222
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Plant SABATH Methyltransferases: Diverse Functions, Unusual Reaction Mechanisms and Complex Evolution

, , &

References

  • Abbas, M., Hernández-García, J., Pollmann, S., Samodelov, S. L., Kolb, M., Friml, J., Hammes, U. Z., Zurbriggen, M. D., Blázquez, M. A., and Alabadí, D. 2018. Auxin methylation is required for differential growth in Arabidopsis. Proc. Natl. Acad. Sci. USA. 115: 6864–6869. doi:10.1073/pnas.1806565115
  • Abe, S., Sado, A., Tanaka, K., Kisugi, T., Asami, K., Ota, S., Kim, H. I., Yoneyama, K., Xie, X., Ohnishi, T., Seto, Y., Yamaguchi, S., Akiyama, K., Yoneyama, K., and Nomura, T. 2014. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. USA. 111: 18084–18089. doi:10.1073/pnas.1410801111
  • Ament, K., Krasikov, V., Allmann, S., Rep, M., Takken, F. L., and Schuurink, R. C. 2010. Methyl salicylate production in tomato affects biotic interactions. Plant J. 62: 124–134. doi:10.1111/j.1365-313X.2010.04132.x
  • Ashihara, H., and Suzuki, T. 2004. Distribution and biosynthesis of caffeine in plants. Front. Biosci. 9: 1864–1876. doi:10.2741/1367
  • Barkman, T. J., Martins, T. R., Sutton, E., and Stout, J. T. 2007. Positive selection for single amino acid change promotes substrate discrimination of a plant volatile-producing enzyme. Mol. Biol. Evol. 24: 1320–1329. doi:10.1093/molbev/msm053
  • Bouvier, F., Dogbo, O., and Camara, B. 2003. Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300: 2089–2091. doi:10.1126/science.1085162
  • Bouwmeester, H., Schuurink, R. C., Bleeker, P. M., and Schiestl, F. 2019. The role of volatiles in plant communication. Plant J. 100: 892–907. doi:10.1111/tpj.14496
  • Bowman, J. L., Kohchi, T., Yamato, K. T., Jenkins, J., Shu, S., Ishizaki, K., Yamaoka, S., Nishihama, R., Nakamura, Y., Berger, F., Adam, C., Aki, S. S., Althoff, F., Araki, T., Arteaga-Vazquez, M. A., Balasubrmanian, S., Barry, K., Bauer, D., Boehm, C. R., Briginshaw, L., Caballero-Perez, J., Catarino, B., Chen, F., Chiyoda, S., Chovatia, M., Davies, K. M., Delmans, M., Demura, T., Dierschke, T., Dolan, L., Dorantes-Acosta, A. E., Eklund, D. M., Florent, S. N., Flores-Sandoval, E., Fujiyama, A., Fukuzawa, H., Galik, B., Grimanelli, D., Grimwood, J., Grossniklaus, U., Hamada, T., Haseloff, J., Hetherington, A. J., Higo, A., Hirakawa, Y., Hundley, H. N., Ikeda, Y., Inoue, K., Inoue, S.-I., Ishida, S., Jia, Q., Kakita, M., Kanazawa, T., Kawai, Y., Kawashima, T., Kennedy, M., Kinose, K., Kinoshita, T., Kohara, Y., Koide, E., Komatsu, K., Kopischke, S., Kubo, M., Kyozuka, J., Lagercrantz, U., Lin, S.-S., Lindquist, E., Lipzen, A. M., Lu, C.-W., De Luna, E., Martienssen, R. A., Minamino, N., Mizutani, M., Mizutani, M., Mochizuki, N., Monte, I., Mosher, R., Nagasaki, H., Nakagami, H., Naramoto, S., Nishitani, K., Ohtani, M., Okamoto, T., Okumura, M., Phillips, J., Pollak, B., Reinders, A., Rövekamp, M., Sano, R., Sawa, S., Schmid, M. W., Shirakawa, M., Solano, R., Spunde, A., Suetsugu, N., Sugano, S., Sugiyama, A., Sun, R., Suzuki, Y., Takenaka, M., Takezawa, D., Tomogane, H., Tsuzuki, M., Ueda, T., Umeda, M., Ward, J. M., Watanabe, Y., Yazaki, K., Yokoyama, R., Yoshitake, Y., Yotsui, I., Zachgo, S., and Schmutz, J. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171: 287–304.e15. doi:10.1016/j.cell.2017.09.030
  • Bowman, J. L., Sandoval, E. F., and Kato, H. 2021. On the evolutionary origins of land plant auxin biology. Cold Spring Harb. Perspect. Biol. 13: a040048. doi:10.1101/cshperspect.a040048
  • Chaiprasongsuk, M., Zhang, C., Qian, P., Chen, X., Li, G., Trigiano, R. N., Guo, H., and Chen, F. 2018. Biochemical characterization in Norway spruce (Picea abies) of SABATH methyltransferases that methylate phytohormones. Phytochemistry 149: 146–154. doi:10.1016/j.phytochem.2018.02.010
  • Chen, F., D'auria, J. C., Tholl, D., Ross, J. R., Gershenzon, J., Noel, J. P., and Pichersky, E. 2003. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J. 36: 577–588. doi:10.1046/j.1365-313x.2003.01902.x
  • Chesterfield, R. J., Vickers, C. E., and Beveridge, C. A. 2020. Translation of strigolactones from plant hormone to agriculture: achievements, future perspectives, and challenges. Trends Plant Sci. 25: 1087–1106. doi:10.1016/j.tplants.2020.06.005
  • Clark, G. S., and Cameron, G. 1995. An aroma chemical profile. Perfum. Flavorist 20: 41–44.
