272
Views
0
CrossRef citations to date
0
Altmetric
Research Article

MicroRNA: A Mobile Signal Mediating Information Exchange within and beyond Plant Organisms

, &

References

  • Baldrich, P., Rutter, B. D., Karimi, H. Z., Podicheti, R., Meyers, B. C., and Innes, R. W. 2019. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-nucleotide “tiny” RNAs. Plant Cell 31: 315–324. doi:10.1105/tpc.18.00872
  • Bally, J., Fishilevich, E., Doran, R. L., Lee, K., de Campos, S. B., German, M. A., Narva, K.E., and Waterhouse, P. M. 2020. Plin-amiR, a pre‐microRNA‐based technology for controlling herbivorous insect pests. Plant Biotechnol. J. 18: 1925–1932. doi:10.1111/pbi.13352
  • Betti, F., Ladera-Carmona, M. J., Weits, D. A., Ferri, G., Iacopino, S., Novi, G., Svezia, B., Kunkowska, A.B., Santaniello, A., Piaggesi, A., Loreti, E., and Perata, P. 2021. Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nat. Plants 7: 1379–1388. doi:10.1038/s41477-021-01005-w
  • Bhogale, S., Mahajan, A. S., Natarajan, B., Rajabhoj, M., Thulasiram, H. V., and Banerjee, A. K. 2014. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164: 1011–1027. doi:10.1104/pp.113.230714
  • Brenner, E. D., Stahlberg, R., Mancuso, S., Vivanco, J., Baluska, F., and Van Volkenburgh, E. 2006. Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci. 11: 413–419. doi:10.1016/j.tplants.2006.06.009
  • Brioudes, F., Jay, F., Sarazin, A., Grentzinger, T., Devers, E. A., and Voinnet, O. 2021. HASTY, the Arabidopsis EXPORTIN5 ortholog, regulates cell‐to‐cell and vascular microRNA movement. EMBO J. 40: e107455.
  • Buhtz, A., Pieritz, J., Springer, F., and Kehr, J. 2010. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol. 10: 64. doi:10.1186/1471-2229-10-64
  • Buhtz, A., Springer, F., Chappell, L., Baulcombe, D. C., and Kehr, J. 2008. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53: 739–749. doi:10.1111/j.1365-313X.2007.03368.x
  • Cai, Q., He, B., Weiberg, A., Buck, A. H., and Jin, H. 2019. Small RNAs and extracellular vesicles: new mechanisms of cross-species communication and innovative tools for disease control. PLOS Pathog. 15: e1008090. doi:10.1371/journal.ppat.1008090
  • Cai, Q., Qiao, L., Wang, M., He, B., Lin, F. M., Palmquist, J., Huang, S.D., and Jin, H. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360: 1126–1129. doi:10.1126/science.aar4142
  • Carlsbecker, A., Lee, J. Y., Roberts, C. J., Dettmer, J., Lehesranta, S., Zhou, J., Lindgren, O., Moreno-Risueno, M.A., Vatén, A., Thitamadee, S., Campilho, A., Sebastian, J., Bowman, J.L., Helariutta, Y., and Benfey, P.N. 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465: 316–321. doi:10.1038/nature08977
  • Chen, C., Zeng, Z., Liu, Z., and Xia, R. 2018. Small RNAs, emerging regulators critical for the development of horticultural traits. Hortic. Res. 5: 63. doi:10.1038/s41438-018-0072-8
  • Chen, J., Liu, Q., Yuan, L., Shen, W., Shi, Q., Qi, G., Chen, T., and Zhang, Z. 2023. Osa-miR162a enhances the resistance to the brown planthopper via α-linolenic acid metabolism in rice (Oryza sativa). J. Agric. Food Chem. 71: 11847–11859. doi:10.1021/acs.jafc.3c02637
