28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A green approach for synthesizing high pure gadolinium zirconate nano-particles using microwave energy

, , ORCID Icon &
Received 29 Aug 2023, Accepted 17 Feb 2024, Published online: 15 Apr 2024

References

  • Akshatha S, Sreenivasa S, Parashuram L, Udaya VK, Rao CTM, Kumar S, Raghu MS. 2020. Solvothermal synthesis of nanoscale disc-like gadolinium doped magnesium zirconate for highly efficient photocatalytic degradation of rhodamine B in water. S N App Sci. 2(5):1–10.
  • Batool T, Bukhari BS, Riaz S, Batoo KM, Raslan EH, Hadi M, Naseem SP. 2020. Microwave assisted sol-gel synthesis of bioactive zirconia nanoparticles - correlation of strength and structure. J Mech Behav Biomed Mater. 112:1–12.
  • Belwal S. 2013. Green revolution in chemistry by microwave assisted synthesis: a review. MC. 1(3):22–25. doi: 10.11648/j.mc.20130103.11.
  • Cao XQ, Vassen R, Stoever D. 2004. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 24(1):1–10. doi: 10.1016/S0955-2219(03)00129-8.
  • Díaz-Guillén JA, Durá OJ, Díaz-Guillén MR, Bauer E, López d, Fuentes AF. 2015. Thermophysical properties of Gd2Zr2O7 powders prepared by mechanical milling: effect of homovalent Gd3+ substitution. J Alloys Compd. 649:1145–1150. doi: 10.1016/j.jallcom.2015.07.146.
  • Huang Z, Cao Z, Shi K, Qi J, Zhou M, Tang Z, Han W, Diao X, Tang J, Lu T. 2017. Synthesis and densification of Gd2Zr2O7 nano-grain ceramics prepared by field assisted sintering technique. J Nucl Mater. 495:164–171. doi: 10.1016/j.jnucmat.2017.08.009.
  • Kalinkin AM, Vinogradov VY, Kalinkina EV. 2021. Solid-State Synthesis of Nanocrystalline Gadolinium Zirconate Using Mechanical Activation. Inorg Mater. 57(2):178–185. doi: 10.1134/S0020168521020072.
  • Khaled DE, Novas N, Gazquez JA, Manzano AF. 2018. Microwave dielectric heating: applications on metals processing. Renew Sustain Energy Rev. 82(3):2880–2892. doi: 10.1016/j.rser.2017.10.043.
  • Komarneni S. 2003. Nanophase materials by hydrothermal, microwave-hydrothermal and microwave solvothermal methods. Curr Sci. 85(12):1730–1734.
  • Lakiza SM, Grechanyuk MI, Ruban OK, Redko VP, Glabay MS, Myloserdov OB, Dudnik OV, Prokhorenko SV. 2018. Thermal barrier coatings: current status, search, and analysis. Powder Metall Met Ceram. 57(1-2):82–113. doi: 10.1007/s11106-018-9958-0.
  • Lehmann H, Pitzer D, Pracht G, Vassen R, Stöver D. 2003. Thermal conductivity and thermal expansion coefficients of the lanthanum rare‐earth‐element zirconate system. J Am Ceram Soc. 86(8):1338–1344. doi: 10.1111/j.1151-2916.2003.tb03473.x.
  • Leng K, Rincon RA, Venturi F, Ahmed I, Hussain T. 2022. Solution precursor thermal spraying of gadolinium zirconate for thermal barrier coating. J EurCeram Soc. 42(4):1594–1607. doi: 10.1016/j.jeurceramsoc.2021.11.050.
  • Li W, Zhang K, Xie D, Deng T, Luo B, Zhang H, Huang X. 2020. Characterizations of vacuum sintered Gd2Zr2O7 transparent ceramics using combustion synthesized nanopowder. J. Eur Ceram Soc. 40(4):1665–1670. doi: 10.1016/j.jeurceramsoc.2019.12.007.
  • Liu ZG, Ouyang JH, Zhou Y, Xia XL. 2008. Structure and thermal conductivity of Gd2(TixZr1−x)2O7 ceramics. Mater Lett. 62(29):4455–4457. doi: 10.1016/j.matlet.2008.07.050.
  • Meng LY, Wang B, Ma MG, Lin KL. 2016. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater Today Chem. 1-2:63–83. doi: 10.1016/j.mtchem.2016.11.003.
  • Miller RA. 1991. Thermal barrier coatings for aircraft engines: history and directions. JTST. 6(1):35–42. doi: 10.1007/BF02646310.