  • D’Auria, J. C., Chen, F., and Pichersky, E. 2003. The SABATH family of MTs in Arabidopsis thaliana and other plant species. In Recent Advances in Phytochemistry, Vol. 37; John, T. R., Ed. Elsevier: Oxford, pp 253–284.
  • Deng, W. W., Wang, R., Yang, T., Jiang, L., and Zhang, Z. Z. 2017. Functional characterization of salicylic acid carboxyl methyltransferase from Camellia sinensis, providing the aroma compound of methyl salicylate during the withering process of white tea. J. Agric. Food Chem. 65: 11036–11045. doi:10.1021/acs.jafc.7b04575
  • Denoeud, F., Carretero-Paulet, L., Dereeper, A., Droc, G., Guyot, R., Pietrella, M., Zheng, C., Alberti, A., Anthony, F., Aprea, G., Aury, J.-M., Bento, P., Bernard, M., Bocs, S., Campa, C., Cenci, A., Combes, M.-C., Crouzillat, D., Da Silva, C., Daddiego, L., De Bellis, F., Dussert, S., Garsmeur, O., Gayraud, T., Guignon, V., Jahn, K., Jamilloux, V., Joët, T., Labadie, K., Lan, T., Leclercq, J., Lepelley, M., Leroy, T., Li, L.-T., Librado, P., Lopez, L., Muñoz, A., Noel, B., Pallavicini, A., Perrotta, G., Poncet, V., Pot, D., Priyono, Rigoreau, M., Rouard, M., Rozas, J., Tranchant-Dubreuil, C., VanBuren, R., Zhang, Q., Andrade, A. C., Argout, X., Bertrand, B., de Kochko, A., Graziosi, G., Henry, R. J., Jayarama, Ming, R., Nagai, C., Rounsley, S., Sankoff, D., Giuliano, G., Albert, V. A., Wincker, P., Lashermes, P. 2014. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345: 1181–1184. doi:10.1126/science.1255274
  • Dong, H., Zhang, W., Li, Y., Feng, Y., Wang, X., Liu, Z., Li, D., Wen, X., Ma, S., and Zhang, X. 2022. Overexpression of salicylic acid methyltransferase reduces salicylic acid-mediated pathogen resistance in poplar. Front. Plant Sci. 13: 973305. doi:10.3389/fpls.2022.973305
  • Dubs, N. M., Davis, B. R., De Brito, V., Colebrook, K. C., Tiefel, I. J., Nakayama, M. B., Huang, R., Ledvina, A. E., Hack, S. J., Inkelaar, B., Martins, T. R., Aartila, S. M., Albritton, K. S., Almuhanna, S., Arnoldi, R. J., Austin, C. K., Battle, A. C., Begeman, G. R., Bickings, C. M., Bradfield, J. T., Branch, E. C., Conti, E. P., Cooley, B., Dotson, N. M., Evans, C. J., Fries, A. S., Gilbert, I. G., Hillier, W. D., Huang, P., Hyde, K. W., Jevtovic, F., Johnson, M. C., Keeler, J. L., Lam, A., Leach, K. M., Livsey, J. D., Lo, J. T., Loney, K. R., Martin, N. W., Mazahem, A. S., Mokris, A. N., Nichols, D. M., Ojha, R., Okorafor, N. N., Paris, J. R., Reboucas, T. F., Sant’anna, P. B., Seitz, M. R., Seymour, N. R., Slaski, L. K., Stemaly, S. O., Ulrich, B. R., Van Meter, E. N., Young, M. L., and Barkman, T. J. 2022. A collaborative classroom investigation of the evolution of SABATH methyltransferase substrate preference shifts over 120 million years of flowering plant history. Mol. Biol. Evol. 39: msac007. doi:10.1093/molbev/msac007
  • Dudareva, N., Murfitt, L. M., Mann, C. J., Gorenstein, N., Kolosova, N., Kish, C. M., Bonham, C., and Wood, K. 2000. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell. 12: 949–961. doi:10.1105/tpc.12.6.949
  • Effmert, U., Saschenbrecker, S., Ross, J., Negre, F., Fraser, C. M., Noel, J. P., Dudareva, N., and Piechulla, B. 2005. Floral benzenoid carboxyl methyltransferases: from in vitro to in planta function. Phytochemistry 66: 1211–1230. doi:10.1016/j.phytochem.2005.03.031
