R., and Pan, J. 2022. QTL mapping for disease resistance in cucumber. In The Cucumber Genome; Pandey, S., Weng, Y., Behera, T. K., and Bo, K., Eds. Springer Nature Switzerland AG: Cham, Switzerland, pp 81–92.
  • Sun, H., Wu, S., Zhang, G., Jiao, C., Guo, S., Ren, Y., Zhang, J., Zhang, H., Gong, G., Jia, Z., Zhang, F., Tian, J., Lucas, W. J., Doyle, J. J., Li, H., Fei, Z., and Xu, Y. 2017. Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Mol. Plant. 10: 1293–1306. doi:10.1016/j.molp.2017.09.003
  • Swamy, K. R. M. 2023. Origin, distribution, taxonomy, botanical description, cytogenetics, genetic diversity and breeding of bitter gourd (Momordica charantia l.). Int. J. Dev. Res. 13: 61294–61306.
  • Takamatsu, S., Hirata, T., and Sato, Y. 2000. A parasitic transition from trees to herbs occurred at least twice in tribe Cystotheceae (Erysiphaceae): Evidence from nuclear ribosomal DNA. Mycol. Res. 104: 1304–1311. doi:10.1017/S0953756200003014
  • Takamatsu, S., Matsuda, S., and Grigaliunaite, B. 2013. Comprehensive phylogenetic analysis of the genus Golovinomyces (Ascomycota: Erysiphales) reveals close evolutionary relationships with its host plants. Mycologia 105: 1135–1152. doi:10.3852/13-046
  • Teixeira, A. M., Barreto, F. A., and Camargo, L. E. 2006. An AFLP marker linked to the Pm-1 gene that confers resistance to Podosphaera xanthii in melon. Phytopathology 96:S113–S114.
  • Teixeira, A. P. M. d., Silva Barreto, F. A., and Camargo, L. E. A. 2008. An AFLP marker linked to the Pm-1 gene that confers resistance to Podosphaera xanthii race 1 in Cucumis melo. Genet. Mol. Biol. 31: 547–550. doi:10.1590/S1415-47572008000300023
  • Tek, M. I., and Calis, O. 2022. Mechanisms of resistance to powdery mildew in cucumber. Phytopathol. Mediterr. 61: 119–127. doi:10.36253/phyto-13313
  • Tek, M. I., Calis, O., Fidan, H., Shah, M. D., Celik, S., and Wani, S. H. 2022. CRISPR/Cas9 based mlo-mediated resistance against Podosphaera xanthii in cucumber (Cucumis sativus L.). Front. Plant Sci. 13: 1081506. doi:10.3389/fpls.2022.1081506
  • Telford, R. H., Schaefer, H., Greuter, W., and Renner, S. S. 2011b. A new Australian species of Luffa (Cucurbitaceae) and typification of two Australian Cucumis names, all based on specimens collected by Ferdinand Mueller in 1856. PhytoKeys 5: 21–29. doi:10.3897/phytokeys.5.1395
  • Telford, I. R. H., Sebastian, P. M., Bruhl, J. J., and Renner, S. S. 2011a. Cucumis (Cucurbitaceae) in Australia and eastern Malesia, including newly recognized species and the sister species to C. melo. Syst. Bot. 36: 376–389. doi:10.1600/036364411X569561
  • Tetteh, A. Y., Wehner, T. C., and Davis, A. R. 2010. Identifying resistance to powdery mildew race 2W in the USDA-ARS watermelon grmplasm collection. Crop Sci. 50: 933–939. doi:10.2135/cropsci2009.03.0135
  • Tetteh, A. Y., Wehner, T. C., and Davis, A. R. 2013a. Inheritance of resistance to powdery mildew race 2 in Citrullus lanatus var. lanatus. HortScience 48: 1227–1230. doi:10.21273/HORTSCI.48.10.1227
  • Tetteh, A. Y., Wehner, T. C., and Davis, A. R. 2013b. Inheritance of resistance to the new race of powdery mildew in watermelon. Crop Sci. 53: 880–887. doi:10.2135/cropsci2012.07.0453
  • Thakur, H., Sharma, S., and Thakur, M. 2019. Recent trends in muskmelon (Cucumis melo L.) research: an overview. J. Hortic. Sci. Biotech. 94: 533–547. doi:10.1080/14620316.2018.1561214
  • Thomas, C. E. 1978. A new biological race of powdery mildew of cantaloups. Plant Dis. Rep. 62: 223.
