65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the efficacy of X-ray irradiation on male testes of Mediterranean fruit fly using light and transmission electron microscopy

ORCID Icon, ORCID Icon & ORCID Icon
Received 01 Jun 2023, Accepted 06 Jan 2024, Published online: 21 Jan 2024

References

  • Abd-Alla MS 1995. Histological and biological studies on the effects of gamma radiation on the angoumois grain moth, Sitotroga cerealella (Oliv.) [ Ph.D. Thesis]. Cairo, Egypt: Faculty of Agriculture, Ain Shams University.
  • Bairati A. 1967. Struttura ed ultrastruttura dell’apparato genitale maschile di Drosophila melanogaster Meig. Z Zellforsch. 76(1):56–99. doi: 10.1007/BF00337033.
  • Bond JG, Osorio AR, Avila N, Gomez-Simuta Y, Marina CF, Fernandez-Salas I, Liedo P, Dor A, Carvalho DO, Bourtzis K, et al. 2019. Optimization of irradiation dose to Aedes aegypti and Ae. albopictus in a sterile insect technique program. PLoS One. 14(2):e0212520. doi: 10.1371/journal.pone.0212520.
  • Chapman RF. 1998. The insects: structure and function. 4th ed. New York: Cambridge University Press. p. 788. doi: 10.1023/A:1020857404230.
  • Coggins PB. 1973. The effect of X-radiation on spermatogenesis and the fertility of Schistocerca gregaria (Forsk). J Embryol Exp Morphol. 30(1):163–177. doi: 10.1242/dev.30.1.163.
  • Dallacqua RP, Da Cruz-Landim C. 2003. Ultrastructure of the ducts of the reproductive tract of males of Melipona bicolor bicolor lepeletier (Hymenoptera, Apinae, Meliponini). Anat Histol Embryol. 32(5):276–281. doi: 10.1046/j.1439-0264.2003.00484.x.
  • Dallai R. 2014. Overview on spermatogenesis and sperm structure of Hexapoda. Arthropod Struct Dev. 43(4):257–290. doi: 10.1016/j.asd.2014.04.002.
  • Duncan DB. 1955. Multiple ranges and multiple F test. Biometrics. 11(1):1–42. doi: 10.2307/3001478.
  • Du Plessis L, Soley JT. 2011. Incidence, structure and morphological classification of abnormal sperm in the emu (Dromaius novaehollandiae). Theriogenology. 75(4):589–601. doi: 10.1016/j.theriogenology.2010.09.021.
  • Enkerlin WR, Gutiérrez Ruelas JM, Pantaleon R, Soto Litera C, Villasenor Cortés A, Zavala López JL, Orozco Dávila D, Montoya Gerardo P, Silva Villarreal L, Cotoc Roldán E, et al. 2017. The Moscamed regional programme: Review of a success story of area-wide sterile insect technique application. Entomol Exp Appl. 164(3):188–203. doi: 10.1111/eea.12611.
  • FAO/IAEA/USDA. 2003. Manual for product quality control and shipping procedures for sterile mass-reared tephritid fruit flies, version 5.0. Vienna, Austria: International Atomic Energy Agency.
  • Gabarty A, Hammad A, Zinhoum R, Negm A. 2022. Impact of electron beam irradiation on the developmental stages of Callosobruchus maculatus (Coleoptera: Bruchidae) and Bactrocera zonata (Diptera: Tephritidae). J Entomol Sci. 57(4):460–476. doi: 10.18474/JES21-72.
  • Gatenby JB. 1941. The neck body in normal and X-irradiated insect spermatogenesis. Proc R Ir Acad B. 47:149–159.
  • Gómez-Simuta Y, Parker A, Cáceres C, Vreysen MJ, Yamada H. 2021. Characterization and dose-mapping of an X-ray blood irradiator to assess application potential for the Sterile Insect Technique (SIT). Appl Radiat Isot. 176:1–5. doi: 10.1016/j.apradiso.2021.109859.
  • Hasaballah AI. 2018. Impact of gamma irradiation on the development and reproduction of Culex pipiens (Diptera; Culicidae). Int J Radiat Biol. 94(9):844–849. doi: 10.1080/09553002.2018.1490040.