  • Fukami, H., Asakura, T., Hirano, H., Abe, K., Shimomura, K., and Yamakawa, T. 2002. Salicylic acid carboxyl methyltransferase induced in hairy root cultures of Atropa belladonna after treatment with exogeneously added salicylic acid. Plant Cell Physiol. 43: 1054–1058. doi:10.1093/pcp/pcf119
  • Goto, T., Soyano, T., Liu, M., Mori, T., and Kawaguchi, M. 2022. Auxin methylation by IAMT1, duplicated in the legume lineage, promotes root nodule development in Lotus japonicus. Proc. Natl. Acad. Sci. USA. 119: e2116549119. doi:10.1073/pnas.2116549119
  • Haider, I., Yunmeng, Z., White, F., Li, C., Incitti, R., Alam, I., Gojobori, T., Ruyter-Spira, C., Al-Babili, S., and Bouwmeester, H. J. 2023. Transcriptome analysis of the phosphate starvation response sheds light on strigolactone biosynthesis in rice. Plant J. 114: 355–370. doi:10.1111/tpj.16140
  • Han, X.-M., Yang, Q., Liu, Y.-J., Yang, Z.-L., Wang, X.-R., Zeng, Q.-Y., and Yang, H.-L. 2018. Evolution and function of the Populus SABATH family reveal that a single amino acid change results in a substrate switch. Plant Cell Physiol. 59: 392–403. doi:10.1093/pcp/pcx198
  • Hippauf, F., Michalsky, E., Huang, R., Preissner, R., Barkman, T. J., and Piechulla, B. 2010. Enzymatic, expression and structural divergences among carboxyl O-methyltransferases after gene duplication and speciation in Nicotiana. Plant Mol. Biol. 72: 311–330. doi:10.1007/s11103-009-9572-0
  • Hollingsworth, R. G., Armstrong, J. W., and Campbell, E. 2002. Caffeine as a repellent for slugs and snails. Nature 417: 915–916. doi:10.1038/417915a
  • Howe, G. A., and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59: 41–66. doi:10.1146/annurev.arplant.59.032607.092825
  • Huang, M., Ma, C., Yu, R., Mu, L., Hou, J., Yu, Y., and Fan, Y. 2015. Concurrent changes in methyl jasmonate emission and the expression of its biosynthesis‐related genes in Cymbidium ensifolium flowers. Physiol. Plant. 153: 503–512. doi:10.1111/ppl.12275
  • Huang, R., Hippauf, F., Rohrbeck, D., Haustein, M., Wenke, K., Feike, J., Sorrelle, N., Piechulla, B., and Barkman, T. J. 2012. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates. Proc. Natl. Acad. Sci. USA. 109: 2966–2971. doi:10.1073/pnas.1019605109
  • Huang, R., O'Donnell, A. J., Barboline, J. J., and Barkman, T. J. 2016. Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. Proc. Natl. Acad. Sci. USA. 113: 10613–10618. doi:10.1073/pnas.1602575113
  • Jiang, Y., Liu, G., Zhang, W., Zhang, C., Chen, X., Chen, Y., Yu, C., Yu, D., Fu, J., and Chen, F. 2021. Biosynthesis and emission of methyl hexanoate, the major constituent of floral scent of a night-blooming water lily Victoria cruziana. Phytochemistry 191: 112899. doi:10.1016/j.phytochem.2021.112899
  • Jongedijk, E., Müller, S., Van Dijk, A. D., Schijlen, E., Champagne, A., Boutry, M., Levisson, M., Van Der Krol, S., Bouwmeester, H., and Beekwilder, J. 2020. Novel routes towards bioplastics from plants: elucidation of the methylperillate biosynthesis pathway from Salvia dorisiana trichomes. J. Exp. Bot. 71: 3052–3065. doi:10.1093/jxb/eraa086
  • Kang, M., Fu, R., Zhang, P., Lou, S., Yang, X., Chen, Y., Ma, T., Zhang, Y., Xi, Z., and Liu, J. 2021. A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nat. Commun. 12: 3531. doi:10.1038/s41467-021-23872-9