  • Thomas, C. E., Levi, A., and Caniglia, E. 2005. Evaluation of U.S. plant introductions of watermelon for resistance to powdery mildew. HortScience 40: 154–156. doi:10.21273/HORTSCI.40.1.154
  • Thulin, M., and Al-Gifri, A. N. 1994. Cucumis canoxyi (Cucurbitaceae) – a new species from Yemen. Nordic J. Bot. 14: 315–317. doi:10.1111/j.1756-1051.1994.tb00610.x
  • Tian, J., Zhang, G., Zhang, F., Ma, J., Wen, C., and Li, H. 2022. Genome-wide identification of powdery mildew responsive long non-coding RNAs in Cucurbita pepo. Front. Genet. 13: 933022. doi:10.3389/fgene.2022.933022
  • Trecate, L., Sedláková, B., Mieslerová, B., Manstretta, V., Rossi, V., and Lebeda, A. 2019. Effect of temperature on infection and development of powdery mildew on cucumber. Plant Pathol. 68: 1165–1178. doi:10.1111/ppa.13038
  • Tyagi, R., Sharma, V., Sureja, A. K., Das Munshi, A., Arya, L., and Verma, M. 2016. Deciphering population structure and diversity in Luffa cylindrica (L.) M. Roem. using morphological and sequence-related amplified polymorphism markers. Plant Genet. Resour. 14: 234–237. doi:10.1017/S1479262115000258
  • Ünlü, A., Polat, I., Yildirim, A., and Onus, A. N. 2022. Mapping quantitative trait loci and developing first molecular marker for race 5 of Podosphera xanthii resistance in melon (Cucumis melo L.). Turk. J. Bot. 46: 123–133. doi:10.55730/1300-008X.2676
  • USDA-ARS Germplasm Resources Information Network (GRIN). 2023. Search Accessions GRIN-Global (ars-grin.gov) (accessed Apr. 21, 2023).
  • Vachev, M., Cavatorta, J., and Conrad, L. J. 2022. 'Triton’: a disease-resistant cantaloupe hybrid. HortScience 57: 1106–1109. doi:10.21273/HORTSCI16571-22
  • Vakalounakis, D. J., and Klironomou, E. 2001. Taxonomy of Golovinomyces on cucurbits. Mycotaxon 80: 489–491.
  • Van Schie, C. C., and Takken, F. L. 2014. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52: 551–581. doi:10.1146/annurev-phyto-102313-045854
  • Vicente-Dólera, N., Troadec, C., Moya, M., del Río-Celestino, M., Pomares-Viciana, T., Bendahmane, A., Picó, B., Román, B., and Gómez, P. 2014. First TILLING platform in Cucurbita pepo: a new mutant resource for gene function and crop improvement. PLoS ONE 9:e112743. doi:10.1371/journal.pone.0112743
  • Walters, T. W., and Decker-Walters, D. 1988. Balsampear (Momordica charantia, Cucurbitaceae). Econ. Bot. 42: 286–288.
  • Walters, S. A., Shetty, N. V., and Wehner, T. C. 2001. Segregation and linkage of several genes in cucumber. J. Amer. Soc. Hort. Sci. 126: 442–450. doi:10.21273/JASHS.126.4.442
  • Wang, Y., Bo, K., Gu, X., Pan, J., Li, Y., and Chen, J. 2020. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Hort. Res. 7: 3.