  • Christiaens, O., Tardajos, M. G., Martinez Reyna, Z. L., Dash, M., Dubruel, P., and Smagghe, G. 2018. Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers. Front. Physiol. 9: 316. doi:10.3389/fphys.2018.00316
  • Costa, J. H., Bazioli, J. M., Barbosa, L. D., dos Santos Júnior, P. L. T., Reis, F. C., Klimeck, T., Crnkovic, C.M., Berlinck, R.G.S., Sussulini, A., Rodrigues, M.L., and Fill, T. P. 2021. Phytotoxic tryptoquialanines produced in vivo by Penicillium digitatum are exported in extracellular vesicles. mBio 12: 10–1128. doi:10.1128/mBio.03393-20
  • Cui, Y., Gao, J., He, Y., and Jiang, L. 2020. Plant extracellular vesicles. Protoplasma 257: 3–12. doi:10.1007/s00709-019-01435-6
  • Deng, Z., Wu, H., Li, D., Li, L., Wang, Z., Yuan, W., Xing, Y., Li, C., and Liang, D. 2021. Root-to-Shoot long-distance mobile miRNAs identified from Nicotiana rootstocks. Int. J. Mol. Sci. 22: 12821. doi:10.3390/ijms222312821
  • Fan, L., Zhang, C., Gao, B., Zhang, Y., Stewart, E., Jez, J., Nakajima, K., and Chen, X. 2022. Microtubules promote the non-cell autonomous action of microRNAs by inhibiting their cytoplasmic loading onto ARGONAUTE1 in Arabidopsis. Dev. Cell 57: 995–1008.e5. doi:10.1016/j.devcel.2022.03.015
  • Fan, P., Aguilar, E., Bradai, M., Xue, H., Wang, H., Rosas-Diaz, T., Tang, W., Wolf, S., Zhang, H., Xu, L., and Lozano-Durán, R. 2021. The receptor-like kinases BAM1 and BAM2 are required for root xylem patterning. Proc. Natl. Acad. Sci. U.S.A. 118: e2022547118. doi:10.1073/pnas.2022547118
  • Gibbings, D., and Voinnet, O. 2010. Control of RNA silencing and localization by endolysosomes. Trends Cell Biol. 20: 491–501. doi:10.1016/j.tcb.2010.06.001
  • Goldschmidt, E. E. 2014. Plant grafting: new mechanisms, evolutionary implications. Front. Plant Sci. 5: 727. doi:10.3389/fpls.2014.00727
  • Ham, B. K., Li, G., Jia, W., Leary, J. A., and Lucas, W. J. 2014. Systemic delivery of si RNA in pumpkin by a plant PHLOEM SMALL RNA‐BINDING PROTEIN 1–ribonucleoprotein complex. Plant J. 80: 683–694. doi:10.1111/tpj.12662
  • He, B., Cai, Q., Qiao, L., Huang, C. Y., Wang, S., Miao, W., Ha, T., Wang, Y., and Jin, H. 2021. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nat. Plants 7: 342–352. doi:10.1038/s41477-021-00863-8
  • He, K., Xiao, H., Sun, Y., Ding, S., Situ, G., and Li, F. 2019. Transgenic micro RNA‐14 rice shows high resistance to rice stem borer. Plant Biotechnol. J. 17: 461–471. doi:10.1111/pbi.12990
  • He, M., Kong, X., Jiang, Y., Qu, H., and Zhu, H. 2022. MicroRNAs: emerging regulators in horticultural crops. Trends Plant Sci. 27: 936–951. doi:10.1016/j.tplants.2022.03.011
  • Hsieh, L. C., Lin, S. I., Shih, A. C. C., Chen, J. W., Lin, W. Y., Tseng, C. Y., Li, W.H., and Chiou, T. J. 2009. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151: 2120–2132. doi:10.1104/pp.109.147280
  • Huen, A. K., Rodriguez-Medina, C., Ho, A. Y. Y., Atkins, C. A., and Smith, P. M. C. 2017. Long-distance movement of phosphate starvation‐responsive microRNAs in Arabidopsis. Plant Biol. 19: 643–649. doi:10.1111/plb.12568
  • Jia, L., Zhang, D., Xiang, Z., and He, N. 2015. Nonfunctional ingestion of plant miRNAs in silkworm revealed by digital droplet PCR and transcriptome analysis. Sci. Rep. 5: 12290. doi:10.1038/srep12290