  • Kapteyn, J., Qualley, A. V., Xie, Z., Fridman, E., Dudareva, N., and Gang, D. R. 2007. Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. Plant Cell. 19: 3212–3229. doi:10.1105/tpc.107.054155
  • Kato, M., and Mizuno, K. 2004. Caffeine synthase and related methyltransferases in plants. Front. Biosci. 9: 1833–1842. doi:10.2741/1364
  • Kato, M., Mizuno, K., Crozier, A., Fujimura, T., and Ashihara, H. 2000. Caffeine synthase gene from tea leaves. Nature 406: 956–957. doi:10.1038/35023072
  • Kim, Y.-S., Uefuji, H., Ogita, S., and Sano, H. 2006. Transgenic tobacco plants producing caffeine: a potential new strategy for insect pest control. Transgenic Res. 15: 667–672. doi:10.1007/s11248-006-9006-6
  • Koeduka, T., Kajiyama, M., Suzuki, H., Furuta, T., Tsuge, T., and Matsui, K. 2016. Benzenoid biosynthesis in the flowers of Eriobotrya japonica: molecular cloning and functional characterization of p-methoxybenzoic acid carboxyl methyltransferase. Planta 244: 725–736. doi:10.1007/s00425-016-2542-2
  • Koeduka, T., Suzuki, H., Taguchi, G., and Matsui, K. 2020. Biochemical characterization of the jasmonic acid methyltransferase gene from wasabi (Eutrema japonicum). Plant Biotechnol. (Tokyo) 37: 389–392. doi:10.5511/plantbiotechnology.20.0622a
  • Köllner, T. G., Lenk, C., Zhao, N., Seidl-Adams, I., Gershenzon, J., Chen, F., and Degenhardt, J. 2010. Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using S-adenosyl-L-methionine. Plant Physiol. 153: 1795–1807. doi:10.1104/pp.110.158360
  • Koo, Y. J., Kim, M. A., Kim, E. H., Song, J. T., Jung, C., Moon, J.-K., Kim, J.-H., Seo, H. S., Song, S. I., Kim, J.-K., Lee, J. S., Cheong, J.-J., and Choi, Y. D. 2007. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol. Biol. 64: 1–15. doi:10.1007/s11103-006-9123-x
  • Li, C., Dong, L., Durairaj, J., Guan, J.-C., Yoshimura, M., Quinodoz, P., Horber, R., Gaus, K., Li, J., Setotaw, Y. B., Qi, J., De Groote, H., Wang, Y., Thiombiano, B., Floková, K., Walmsley, A., Charnikhova, T. V., Chojnacka, A., Correia de Lemos, S., Ding, Y., Skibbe, D., Hermann, K., Screpanti, C., De Mesmaeker, A., Schmelz, E. A., Menkir, A., Medema, M., Van Dijk, A. D. J., Wu, J., Koch, K. E., and Bouwmeester, H. J. 2023. Maize resistance to witchweed through changes in strigolactone biosynthesis. Science 379: 94–99. doi:10.1126/science.abq4775
  • Lin, J., Mazarei, M., Zhao, N., Zhu, J. J., Zhuang, X., Liu, W., Pantalone, V. R., Arelli, P. R., Stewart, C. N., Jr., and Chen, F. 2013. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotechnol. J. 11: 1135–1145. doi:10.1111/pbi.12108
  • Martin, D. M., Gershenzon, J., and Bohlmann, J. R. 2003. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol. 132: 1586–1599. doi:10.1104/pp.103.021196
  • Martins, T. R., and Barkman, T. J. 2005. Reconstruction of Solanaceae phylogeny using the nuclear gene SAMT. Syst. Bot. 30: 435–447. doi:10.1600/0363644054223675
  • Mashiguchi, K., Seto, Y., Onozuka, Y., Suzuki, S., Takemoto, K., Wang, Y., Dong, L., Asami, K., Noda, R., Kisugi, T., Kitaoka, N., Akiyama, K., Bouwmeester, H., and Yamaguchi, S. 2022. A carlactonoic acid methyltransferase that contributes to the inhibition of shoot branching in Arabidopsis. Proc. Natl. Acad. Sci. USA. 119: e2111565119.