  • Hasaballah AI. 2021. Impact of paternal transmission of gamma radiation on reproduction, oogenesis, and spermatogenesis of the housefly, Musca domestica L. (Diptera: Muscidae). Int J Radiat Biol. 97(3):376–385. doi: 10.1080/09553002.2021.1864046.
  • Hasan M, Khalequzzaman M, Khan AR. 1989. Development of Tribolium anaphe irradiated as larvae of various ages with gamma rays. Entomol Exp Appl. 53(1):92–94. doi: 10.1111/j.1570-7458.1989.tb01290.x.
  • Hassan MI, Mounier SA, Kotb MH, Gabarty A, Tharwat AS. 2017. Latent effect of gamma irradiation on reproductive potential and ultrastructure of males’ testes of Culex pipiens (Diptera; Culicidae). J Radiat Res Appl Sci. 10(1):44–52. doi: 10.1016/j.jrras.2016.11.003.
  • Helinski ME, Parker AG, Knols BG. 2009. Radiation biology of mosquitoes. Malar J. 8(Suppl 2):S6. doi: 10.1186/1475-2875-8-S2-S6.
  • Henneberry TJ, Clayton TE. 1988. Effects of gamma radiation on pink bollworm (Lepidoptera: Gelechiidae) pupae: Adult emergence, reproduction, mating, and longevity of emerged adults and their F1 progeny. J Econ Entomol. 81(1):322–326. doi: 10.1093/jee/81.1.322.
  • Hodges RJ. 1983. Morphology of the X-irradiated testes of Dermestes frischii Kugelann (Coleoptera: Dermestidae). II. Spermatids and sperm. Int J Invertebr Reprod. 6(1):51–63. doi: 10.1080/01651269.1983.10510023.
  • IAEA. 2004. Alternatives to gamma irradiation for the sterile insect technique. International Atomic Energy Agency Annual report for 2004.
  • IAEA. 2012. Alternatives to gamma irradiation for the sterile insect technique. In: Nuclear technology review. Vienna: IAEA; p. 56–57.
  • Ibrahim HAM. 2016. Influence of gamma irradiation on localization of enzymatic activity during spermatogenesis of green vegetable stink bug Nezara viridula (Hemiptera: Pentatomidae). Egypt Acad J Biol Sci. 8(2):1–14. doi: 10.21608/EAJBSD.2016.14100.
  • Ibrahim HA, Fawki S, Abd El-Bar MM, Abdou MA, Mahmoud DM, El-Gohary EG. 2017. Inherited influence of low dose gamma radiation on the reproductive potential and spermiogenesis of the cowpea weevil, Callosobruchus maculatus (F) (Coleoptera: Chrysomelidae). J Radiat Res Appl Sci. 10(4):338–347. doi: 10.1016/j.jrras.2017.09.003.
  • Kendra PE, Roda AL, Montgomery WS, Schnell EQ, Niogret J, Epsky ND, Heath RR. 2011. Gas chromatography for detection of citrus infestation by fruit fly larvae (Diptera: Tephritidae). Postharvest Biol Technol. 59(2):143–149. doi: 10.1016/j.postharvbio.2010.09.006.
  • Kittayapong P, Kaeothaisong NO, Ninphanomchai S, Limohpasmanee W. 2018. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasite Vector. 11(2):657. doi: 10.1186/s13071-018-3214-9.
  • Knipling EF. 1955. Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol. 48(4):459–462. doi: 10.1093/jee/48.4.459.
  • Liquido NJ, McQuate GT, Hanlin MA, Suiter KA 2020. Host plants of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), Version 4.0. USDA Compendium of Fruit Fly Host Information (CoFFHI), Edition 4.0. https://coffhi.cphst.org/
  • Mahmoud EA, Shoman AA. 2009. Studies on the radio-protective role of melatonin on the testis fine structure of medflies Ceratitis capitata (Wied.) sterile males. Isot Radiat Res. 41(2):1421–1441.
  • Mastrangelo T, Parker AG, Jessup A, Pereira R, Orozco-Davila D, Islam A, Dammalage T, Walder MM. 2010. A new generation of x-ray irradiators for insect sterilization. J Econ Entomol. 103(1):85–94. doi: 10.1603/ec09139.