  • Kasai, A., Kanehira, A., and Harada, T. 2010. miR172 can move long distances in Nicotiana benthamiana. Open Plant Sci. J. 4: 1–7. doi:10.2174/1874294701004010001
  • Kedde, M., Strasser, M. J., Boldajipour, B., Vrielink, J. A. O., Slanchev, K., Le Sage, C., Nagel, R., Voorhoeve, P.M., van Duijse, J., Ørom, U.A., Lund, A.H., Perrakis, A., Raz, E., and Agami, R. 2007. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131: 1273–1286. doi:10.1016/j.cell.2007.11.034
  • Knauer, S., Holt, A. L., Rubio-Somoza, I., Tucker, E. J., Hinze, A., Pisch, M., Javelle, M., Timmermans, M. C., Tucker, M. R., and Laux, T. 2013. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev. Cell 24: 125–132. doi:10.1016/j.devcel.2012.12.009
  • Lezzhov, A. A., Atabekova, A. K., Tolstyko, E. A., Lazareva, E. A., and Solovyev, A. G. 2019. RNA phloem transport mediated by pre-miRNA and viral tRNA-like structures. Plant Sci. 284: 99–107. doi:10.1016/j.plantsci.2019.04.005
  • Li, S., Wang, X., Xu, W., Liu, T., Cai, C., Chen, L., Clark, C.B., and Ma, J. 2021. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts. Nat. Plants 7: 50–59. doi:10.1038/s41477-020-00829-2
  • Lin, S. I., Chiang, S. F., Lin, W. Y., Chen, J. W., Tseng, C. Y., Wu, P. C., and Chiou, T. J. 2008. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 147: 732–746. doi:10.1104/pp.108.116269
  • Liu, L., and Chen, X. 2018. Intercellular and systemic trafficking of RNAs in plants. Nat. Plants 4: 869–878. doi:10.1038/s41477-018-0288-5
  • Liu, Z., Wang, C., Li, X., Lu, X., Liu, M., Liu, W., Wang, T., Zhang, X., Wang, N., Gao, L., and Zhang, W. 2023. The role of shoot-derived RNAs transported to plant root in response to abiotic stresses. Plant Sci. 328: 111570. doi:10.1016/j.plantsci.2022.111570
  • Loreti, E., and Perata, P. 2022. Mobile plant microRNAs allow communication within and between organisms. New Phytol. 235: 2176–2182. doi:10.1111/nph.18360
  • Lucas, W. J., Yoo, B. C., and Kragler, F. 2001. RNA as a long-distance information macromolecule in plants. Nat. Rev. Mol. Cell Biol. 2: 849–857. doi:10.1038/35099096
  • Marín-González, E., and Suárez-López, P. 2012. “And yet it moves”: cell-to-cell and long-distance signaling by plant microRNAs. Plant Sci. 196: 18–30. doi:10.1016/j.plantsci.2012.07.009
  • Martin, A., Adam, H., Díaz-Mendoza, M., Zurczak, M., González-Schain, N. D., and Suárez-López, P. 2009. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136: 2873–2881. doi:10.1242/dev.031658
  • Molnar, A., Melnyk, C. W., Bassett, A., Hardcastle, T. J., Dunn, R., and Baulcombe, D. C. 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328: 872–875. doi:10.1126/science.1187959
  • Pan, W. J., Tao, J. J., Cheng, T., Bian, X. H., Wei, W., Zhang, W. K., Ma, B., Chen, S.Y., and Zhang, J. S. 2016. Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol. Plant. 9: 1337–1340. doi:10.1016/j.molp.2016.05.010
  • Pant, B. D., Buhtz, A., Kehr, J., and Scheible, W. R. 2008. MicroRNA399 is a long‐distance signal for the regulation of plant phosphate homeostasis. Plant J. 53: 731–738. doi:10.1111/j.1365-313X.2007.03363.x