  • Mccarthy, A. A., and Mccarthy, J. G. 2007. The structure of two N-methyltransferases from the caffeine biosynthetic pathway. Plant Physiol. 144: 879–889. doi:10.1104/pp.106.094854
  • Meur, G., Shukla, P., Dutta-Gupta, A., and Kirti, P. 2015. Characterization of Brassica juncea–Alternaria brassicicola interaction and jasmonic acid carboxyl methyl transferase expression. Plant Gene 3: 1–10. doi:10.1016/j.plgene.2015.06.001
  • Mizuno, K., Kato, M., Irino, F., Yoneyama, N., Fujimura, T., and Ashihara, H. 2003. The first committed step reaction of caffeine biosynthesis: 7‐methylxanthosine synthase is closely homologous to caffeine synthases in coffee (Coffea arabica L.). FEBS Lett. 547: 56–60. doi:10.1016/S0014-5793(03)00670-7
  • Monte, I. 2023. Jasmonates and salicylic acid: evolution of defense hormones in land plants. Curr. Opin. Plant Biol. 76: 102470. doi:10.1016/j.pbi.2023.102470
  • Murata, J., Roepke, J., Gordon, H., and De Luca, V. 2008. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell. 20: 524–542. doi:10.1105/tpc.107.056630
  • Murfitt, L. M., Kolosova, N., Mann, C. J., and Dudareva, N. 2000. Purification and characterization of S-adenosyl-L-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus. Arch. Biochem. Biophys. 382: 145–151. doi:10.1006/abbi.2000.2008
  • Nascimento, C. A., Teixeira-Silva, N. S., Caserta, R., Marques, M. O. M., Takita, M. A., and De Souza, A. A. 2022. Overexpression of CsSAMT in Citrus sinensis induces defense response and increases resistance to Xanthomonas citri subsp. citri. Front. Plant Sci. 13: 820. doi:10.3389/fpls.2022.836582
  • Nathanson, J. A. 1984. Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226: 184–187. doi:10.1126/science.6207592
  • Negre, F., Kish, C. M., Boatright, J., Underwood, B., Shibuya, K., Wagner, C., Clark, D. G., and Dudareva, N. 2003. Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell. 15: 2992–3006. doi:10.1105/tpc.016766
  • Negre, F., Kolosova, N., Knoll, J., Kish, C. M., and Dudareva, N. 2002. Novel S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Arch. Biochem. Biophys. 406: 261–270. doi:10.1016/s0003-9861(02)00458-7
  • Nir, I., Moshelion, M., and Weiss, D. 2014. The Arabidopsis GIBBERELLIN METHYL TRANSFERASE 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant. Cell Environ. 37: 113–123. doi:10.1111/pce.12135
  • Noel, J. P., Dixon, R. A., Pichersky, E., Zubieta, C., and Ferrer, J.-L. 2003. Chapter two structural, functional, and evolutionary basis for methylation of plant small molecules. In Recent Advances in Phytochemistry; John, T. R. Ed. Elsevier: Oxford, pp 37–58.