  • Mishra B, Srikant SS, Routray S, Laxmi T, Rao RB. 2019. Preparation of nano materials from strategic placer heavy minerals recovered from red sediments of badlands topography of South East Coast of India. Curr Sci. 116(8):1363–1372. doi: 10.18520/cs/v116/i8/1363-1372.
  • Oghbaei M,Mirzaee O. 2010. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 494(1-2):175–189. doi: 10.1016/j.jallcom.2010.01.068.
  • Pickles CA. 2009. Microwaves in extractive metallurgy: part 1- a review of fundamental. Miner Eng. 22(13):1102–1111. doi: 10.1016/j.mineng.2009.02.015.
  • Rohilla L, Garg V, Mallick SS, Setia G. 2018. An experimental investigation on the effect of particle size into the flowability of fly ash. Powder Tech. 330:164–173. doi: 10.1016/j.powtec.2018.02.013.
  • Schütz MB, Xiao L, Lehnen T, Fischer T, Mathur S. 2017. Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides. Int Mater Rev. 63(6):341–374. doi: 10.1080/09506608.2017.1402158.
  • Singh D, Mishra B, Basu S, Rao RB. 2021. A novel process for production of high purity zirconium oxy chloride from zircon sand for bio-inert ceramics. J Inst Eng (India): Ser D. 102(2):243–248.
  • Srikant SS, Mukherjee PS, Rao RB. 2013. Prospects of microwave energy in material and mineral processing. Turk J Eng Sci Technol. 02:23–31.
  • Srikant SS, Rao RB. 2016. Microwave heat treatment on red sediment sillimanite–zircon–alumina composites for fused zirconia–mullite products. J Microwave Power Electromag Energy. 50(3):182–190. doi: 10.1080/08327823.2016.1227932.
  • Srikant SS, Rao RB. 2022. Microwave heat treatment on kyanite for mullite formation and the preparation of zirconia toughened mullite. J Microwave Power Electromag Energy. 56(1):37–44. doi: 10.1080/08327823.2022.2029119.
  • Vijayalakshmi R, Singh DK, Kotekar MK, Singh H. 2014. Separation of high purity gadolinium for reactor application by solvent extraction process. J Radioanal Nucl Chem. 300(1):129–135. doi: 10.1007/s10967-014-2966-8.
  • Wang C, Wang Y, Wang L, Sun X, Yang C, Zou Z, Li X. 2014. Hydrothermal assisted synthesis and hot-corrosion resistance of nano lanthanum zirconate particles. Ceram Int. 40(3):3981–3988. doi: 10.1016/j.ceramint.2013.08.048.
  • Wildfire C, Çiftyürek E, Sabolsky K, Sabolsky EM. 2014. Investigation of doped-gadolinium zirconate nanomaterials for high-temperature hydrogen sensor applications. J Mater Sci. 49(14):4735–4750. doi: 10.1007/s10853-014-8173-8.
  • Xu G, Lu P, Li M, Liang C, Xu P, Liu D, Chen X. 2018. Investigation on characterization of powder flowability using different testing methods. Exp Ther Fluid Sci. 92:390–401. doi: 10.1016/j.expthermflusci.2017.11.008.
  • Yilmaz S, Cobaner S, Yalaz E, Amini HB. 2022. Synthesis and characterization of gadolinium-doped zirconia as a potential electrolyte for solid oxide fuel cells. Energies. 15(8):2826. doi: 10.3390/en15082826.
  • Zhong X, Zhao H, Liu C, Wang L, Shao F, Zhou X, Tao S, Ding C. 2015. Improvement in thermal shock resistance of gadolinium zirconate coating by addition of nanostructured yttria partially-stabilized zirconia. Ceramics Int. 41(6):7318–7324. doi: 10.1016/j.ceramint.2015.02.027.
  • Zhong X, Zhao H, Zhou X, Liu C, Wang L, Shao F, Yang K, Tao S, Ding C. 2014. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating. J Alloys Compd. 593:50–55. doi: 10.1016/j.jallcom.2014.01.060.
  • Zhou D, Mack DE, Bakan E, Mauer G, Sebold D, Guillon O, Vaßen R. 2020. Thermal cycling performances of multilayered yttria‐stabilized zirconia/gadolinium zirconate thermal barrier coatings. J Am Ceram Soc. 103(3):2048–2061. doi: 10.1111/jace.16862.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.