65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The role of zooplankton in the growth of algal bloom: a mathematical study

ORCID Icon & ORCID Icon
Pages 591-621 | Received 07 Jul 2023, Accepted 17 Feb 2024, Published online: 11 Mar 2024

References

  • Chattopadhyay, J. (2002). A delay differential equation model on harmful algal blooms in the presence of toxic substances. Math. Med. Biol. 19(2): 137–161. doi:10.1093/imammb/19.2.137.
  • Chattopadhyay, J., Sarkar, R. R., Pal, S. (2004). Mathematical modelling of harmful algal blooms supported by experimental findings. Ecol. Complex. 1(3): 225–235. doi:10.1016/j.ecocom.2004.04.001.
  • Michael Beman, J., Arrigo, K. R., Matson, P. A. (2005). Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature. 434(7030): 211–214. doi:10.1038/nature03370. 15758999
  • Mukhopadhyay, B., Bhattacharyya, R. (2005). A delay-diffusion model of marine plankton ecosystem exhibiting cyclic nature of blooms. J. Biol. Phys. 31(1): 3–22. doi:10.1007/s10867-005-2306-x. 23345881
  • Pal, S. (2007). Mathematical modelling on harmful algal blooms in the presence of toxic substances. In PAMM: Proceedings in Applied Mathematics and Mechanics, Vol.7. Wiley Online Library, Berlin, p. 2120035–2120036.
  • Pal, S., Chatterjee, S., Chattopadhyay, J. (2007). Role of toxin and nutrient for the occurrence and termination of plankton bloom-results drawn from field observations and a mathematical model. Biosystems. 90(1):87–100. doi:10.1016/j.biosystems.2006.07.003. 17194523.
  • Misra, A. K. (2007). Mathematical modeling and analysis of eutrophication of water bodies caused by nutrients. NAMC. 12(4):511–524. doi:10.15388/NA.2007.12.4.14683.
  • Shukla, J. B., Misra, A. K., Chandra, P. (2007). Mathematical modeling of the survival of a biological species in polluted water bodies. Differ. Equ. Dyn. Syst. 15(3/4):209–230.
  • Shukla, J. B., Misra, A. K., Chandra, P. (2008). Modeling and analysis of the algal bloom in a lake caused by discharge of nutrients. Appl. Math. Comput. 196(2):782–790. doi:10.1016/j.amc.2007.07.010.
  • Misra, A.K. (2011). Modeling the depletion of dissolved oxygen due to algal bloom in a lake by taking Holling type-III interaction. Appl. Math. Comput. 217(21):8367–8376. doi:10.1016/j.amc.2011.03.034.
  • Huang, H., Qiang, L., Fan, M., Liu, Y., Yang, A., Chang, D., Li, J., Sun, T., Wang, Y., Guo, R., et al. (2024). Corrigendum to “3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration” [Bioact. Mater. 31 (January 2024) 18-37]. Bioact. Mater. 35:445–446. doi:10.1016/j.bioactmat.2023.11.018. 38390526
  • Huang, D.-W., Wang, H.-L., Feng, J.-F., Zhu, Z.-W. (2008). Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics. Appl. Math. Modell. 32(7):1318–1326. doi:10.1016/j.apm.2007.04.006.
  • Alvarez-Vázquez, L. J., Fernández, F. J., Mu∼noz-Sola, R. (2009). Mathematical analysis of a three-dimensional eutrophication model. J. Math. Anal. Appl. 349(1):135–155. doi:10.1016/j.jmaa.2008.08.031.
  • Ghosh, M. (2010). Modeling biological control of algal bloom in a lake caused by discharge ofnutrients. J. Biol. Syst. 18(01):161–172. doi:10.1142/S021833901000324X.
  • Jang, S., Baglama, J., Wu, Li. (2014). Dynamics of phytoplankton–zooplankton systems with toxin producing phytoplankton. Appl. Math. Comput. 227:717–740. doi:10.1016/j.amc.2013.11.051.
  • Kim, D.-K., Zhang, W., Watson, S., Arhonditsis, G. B. (2014). A commentary on the modelling of the causal linkages among nutrient loading, harmful algal blooms, and hypoxia patterns in Lake Erie. J. Great Lakes Res. 40:117–129. doi:10.1016/j.jglr.2014.02.014.