  • Ogawa, M., Herai, Y., Koizumi, N., Kusano, T., and Sano, H. 2001. 7-Methylxanthine methyltransferase of coffee plants: gene isolation and enzymatic properties. J. Biol. Chem. 276: 8213–8218. doi:10.1074/jbc.M009480200
  • Peng, Y., Yang, J., Li, X., and Zhang, Y. 2021. Salicylic acid: biosynthesis and signaling. Annu. Rev. Plant Biol. 72: 761–791. doi:10.1146/annurev-arplant-081320-092855
  • Petronikolou, N., Hollatz, A. J., Schuler, M. A., and Nair, S. K. 2018. Loganic acid methyltransferase: insights into the specificity of methylation on an iridoid glycoside. Chembiochem 19: 784–788. doi:10.1002/cbic.201700679
  • Pillet, J., Chambers, A. H., Barbey, C., Bao, Z., Plotto, A., Bai, J., Schwieterman, M., Johnson, T., Harrison, B., Whitaker, V. M., Colquhoun, T. A., and Folta, K. M. 2017. Identification of a methyltransferase catalyzing the final step of methyl anthranilate synthesis in cultivated strawberry. BMC Plant Biol. 17: 147. doi:10.1186/s12870-017-1088-1
  • Pott, M. B., Hippauf, F., Saschenbrecker, S., Chen, F., Ross, J., Kiefer, I., Slusarenko, A., Noel, J. P., Pichersky, E., Effmert, U., and Piechulla, B. 2004. Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in Stephanotis floribunda and Nicotiana suaveolens. Plant Physiol. 135: 1946–1955. doi:10.1104/pp.104.041806
  • Pott, M. B., Pichersky, E., and Piechulla, B. 2002. Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of Stephanotis floribunda. Plant Physiol 159: 925–934. doi:10.1078/0176-1617-00699
  • Preuß, A., Augustin, C., Figueroa, C. R., Hoffmann, T., Valpuesta, V., Sevilla, J. F., and Schwab, W. 2014. Expression of a functional jasmonic acid carboxyl methyltransferase is negatively correlated with strawberry fruit development. J. Plant Physiol. 171: 1315–1324. doi:10.1016/j.jplph.2014.06.004
  • Qi, J., Li, J., Han, X., Li, R., Wu, J., Yu, H., Hu, L., Xiao, Y., Lu, J., and Lou, Y. 2016. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice. J. Integr. Plant Biol. 58: 564–576. doi:10.1111/jipb.12436
  • Qian, P., Guo, H.-B., Yue, Y., Wang, L., Yang, X., and Guo, H. 2016. Understanding the catalytic mechanism of xanthosine methyltransferase in caffeine biosynthesis from QM/MM molecular dynamics and free energy simulations. J. Chem. Inf. Model. 56: 1755–1761. doi:10.1021/acs.jcim.6b00153
  • Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., Pichersky, E., Chen, H., Liu, M., Chen, Z., and Qu, L. J. 2005. An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell. 17: 2693–2704. doi:10.1105/tpc.105.034959
  • Ross, J. R., Nam, K. H., D'auria, J. C., and Pichersky, E. 1999. S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Arch. Biochem. Biophys. 367: 9–16. doi:10.1006/abbi.1999.1255
  • Sano, H., Kim, Y.-S., and Choi, Y.-E. 2013. Like cures like: caffeine immunizes plants against biotic stresses. In Advances in Botanical Research, Vol. 68; Nathalie, G.-G. Ed. Elsevier: Amsterdam, The Netherlands, pp 273–300.
  • Seo, H. S., Song, J. T., Cheong, J.-J., Lee, Y.-H., Lee, Y.-W., Hwang, I., Lee, J. S., and Choi, Y. D. 2001. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA. 98: 4788–4793. doi:10.1073/pnas.081557298
  • Sinnott, M. 1998. Comprehensive Biological Catalysis: A Mechanistic Reference. Academic Press: San Diego, pp 1–30.