  • Wang, X., Li, G., Gao, X., Xiong, L., Wang, W., and Han, R. 2011. Powdery mildew resistance gene (Pm-AN) located in a segregation distortion region of melon LGV. Euphytica 180: 421–428. doi:10.1007/s10681-011-0406-1
  • Wang, Y., Qi, C., Luo, Y., Zhang, F., Dai, Z., Li, M., and Qu, S. 2021b. Identification and mapping of CpPM10.1, a major gene involved in powdery mildew (race 2 France of Podosphaera xanthii) resistance in zucchini (Cucurbita pepo L.). Theor. Appl. Genet. 134: 2531–2545. doi:10.1007/s00122-021-03840-z
  • Wang, Y. H., Van den Langenberg, K., Wen, C. L., Wehner, T. C., and Weng, Z. Q. 2018. QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by-sequencing in RIL population. Theor. Appl. Genet. 131: 597–611. doi:10.1007/s00122-017-3022-1
  • Wang, Y., Wu, D., Huang, J., Tsao, S., Hwu, K., and Lo, H. 2016. Mapping quantitative trait loci for fruit traits and powdery mildew resistance in melon (Cucumis melo). Bot. Stud. 57: 19. doi:10.1186/s40529-016-0130-1
  • Wang, L., Wu, X., Xing, Q., Zhao, Y., Yu, B., Ma, Y., Wang, F., and Qi, H. 2023a. PIF8-WRKY42-mediated salicylic acid synthesis modulates red light induced powdery mildew resistance in oriental melon. Plant Cell Environ. 46: 1726–1742. doi:10.1111/pce.14560
  • Wang, J., Wu, X., Wang, Y., Wu, X., Wang, B., Lu, Z., and Li, G. 2023b. Genome-wide characterization and expression analysis of the MLO gene family sheds light on powdery mildew resistance in Lagenaria siceraria. Heliyon 9:e14624. doi:10.1016/j.heliyon.2023.e14624
  • Wang, L. P., Wu, X., Wang, B., Xu, P., and Li, G. J. 2022. SCAR marker linked to resistance gene of powdery mildew in bottle gourd [Lagenaria siceraria (Molina) Standl] breeding line J083. J. Zhejiang Univ. 37: 119–124.
  • Wang, S., Yan, W., Yang, X., Zhang, J., and Shi, Q. 2021a. Comparative methylome reveals regulatory roles of DNA methylation in melon resistance to Podosphaera xanthii. Plant Sci. 309: 110954. doi:10.1016/j.plantsci.2021.110954
  • Wani, S. H., Anand, S., Singh, B., Bohra, A., and Joshi, R. 2021. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep. 40: 1071–1085. doi:10.1007/s00299-021-02691-8
  • Wechter, W. P., Kousik, C., McMillan, M., and Levi, A. 2012. Identification of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides plant introductions. HortScience 47: 334–338. doi:10.21273/HORTSCI.47.3.334
  • Wehner, T. C. 2005-2006. Gene List 2005 for Cucumber. Cucurbit Genet. Coop. Rep. 28–29: 105–141.
  • Weng, Y. 2017. The cucumber genome. In Genetics and Genomics of Cucurbitaceae; Grumet, R., Katzir, N., and Garcia-Mas, J. Eds. Springer International Publishing AG: Cham, Switzerland, pp 183–198.
  • Weng, Y., and Wehner, T. C. 2016. Cucumber Gene Catalog 2017. Cucurbit Genet. Coop. Rep. 39 & 40: 17–27.
  • Whitaker, T. W. 1956. The origin of the cultivated Cucurbita. Am. Nat. 90: 171–176. doi:10.1086/281923
  • Whitaker, T. W., and Bemis, W. P. 1975. Origin and evolution of the cultivated Cucurbita. Bull. Torrey Bot. Club 102: 362–368. doi:10.2307/2484762
  • Wilde de, W. J. J. O., and Duyfjes, B. E. E. 2010. Cucumis sativus L. forma hardwickii (Royle) W.J. de Wilde & Duyfjes and feral forma sativus. Thai Forest Bull. (Bot.) 38: 98–107.
  • Wilson, J., John, C., Wohler, H., and Hoover, M. 1956. Two foreign cucumbers resistant to bacterial wilt and powdery mildew. Plant Dis. Rep. 40: 437–438.
  • Win, K. T., Zhang, C., and Lee, S. 2018. Genome-wide identification and description of MLO family genes in pumpkin (Cucurbita maxima Duch.). Hortic. Environ. Biotechnol. 59: 397–410. doi:10.1007/s13580-018-0036-9
  • Wu, T. Y., and Kirschner, R. 2017. A brief global review on the species of cucurbit powdery mildew fungi and new records in Taiwan. Mycol. Iran 4: 85–91.
  • Wu, X., Wang, Y., Wu, X., Xu, P., Wang, B., Lu, F. Z., and Li, G. J. 2020. Genome-wide association analysis of powdery mildew resistance in bottle gourd (Lagenaria siceraria). Mol. Plant Breed. 18: 759–764.