  • Pant, B. D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., Walther, D., and Scheible, W. R. 2009. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150: 1541–1555. doi:10.1104/pp.109.139139
  • Rogers, K., and Chen, X. 2013. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25: 2383–2399. doi:10.1105/tpc.113.113159
  • Rosas-Diaz, T., Zhang, D., Fan, P., Wang, L., Ding, X., Jiang, Y., Jimenez-Gongora, T., Medina-Puche, L., Zhao, X., Feng, Z., Zhang, G., Liu, X., Bejarano, E.R., Tan, L., Zhang, H., Zhu, J.K., Xing, W., Faulkner, C., Nagawa, S., and Lozano-Duran, R. 2018. A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proc. Natl. Acad. Sci. U.S.A. 115: 1388–1393. doi:10.1073/pnas.1715556115
  • Saini, R. P., Raman, V., Dhandapani, G., Malhotra, E. V., Sreevathsa, R., Kumar, P. A., Sharma, T.R., and Pattanayak, D. 2018. Silencing of HaAce1 gene by host-delivered artificial microRNA disrupts growth and development of Helicoverpa armigera. PLOS One 13: e0194150. doi:10.1371/journal.pone.0194150
  • Sanei, M., and Chen, X. 2015. Mechanisms of microRNA turnover. Curr. Opin. Plant Biol. 27: 199–206. doi:10.1016/j.pbi.2015.07.008
  • Shahid, S., Kim, G., Johnson, N. R., Wafula, E., Wang, F., Coruh, C., Bernal-Galeano, V., Phifer, T., dePamphilis, C.W., Westwood, J.H., and Axtell, M. J. 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553: 82–85. doi:10.1038/nature25027
  • Tang, J., and Chu, C. 2017. MicroRNAs in crop improvement: fine-tuners for complex traits. Nat. Plants 3: 1–11.
  • Thieme, C. J., Rojas-Triana, M., Stecyk, E., Schudoma, C., Zhang, W., Yang, L., Miñambres, M., Walther, D., Schulze, W.X., Paz-Ares, J., Scheible, W.R., and Kragler, F. 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants 1: 1–9.
  • Tolstyko, E. A., Lezzhov, A. A., Morozov, S. Y., and Solovyev, A. G. 2020. Phloem transport of structured RNAs: a widening repertoire of trafficking signals and protein factors. Plant Sci. 299: 110602. doi:10.1016/j.plantsci.2020.110602
  • Tolstyko, E., Lezzhov, A., and Solovyev, A. 2019. Identification of miRNA precursors in the phloem of Cucurbita maxima. PeerJ 7: e8269. doi:10.7717/peerj.8269
  • Tsikou, D., Yan, Z., Holt, D. B., Abel, N. B., Reid, D. E., Madsen, L. H., Bhasin, H., Sexauer, M., Stougaard, J., and Markmann, K. 2018. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362: 233–236. doi:10.1126/science.aat6907
  • Vatén, A., Dettmer, J., Wu, S., Stierhof, Y. D., Miyashima, S., Yadav, S. R., Roberts, C.J., Campilho, A., Bulone, V., Lichtenberger, R., Lehesranta, S., Mähönen, A.P., Kim, J.Y., Jokitalo, E., Sauer, N., Scheres, B., Nakajima, K., Carlsbecker, A., Gallagher, K.L., and Helariutta, Y. 2011. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21: 1144–1155. doi:10.1016/j.devcel.2011.10.006
  • Wagaba, H., Patil, B. L., Mukasa, S., Alicai, T., Fauquet, C. M., and Taylor, N. J. 2016. Artificial microRNA-derived resistance to Cassava brown streak disease. J. Virol. Methods 231: 38–43. doi:10.1016/j.jviromet.2016.02.004