  • Mohammad MI, Shaarawi FA, Kamel KE. 2003. Histomorphological and ultrastructural studies on the male reproductive system of the red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). J Egypt Ger Soc Zool. 41(Entomol):49–68.
  • Muller HJ. 1927. Artificial transmutation of the gene. Sci. 66(1699):84–87. doi: 10.1126/science.66.1699.84.
  • Muller HJ. 1950. Radiation damage to the genetic material. Am Sci. 38(1):33.
  • Paoli F, Dallai R, Cristofaro M, Arnone S, Francardi V, Roversi PF. 2014. Morphology of the male reproductive system, sperm ultrastructure and γ–irradiation of the red palm weevil Rhynchophorus ferrugineus Oliv. (Coleoptera: Dryophthoridae). Tissue Cell. 46(4):274–285. doi: 10.1016/j.tice.2014.06.003.
  • Poda SB, Guissou E, Maïga H, Bimbile-Somda SN, Gilles J, Rayaisse JB, Lefevre T, Roux O, Dabire RK. 2018. Impact of irradiation on the reproductive traits of field and laboratory An. arabiensis mosquitoes. Parasite Vector. 11(1):641. doi: 10.1186/s13071-018-3228-3.
  • Qureshi ZA, Ahmed N, Hussain T 1993. Rearing and gamma radiation effect on mature pupae of pink bollworm and their F1 progeny. Proceedings Final Research Coordination Meeting; Sep 9-13 1991; Phoenix, Arizona: IAEA Vienna. p. 57–71.
  • Reynolds ES. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 17(1):208–212 . doi: 10.1083/jcb.17.1.208.
  • Ruiz-Arce R, Todd TN, Deleon R, Barr NB, Virgilio M, De Meyer M, McPheron BA. 2020. Worldwide phylogeography of Ceratitis capitata (Diptera: Tephritidae) using mitochondrial DNA. J Econ Entomol. 113(3):1455–1470. doi: 10.1093/jee/toaa024.
  • Shahzad AS, Huma R, Sohail AS, Imran H, Shahbaz AS. 2014. Effects of gamma radiation on mature larvae of Pectinophora gossypiella (Saunders) and their F1 Progeny. J Basic Appl Sci. 10:504–508. doi: 10.6000/1927-5129.2014.10.66.
  • Shen SK, Berryman AA. 1967. The male reproductive system and spermatogenesis of the European pine shoot moth, rhyacionia buoliana (Lepidoptera: Olethreutidae), with observations on the effects of gamma irradiation. Ann Entomol Soc Am. 60(4):767–774. doi: 10.1093/aesa/60.4.767.
  • Tahmisian TN, Devine RL. 1961. The influence of X-rays on organelle induction and differentiation in grasshopper spermatogenesis. J Cell Biol. 9(1):29–45. doi: 10.1083/jcb.9.1.29.
  • Tanaka N, Steiner LF, Ohinata K, Okamoto R. 1969. Low cost larval rearing medium for mass rearing production of oriental and Mediterranean fruit flies. J Eco Entomol. 62(4):967–968. doi: 10.1093/jee/62.4.967.
  • Toppozada A, Salama A, Hassan S, EL-Defrawi ME. 1964. Toxicological studies on the Egyptian cotton leaf worm Prodenia litura III- A method technique for testing the stomach poisoning effect of insecticides on leaf feeding larvae. J Econ Entomol. 57(4):595–597. doi: 10.1093/jee/57.4.595.
  • Valdez J. 2001. Ultrastructure of the testis of the Mexican fruit fly (Diptera: Tephritidae). Ann Entomol Soc Am. 94(2):251–256. doi: 10.1603/0013-8746(2001)094[0251:UOTTOT]2.0.CO;2.
  • Zapater MC, Andiarena CE, Camargo GP, Bartoloni N. 2009. Use of irradiated Musca domestica pupae to optimize mass rearing and commercial shipment of the parasitoid Spalangia endius (Hymenoptera: Pteromalidae). Biocontrol Sci Techn. 19(sup1):261–270. doi: 10.1080/09583150802439819.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.