  • Wyand, R. A., and Brown, J. K. M. 2003. Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host–pathogen co-evolution. Mol. Plant Pathol. 4: 187–198. doi:10.1046/j.1364-3703.2003.00167.x
  • Xian, F., Zhang, Y., Ma, J., Zhang, X., and Yang, J. 2011. Genetic analysis of resistance to eace 2F. of Podosphaera xanthii in wild melon material 'Yuntian-930'. Acta Hortic. 918: 595–602. doi:10.17660/ActaHortic.2011.918.74
  • Xiang, Y., Miller, A. N., McGrath, M., and Babadoost, M. 2020. Genotyping-by-sequencing for analysis of the genetic variation of Podosphaera xanthii, incitant of cucurbit powdery mildew. Plant Dis. 104: 951–957. doi:10.1094/PDIS-03-19-0513-RE
  • Xin, M., Wang, Y., Yao, Y., Song, N., Hu, Z., Qin, D., Xie, C., Peng, H., Ni, Z., and Sun, Q. 2011. Identification and characterization of wheat long nonprotein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS Sequencing. BMC Plant Biol. 11: 61. doi:10.1186/1471-2229-11-61
  • Xu, L., He, Y., Tang, L., Xu, Y., and Zhao, G. 2022. Genetics, genomics, and breeding in melon. Agronomy 12: 2891. doi:10.3390/agronomy12112891
  • Xu, X., Liu, X., Tan, M., Qi, X., Xu, Q., and Chen, X. 2020. First report of powdery mildew caused by Podosphaera xanthii on Cucumis dipsaceus in China. Plant Dis. 104: 985–985. doi:10.1094/PDIS-08-19-1577-PDN
  • Xu, X., Liu, X., Yan, Y., Wang, W., Gebretsadik, K., Qi, X., Xu, Q., and Chen, X. 2019. Comparative proteomic analysis of cucumber powdery mildew resistance between a single-segment substitution line and its recurrent parent. Hortic. Res. 6: 115. doi:10.1038/s41438-019-0198-3
  • Xu, Q., Shi, Y., Yu, T., Xu, X., Yan, Y., Qi, X., and Chen, X. 2016a. Whole-genome resequencing of a cucumber chromosome segment substitution line and its recurrent parent to identify candidate genes governing powdery mildew resistance. PLoS ONE 11:e 0164469. doi:10.1371/journal.pone.0164469
  • Xu, K., and Wang, P. 2022. Genome-wide identification and expression analysis of the VQ gene family in Cucurbita pepo L. PeerJ 10:e12827. doi:10.7717/peerj.12827
  • Xu, Q., Xu, X., Shi, Y., Qi, X., and Chen, X. 2017. Elucidation of the molecular responses of a cucumber segment substitution linecarrying Pm5.1 and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling. BMC Genomics 18: 21. doi:10.1186/s12864-016-3438-z
  • Xu, X., Yu, T., Xu, R., Shi, Y., Lin, X., Xu, Q., Qi, X., Weng, Y., and Chen, X. 2016b. Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes. Theor. Appl. Genet. 129: 507–516. doi:10.1007/s00122-015-2644-4
  • Yadav, V., Wang, Z. Y., Lu, G., Sikdar, A., Yang, X. Z., and Zhang, X. 2021a. Evaluation of watermelon germplasm and advance breeding lines against powdery mildew race ´2F'. Pak. J. Agri. Sci. 58: 321–330.