  • Wang, H., Zhang, C., Dou, Y., Yu, B., Liu, Y., Heng-Moss, T. M., Lu, G., Wachholtz, M., Bradshaw, J.D., Twigg, P., Scully, E., Palmer, N., and Sarath, G. 2017. Insect and plant-derived miRNAs in greenbug (Schizaphis graminum) and yellow sugarcane aphid (Sipha flava) revealed by deep sequencing. Gene 599: 68–77. doi:10.1016/j.gene.2016.11.014
  • Wang, M., and Dean, R. A. 2020. Movement of small RNAs in and between plants and fungi. Mol. Plant Pathol. 21: 589–601. doi:10.1111/mpp.12911
  • Wang, W. Q., Allan, A. C., and Yin, X. R. 2020. Small RNAs with a big impact on horticultural traits. Crit. Rev. Plant Sci. 39: 30–43. doi:10.1080/07352689.2020.1741923
  • Weiberg, A., Wang, M., Lin, F. M., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H. D., and Jin, H. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342: 118–123. doi:10.1126/science.1239705
  • Yan, Y., and Ham, B. K. 2022. The mobile small RNAs: important messengers for long-distance communication in plants. Front. Plant Sci. 13: 928729. doi:10.3389/fpls.2022.928729
  • Yan, Y., Ham, B. K., Chong, Y. H., Yeh, S. D., and Lucas, W. J. 2020. A plant SMALL RNA-BINDING PROTEIN 1 family mediates cell-to-cell trafficking of RNAi signals. Mol. Plant 13: 321–335. doi:10.1016/j.molp.2019.12.001
  • Yoo, B. C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y. M., Lough, T.J., and Lucas, W. J. 2004. A systemic small RNA signaling system in plants. Plant Cell 16: 1979–2000. doi:10.1105/tpc.104.023614
  • Zhang, L. L., Jing, X. D., Chen, W., Wang, Y., Lin, J. H., Zheng, L., Dong, Y.H., Zhou, L., Li, F.F., Yang, F.Y., Peng, L., Vasseur, L., He, W.Y., and You, M. S. 2019. Host plant-derived miRNAs potentially modulate the development of a cosmopolitan insect pest, Plutella xylostella. Biomolecules 9: 602. doi:10.3390/biom9100602
  • Zhang, M., Su, H., Gresshoff, P. M., and Ferguson, B. J. 2021. Shoot‐derived miR2111 controls legume root and nodule development. Plant. Cell Environ. 44: 1627–1641. doi:10.1111/pce.13992
  • Zhang, N., Zhang, D., Chen, S. L., Gong, B. Q., Guo, Y., Xu, L., Zhang, X.N., and Li, J. F. 2018. Engineering artificial microRNAs for multiplex gene silencing and simplified transgenic screen. Plant Physiol. 178: 989–1001. doi:10.1104/pp.18.00828
  • Zhang, T., Jin, Y., Zhao, J. H., Gao, F., Zhou, B. J., Fang, Y. Y., and Guo, H. S. 2016. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Mol. Plant 9: 939–942. doi:10.1016/j.molp.2016.02.008
  • Zhang, T., Zhao, Y. L., Zhao, J. H., Wang, S., Jin, Y., Chen, Z. Q., Fang, Y.Y., Hua, C.L., Ding, S.W., and Guo, H. S. 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants 2: 1–6.
  • Zhou, L., Lu, Q. W., Yang, B. F., Zagorchev, L., and Li, J. M. 2021. Integrated small RNA, mRNA, and degradome sequencing reveals the important role of miRNAs in the interactions between parasitic plant Cuscuta australis and its host Trifolium repens. Sci. Hortic. 289: 110458. doi:10.1016/j.scienta.2021.110458
  • Zhu, K., Liu, M., Fu, Z., Zhou, Z., Kong, Y., Liang, H., Lin, Z., Luo, J., Zheng, H., Wan, P., Zhang, J., Zen, K., Chen, J., Hu, F., Zhang, C.Y., Ren, J., and Chen, X. 2017. Plant microRNAs in larval food regulate honeybee caste development. PLOS Genet. 13: e1006946. doi:10.1371/journal.pgen.1006946

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.