  • Sohn, H. B., Lee, H. Y., Seo, J. S., Jung, C., Jeon, J. H., Kim, J.-H., Lee, Y. W., Lee, J. S., Cheong, J.-J., and Choi, Y. D. 2011. Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato. Plant Biotechnol. Rep. 5: 27–34. doi:10.1007/s11816-010-0153-0
  • Song, M. S., Kim, D. G., and Lee, S. H. 2005. Isolation and characterization of a jasmonic acid carboxyl methyltransferase gene from hot pepper (Capsicum annuum L.). J. Plant Biol. 48: 292–297. doi:10.1007/BF03030525
  • Sudhagar, A., Kumar, G., and El-Matbouli, M. 2018. Transcriptome analysis based on RNA-Seq in understanding pathogenic mechanisms of diseases and the immune system of fish: a comprehensive review. Int. J. Mol. Sci. 19: 245. doi:10.3390/ijms19010245
  • Takusagawa, F., Kamitori, S., and Markham, G. D. 1996. Structure and function of S-adenosylmethionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 28 angstroms resolution. Biochem. 35: 2586–2596. doi:10.1021/bi952604z
  • Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., and Klee, H. J. 2010. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J. 62: 113–123. doi:10.1111/j.1365-313X.2010.04128.x
  • Uefuji, H., Ogita, S., Yamaguchi, Y., Koizumi, N., and Sano, H. 2003. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant Physiol. 132: 372–380. doi:10.1104/pp.102.019679
  • Varbanova, M., Yamaguchi, S., Yang, Y., McKelvey, K., Hanada, A., Borochov, R., Yu, F., Jikumaru, Y., Ross, J., Cortes, D., Ma, C. J., Noel, J. P., Mander, L., Shulaev, V., Kamiya, Y., Rodermel, S., Weiss, D., and Pichersky, E. 2007. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell. 19: 32–45. doi:10.1105/tpc.106.044602
  • Wakabayashi, T., Yasuhara, R., Miura, K., Takikawa, H., Mizutani, M., and Sugimoto, Y. 2021. Specific methylation of (11R)-carlactonoic acid by an Arabidopsis SABATH methyltransferase. Planta 254: 88. doi:10.1007/s00425-021-03738-6
  • Wang, H., Sun, M., Li, L., Xie, X., and Zhang, Q. 2015. Cloning and characterization of a benzoic acid/salicylic acid carboxyl methyltransferase gene involved in floral scent production from lily (Lilium ‘Yelloween’). Genet. Mol. Res. 14: 14510–14521. doi:10.4238/2015.November.18.14
  • Wasternack, C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100: 681–697. doi:10.1093/aob/mcm079
  • Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59: 225–251. doi:10.1146/annurev.arplant.59.032607.092804
  • Yamauchi, T., Oyama, N., Yamane, H., Murofushi, N., Schraudolf, H., Pour, M., Furber, M., and Mander, L. N. 1996. Identification of antheridiogens in Lygodium circinnatum and Lygodium flexuosum. Plant Physiol. 111: 741–745. doi:10.1104/pp.111.3.741
  • Yang, M., Wang, Q., Liu, Y., Hao, X., Wang, C., Liang, Y., Chen, J., Xiao, Y., and Kai, G. 2021. Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila. BMC Biol. 19: 122. doi:10.1186/s12915-021-01051-y
  • Yang, Y., Xu, R., Ma, C. J., Vlot, A. C., Klessig, D. F., and Pichersky, E. 2008. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol. 147: 1034–1045. doi:10.1104/pp.108.118224
  • Yang, Y., Yuan, J. S., Ross, J., Noel, J. P., Pichersky, E., and Chen, F. 2006. An Arabidopsis thaliana methyltransferase capable of methylating farnesoic acid. Arch. Biochem. Biophys. 448: 123–132. doi:10.1016/j.abb.2005.08.006
  • Yao, J., Xu, Q., Chen, F., and Guo, H. 2011. QM/MM free energy simulations of salicylic acid methyltransferase: effects of stabilization of TS-like structures on substrate specificity. J. Phys. Chem. B. 115: 389–396. doi:10.1021/jp1086812
  • Yoneyama, N., Morimoto, H., Ye, C.-X., Ashihara, H., Mizuno, K., and Kato, M. 2006. Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Mol. Genet. Genomics 275: 125–135. doi:10.1007/s00438-005-0070-z
  • Yue, Y., and Guo, H. 2014. Quantum mechanical/molecular mechanical study of catalytic mechanism and role of key residues in methylation reactions catalyzed by dimethylxanthine methyltransferase in caffeine biosynthesis. J. Chem. Inf. Model. 54: 593–600. doi:10.1021/ci400640v