  • Yadav, V., Wang, Z. Y., Yang, X. Z., Wei, C. H., Changqing, X., and Zhang, X. 2021b. Comparative analysis, characterization and evolutionary study of dirigent gene family in Cucurbitaceae and expression of novel dirigent peptide against powdery mildew stress. Genes 12: 326. doi:10.3390/genes12030326
  • Yadav, V., Wang, Z., Guo, Y., and Zhang, X. 2022. Comparative transcriptome profiling reveals the role of phytohormones and phenylpropanoid pathway in early-stage resistance against powdery mildew in watermelon (Citrullus lanatus L.). Front. Plant Sci. 13: 1016822. doi:10.3389/fpls.2022.1016822
  • Yang, J., Deng, G., Lian, J., Garraway, J., Niu, Y., Hu, Z., Yu, J., and Zhang, M. 2020. The chromosome-scale genome of melon dissects genetic architecture of important agronomic Traits. iScience 23: 101422. doi:10.1016/j.isci.2020.101422
  • Yang, L., Koo, D. H., Li, Y., Zhang, X., Luan, F., Havey, M. J., Jiang, J., and Weng, Y. 2012. Chromosome rearrangements during domestication of cucumber as revealed by high density genetic mapping and draft genome assembly. Plant J. 71: 895–906. doi:10.1111/j.1365-313X.2012.05017.x
  • Yang, S., Zhu, C., Chen, J., Zhao, J., Hu, Z., Liu, S., and Zhou, Y. 2022. Identification and expression profile analysis of the OSCA gene family related to abiotic and biotic stress response in cucumber. Biology 11: 1134. doi:10.3390/biology11081134
  • Yashiro, K., Iwata, H., Akashi, Y., Tomita, K. O., Kuzuya, M., Tsumura, Y., and Kato, K. 2005. Genetic relationship among East and South Asian melon (Cucumis melo L.) revealed by AFLP analysis. Breed. Sci. 55: 197–206. doi:10.1270/jsbbs.55.197
  • Yeh, Y. W., Wu, T. Y., Wen, H. L., Jair, H. W., Lee, M. Z., and Kirschner, R. 2021. Host plants of the powdery mildew fungus Podosphaera xanthii in Taiwan. Trop. Plant Pathol. 46: 44–61. doi:10.1007/s40858-020-00393-2
  • Yetişir, H., Şakar, M., and Serçe, S. 2008. Collection and morphological characterization of Lagenaria siceraria germplasm from the Mediterranean region of Turkey. Genet. Resour. Crop Evol. 55: 1257–1266. doi:10.1007/s10722-008-9325-y
  • Yong, X., and Guo, S. 2017. The watermelon genome. In Genetics and Genomics of Cucurbitaceae; Grumet, R., Katzir, N., and Garcia-Mas, J. Eds. Springer International Publishing AG.: Cham, Switzerland, pp 199–210.
  • Yuste-Lisbona, F. J., Capel, C., Gómez-Guillamón, M. L., Capel, J., López-Sesé, A. I., and Lozano, R. 2011a. Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.). Theor. Appl. Genet. 122: 747–758. doi:10.1007/s00122-010-1483-6
  • Yuste-Lisbona, F.J., Capel, C., Sarria, E., Gómez-Guillamón, M.L., Capel, J., Lozano, R., and López-Sesé, A.I. 2010b. Construction of a genetic linkage map and identification of a major QTL conferring resistance to powdery mildew in the melon genotype TGR-1551. Acta Hortic. 871: 179–186. doi:10.17660/ActaHortic.2010.871.22
  • Yuste-Lisbona, F. J., Capel, C., Sarria, E., Torreblanca, R., Gómez-Guillamón, M. L., Capel, J., Lozano, R., and López-Sesé, A. I. 2011b. Genetic linkage map of melon (Cucumis melo L.) and localization of a major QTL for powdery mildew resistance. Mol. Breeding 27: 181–192. doi:10.1007/s11032-010-9421-5
  • Yuste-Lisbona, F. J., López-Sesé, A. I., and Gómez-Guillamón, M. L. 2010a. Inheritance of resistance to races 1, 2 and 5 of powdery mildew in the melon TGR-1551. Plant Breed. 129: 72–75. doi:10.1111/j.1439-0523.2009.01655.x
  • Zhang, Q. 2011. New seed of Cucurbita pepo useful for producing plants with improved desired traits e.g. disease resistance, herbicide resistance and insect or pest resistance. Patent Number(s): US2011004954-A1; US8558069-B2. Patent Assignee: HOLLAR SEEDS (HOLL-Non-standard). Derwent Primary Accession Number: 2011-A34664
  • Zhang, Q. 2013a. Inbred Cucurbita pepo pumpkin HSPMR7B1 having a mutant allele for powdery mildew resistance. Patent Number: US 08558069. Patent Assignee: Hollar Seeds. Official Gazette of the United States Patent and Trademark Office Patents Published: OCT 15 2013.