  • Scotti, T., Mimura, M., Wakano, J. Y. (2015). Avoiding toxic prey may promote harmful algal blooms. Ecol. Complex. 21:157–165. doi:10.1016/j.ecocom.2014.07.004.
  • Chen, M., Fan, M., Liu, R., Wang, X., Yuan, X., Zhu, H. (2015). The dynamics of temperature and light on the growth of phytoplankton. J. Theor. Biol. 385:8–19. doi:10.1016/j.jtbi.2015.07.039. 26301719
  • Thakur, N. K., Tiwari, S. K., Upadhyay, R. K. (2016). Harmful algal blooms in fresh and marine water systems: The role of toxin producing phytoplankton. Int. J. Biomath. 09(03):1650043 doi:10.1142/S1793524516500431.
  • Misra, O. P., Chaturvedi, D. (2016). Fate of dissolved oxygen and survival of fish population in aquatic ecosystem with nutrient loading: a model. Model. Earth Syst. Environ. 2(3):1–14.
  • Chakraborty, S., Tiwari, P. K., Sasmal, S. K., Misra, A. K., Chattopadhyay, J. (2017). Effects of fertilizers used in agricultural fields on algal blooms. Eur. Phys. J. Spec. Top. 226(9):2119–2133. doi:10.1140/epjst/e2017-70031-7.
  • Tiwari, P. K., Misra, A. K., Venturino, E. (2017). The role of algae in agriculture: a mathematical study. J. Biol. Phys. 43(2):297–314. doi:10.1007/s10867-017-9453-8. 28550636
  • Jiang, Z., Zhang, T. (2017). Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay. Chaos, Solitons Fractals. 104:693–704. doi:10.1016/j.chaos.2017.09.030.
  • Zhao, Q., Liu, S., Tian, D. (2018). Dynamic behavior analysis of phytoplankton–zooplankton system with cell size and time delay. Chaos, Solitons Fractals. 113:160–168. doi:10.1016/j.chaos.2018.05.014.
  • Tiwari, P. K., Samanta, S., Bona, F., Venturino, E., Misra, A. K. (2019). The time delays influence on the dynamical complexity of algal blooms in the presence of bacteria. Ecol. Complex. 39:100769 doi:10.1016/j.ecocom.2019.100769.
  • Belshiasheela, I. R., Ghosh, M. (2020). Impact of overfishing of large predatory fish on algal blooms: a mathematical study. Nonlinear Stud. 27(2):405.
  • Misra, A. K., Tiwari, P. K., Chandra, P. (2021). Modeling the control of algal bloom in a lake by applying some external efforts with time delay. Differ. Equ. Dyn. Syst. 29(3):539–568. doi:10.1007/s12591-017-0383-5.
  • Huang, S., Yu, H., Dai, C., Ma, Z., Wang, Q., Zhao, M. (2022). Dynamic analysis of a modified algae and fish model with aggregation and Allee effect. Math. Biosci. Eng. 19(4):3673–3700. doi:10.3934/mbe.2022169. 35341269
  • Liu, H., Dai, C., Yu, H., Guo, Q., Li, J., Hao, A., Kikuchi, J., Zhao, M. (2023). Dynamics of a stochastic non-autonomous phytoplankton–zooplankton system involving toxin-producing phytoplankton and impulsive perturbations. Math. Comput. Simul. 203:368–386. doi:10.1016/j.matcom.2022.06.012.
  • Krasnosel, M. A. (1968). The Operator of Translation along the Trajectories of Differential Equations. Rhode Island: American Mathematical Society.
  • Ghosh, S., Chatterjee, A. N., Roy, P. K., Grigorenko, N., Khailov, E., Grigorieva, E. (2021). Mathematical Modeling and Control of the Cell Dynamics in Leprosy. Comput. Math. Model. 32(1):52–74. doi:10.1007/s10598-021-09516-z.
  • Guckenheimer, J., Holmes, P. (2013). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42. Berlin: Springer Science & Business Media.
  • Douskos, C., Markellos, P. (2015). Complete coefficient criteria for five-dimensional Hopf bifurcations, with an application to economic dynamics. J. Nonlinear Dyn. 2015:1–11. doi:10.1155/2015/278234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.