  • Zhang, C., Chaiprasongsuk, M., Chanderbali, A. S., Chen, X., Fu, J., Soltis, D. E., and Chen, F. 2020a. Origin and evolution of a gibberellin-deactivating enzyme GAMT. Plant Direct. 4: e00287. doi:10.1002/pld3.287
  • Zhang, C., Chen, X., Crandall-Stotler, B., Qian, P., Köllner, T. G., Guo, H., and Chen, F. 2019. Biosynthesis of methyl (E)-cinnamate in the liverwort Conocephalum salebrosum and evolution of cinnamic acid methyltransferase. Phytochemistry 164: 50–59. doi:10.1016/j.phytochem.2019.04.013
  • Zhang, J., Jia, H., Zhu, B., Li, J., Yang, T., Zhang, Z.-Z., and Deng, W.-W. 2021. Molecular and biochemical characterization of jasmonic acid carboxyl methyltransferase involved in aroma compound production of methyl jasmonate during black tea processing. J. Agric. Food Chem. 69: 3154–3164. doi:10.1021/acs.jafc.0c06248
  • Zhang, L., Chen, F., Zhang, X., Li, Z., Zhao, Y., Lohaus, R., Chang, X., Dong, W., Ho, S. Y. W., Liu, X., Song, A., Chen, J., Guo, W., Wang, Z., Zhuang, Y., Wang, H., Chen, X., Hu, J., Liu, Y., Qin, Y., Wang, K., Dong, S., Liu, Y., Zhang, S., Yu, X., Wu, Q., Wang, L., Yan, X., Jiao, Y., Kong, H., Zhou, X., Yu, C., Chen, Y., Li, F., Wang, J., Chen, W., Chen, X., Jia, Q., Zhang, C., Jiang, Y., Zhang, W., Liu, G., Fu, J., Chen, F., Ma, H., Van De Peer, Y., and Tang, H. 2020b. The water lily genome and the early evolution of flowering plants. Nature 577: 79–84. doi:10.1038/s41586-019-1852-5
  • Zhang, Y.-H., Li, Y.-F., Wang, Y., Tan, L., Cao, Z.-Q., Xie, C., Xie, G., Gong, H.-B., Sun, W.-Y., Ouyang, S.-H., Duan, W.-J., Lu, X., Ding, K., Kurihara, H., Hu, D., Zhang, Z.-M., Abe, I., and He, R.-R. 2020c. Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea. Nat. Commun. 11: 1473. doi:10.1038/s41467-020-15324-7
  • Zhao, N., Boyle, B., Duval, I., Ferrer, J.-L., Lin, H., Seguin, A., Mackay, J., and Chen, F. 2009. SABATH methyltransferases from white spruce (Picea glauca): gene cloning, functional characterization and structural analysis. Tree Physiol. 29: 947–957. doi:10.1093/treephys/tpp023
  • Zhao, N., Ferrer, J.-L., Moon, H. S., Kapteyn, J., Zhuang, X., Hasebe, M., Stewart, C. N., Jr, Gang, D. R., and Chen, F. 2012. A SABATH methyltransferase from the moss Physcomitrella patens catalyzes S-methylation of thiols and has a role in detoxification. Phytochemistry 81: 31–41. doi:10.1016/j.phytochem.2012.06.011
  • Zhao, N., Ferrer, J.-L., Ross, J., Guan, J., Yang, Y., Pichersky, E., Noel, J. P., and Chen, F. 2008. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiol. 146: 455–467. doi:10.1104/pp.107.110049
  • Zhao, N., Guan, J., Ferrer, J.-L., Engle, N., Chern, M., Ronald, P., Tschaplinski, T. J., and Chen, F. 2010. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiol. Biochem. 48: 279–287. doi:10.1016/j.plaphy.2010.01.023
  • Zhao, N., Guan, J., Lin, H., and Chen, F. 2007. Molecular cloning and biochemical characterization of indole-3-acetic acid methyltransferase from poplar. Phytochemistry 68: 1537–1544. doi:10.1016/j.phytochem.2007.03.041
  • Zhao, N., Yao, J., Chaiprasongsuk, M., Li, G., Guan, J., Tschaplinski, T. J., Guo, H., and Chen, F. 2013. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa). Phytochemistry 94: 74–81. doi:10.1016/j.phytochem.2013.06.014
  • Zheng, X.-Q., Ye, C.-X., Kato, M., Crozier, A., and Ashihara, H. 2002. Theacrine (1, 3, 7, 9-tetramethyluric acid) synthesis in leaves of a Chinese tea, kucha (Camellia assamica var. kucha). Phytochemistry 60: 129–134. doi:10.1016/s0031-9422(02)00086-9
  • Zou, X., Zhao, K., Liu, Y., Du, M., Zheng, L., Wang, S., Xu, L., Peng, A., He, Y., Long, Q., and Chen, S. 2021. Overexpression of salicylic acid carboxyl methyltransferase (CsSAMT1) enhances tolerance to huanglongbing disease in wanjincheng orange (Citrus sinensis (L.) osbeck). Int. J. Mol. Sci. 22: 2803. doi:10.3390/ijms22062803
  • Zubieta, C., Ross, J. R., Koscheski, P., Yang, Y., Pichersky, E., and Noel, J. P. 2003. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell. 15: 1704–1716. doi:10.1105/tpc.014548

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.