  • Zhang, Q. 2013b. New Cucurbita pepo plant containing mutant allele Pm2, useful for developing further pumpkin hybrids with desired traits, e.g. resistance to powdery mildew, herbicide resistance, and insect resistance. Patent Number(s): US2013283463-A1, Patent Assignee: HOLLAR SEEDS (HOLL-Non-standard). Derwent Primary Accession Number: 2013-S68132
  • Zhang, C. Y., Anarjan, M. B., Win, K. T., Begum, S., and Lee, S. H. 2021a. QTL-seq analysis of powdery mildew resistance in a Korean cucumber inbred line. Theor. Appl. Genet. 134: 435–451. doi:10.1007/s00122-020-03705-x
  • Zhang, T., Cui, H., Luan, F., Liu, H., Ding, Z., Amanullah, S., Zhang, M., Ma, T., and Gao, P. 2023a. A recessive gene Cmpmr2F confers powdery mildew resistance in melon (Cucumis melo L.). Theor. Appl. Genet. 136: 4. doi:10.1007/s00122-023-04269-2
  • Zhang, H., Guo, S., Gong, G., Ren, Y., Davis, A. R., and Xu, Y. 2011b. Sources of resistance to race 2WF powdery mildew in US watermelon plant introductions. HortScience 46: 1349–1352. doi:10.21273/HORTSCI.46.10.1349
  • Zhang, H., Hu, W., Hao, J., Lv, S., Wang, C., Tong, W., Wang, Y., Wang, Y., Liu, X., and Ji, W. 2016. Genomewide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genomics 17: 238. doi:10.1186/s12864-016-2570-0
  • Zhang, H., Li, X., Yu, H., Zhang, Y., Li, M., Wang, H., Wang, D., Wang, H., Fu, Q., Liu, M., Ji, C., Ma, L., Tang, J., Li, S., Miao, J., Zheng, H., and Yi, H. 2019. A high-quality melon genome assembly provides insights into genetic basis of fruit trait improvement. iScience 22: 16–27. doi:10.1016/j.isci.2019.10.049
  • Zhang, S., Liu, M., Miao, H., Zhang, S., Yang, Y., Xie, B., and Gu, X. 2011a. QTL mapping of resistance genes to powdery mildew in cucumber (Cucumis sativus L.). Sci. Agric. Sin. 44: 3584–3593.
  • Zhang, S., Liu, J., Xu, B., and Zhou, J. 2021c. Differential responses of Cucurbita pepo to Podosphaera xanthii reveal the mechanism of powdery mildew disease resistance in pumpkin. Front. Plant Sci. 12: 633221. doi:10.3389/fpls.2021.633221
  • Zhang, Q., Medina, A., and Lyerly, C. 2016. 'Eight BallPlus’, ‘Six Ball’, ‘Cue BallPlus’, and ‘One BallPlus’: new ball summer squash cultivars. HortScience 51: 459–461. doi:10.21273/HORTSCI.51.4.459
  • Zhang, C., Ren, Y., Guo, S., Zhang, H., Gong, G., Du, Y., and Xu, Y. 2013. Application of comparative genomics in developing markers tightly linked to the Pm-2F gene for powdery mildew resistance in melon (Cucumis melo L.). Euphytica 190: 157–168. doi:10.1007/s10681-012-0828-4
  • Zhang, L. B., Simmons, M. P., Kocyan, A., and Renner, S. S. 2006. Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: implications for morphological and sexual system evolution. Mol. Phylogenet. Evol. 39: 305–322. doi:10.1016/j.ympev.2005.10.002
  • Zhang, H., Wang, Z., Mao, A., Zhang, F., Wang, Y., and Xu, Y. 2008. SSR markers linked to the resistant gene of cucumber powdery mildew. Acta Agri. Boreali. Sin. 23: 77–80.
  • Zhang, K., Wang, X., Zhu, W., Qin, X., Xu, J., Cheng, C., Lou, Q., Li, J., and Chen, J. 2018b. Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. Theor. Appl. Genet. 131: 2229–2243. doi:10.1007/s00122-018-3150-2
  • Zhang, Z., Wang, K., Chen, C., Tian, S., Wu, J., Li, J., Kong, L., Yang, X., Zhang, C., Li, Y., Zhu, H., and Xiao, D. 2023b. Transcriptome sequence analysis of defense response of resistant and susceptible bottle gourd to powdery mildew. Agronomy 13: 1406. doi:10.3390/agronomy13051406
  • Zhang, C., Zhu, Q., Liu, S., Gao, P., Zhu, Z., Wang, X., and Luan, F. 2018a. The complete chloroplast genome sequence of the Cucurbita pepo L. (Cucurbitaceae). Mitochondrial DNA B Resour. 3: 717–718. doi:10.1080/23802359.2018.1483766
  • Zhang, P., Zhu, Y., and Zhou, S. 2020. Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection. PeerJ 8:e8250. doi:10.7717/peerj.8250
  • Zhang, P., Zhu, Y., and Zhou, S. 2021b. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection. BMC Plant Biol. 21: 24. doi:10.1186/s12870-020-02797-3
  • Zhao, G., Lian, Q., Zhang, Z., Fu, Q., He, Y., Ma, S., Ruggieri, V., Monforte, A. J., Wang, P., Julca, I., Wang, H., Liu, J., Xu, Y., Wang, R., Ji, J., Xu, Z., Kong, W., Zhong, Y., Shang, J., Pereira, L., Argyris, J., Zhang, J., Mayobre, C., Pujol, M., Oren, E., Ou, D., Wang, J., Sun, D., Zhao, S., Zhu, Y., Li, N., Katzir, N., Gur, A., Dogimont, C., Schaefer, H., Fan, W., Bendahmane, A., Fei, Z., Pitrat, M., Gabaldón, T., Lin, T., Garcia-Mas, J., Xu, Y., and Huang, S. 2019. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat. Genet. 51: 1607–1615. doi:10.1038/s41588-019-0522-8
  • Zheng, Y.-H., Alverson, A. J., Wang, Q. F., and Palmer, J. D. 2013. Chloroplast phylogeny of Cucurbita: Evolution of the domesticated and wild species. J. Syst. Evol. 51: 326–334. doi:10.1111/jse.12006
  • Zheng, R. Y., and Chen G. Q., 1981. The genus Erysiphe in China. Sydowia 34: 214–327.
  • Zheng, L., Zhang, M., Zhuo, Z., Wang, Y., Gao, X., Li, Y., Liu, W., and Zhang, W. 2021. Transcriptome profiling analysis reveals distinct resistance response of cucumber leaves infected with powdery mildew. Plant Biol. (Stuttg) 23: 327–340. doi:10.1111/plb.13213
  • Zhou, X., Cui, J., Cui, H., Jiang, N., Hou, X., Liu, S., Gao, P., Luan, Y., Meng, J., and Luan, F. 2020. Identification of lncRNAs and their regulatory relationships with target genes and corresponding miRNAs in melon response to powdery mildew fungi. Gene 735: 144403. doi:10.1016/j.gene.2020.144403
  • Zhou, J. G., Hu, H. L., Li, X. Z., Zhou, R. J., and Zhang, H. R. 2010. Identification of a resource of powdery mildew resistance in Cucurbita moschata. Acta Hortic. 871: 141–146. doi:10.17660/ActaHortic.2010.871.17
  • Zhu, Q., Gao, P., Wan, Y., Cui, H., Fan, C., Liu, S., and Luan, F. 2018. Comparative transcriptome profiling of genes and pathways related to resistance against powdery mildew in two contrasting melon genotypes. Sci. Hortic. 227: 169–180. doi:10.1016/j.scienta.2017.09.033
  • Zhu, L., Li, Y., Li, J., Wang, Y., Zhang, Z., Wang, Y., Wang, Z., Hu, J., Yang, L., and Sun, S. 2021. Genome-wide identification and analysis of the MLO gene families in three Cucurbita species. Czech J. Genet. Plant Breed. 57: 119–123. doi:10.17221/99/2020-CJGPB
  • Zhuang, F.-Y., Chen, J.-F., Staub, J. E., and Qian, C.-T. 2006. Taxonomic relationships of a rare Cucumis species (C. hystrix Chakr.) and its interspecific hybrid with cucumber. HortScience 41: 571–574. doi:10.21273/HORTSCI.41.3.571
  • Zijlstra, S., and Groot, S. P. C. 1992. Search for novel genes for resistance to powdery mildew (Sphaerotheca fuliginea) in cucumber (Cucumis sativus). Euphytica 64: 31–37. doi:10.1007/BF00023535
  • Zijlstra, S., Jansen, R. C., and Groot, S. P. C. 1995. The relationship between powdery mildew (Sphaerotheca fuliginea) resistance and leaf chlorosis sensitivity in cucumber (Cucumis sativus) studied in sigle seed descent lines. Euphytica 81: 193–198. doi:10.1007/BF00025433
  • Zou, S., Xu, Y., Li, Q., Wei, Y., Zhang, Y., and Tang, D. 2023. Wheat powdery mildew resistance: from gene identification to immunity deployment. Front. Plant Sci. 14: 1269498. doi:10.3389/fpls.2023.1269498