130
Views
0
CrossRef citations to date
0
Altmetric
Review

Growth hormone after CNS tumor diagnosis: the fundamentals, fears, facts, and future directions

, &
Pages 786-799 | Received 06 Sep 2022, Accepted 14 Feb 2023, Published online: 20 Mar 2023

References

  • Raben MS. Treatment of a pituitary dwarf with human growth hormone. J Clin Endocrinol Metab. 1958;18(8):901–903. doi:10.1210/jcem-18-8-901.
  • Nyberg F, Hallberg M. Growth hormone and cognitive function. Nat Rev Endocrinol. 2013;9(6):357–365. doi:10.1038/nrendo.2013.78.
  • Geffner ME. Growth hormone replacement therapy: transition from adolescence to adulthood. J Clin Res Pediatr Endocrinol. 2009;1(5):205–208. doi:10.4274/jcrpe.v1i5.205.
  • Jørgensen JO, Pedersen SA, Thuesen L, et al. Beneficial effects of growth hormone treatment in GH-deficient adults. Lancet. 1989;1(8649):1221–1225. doi:10.1016/s0140-6736(89)92328-3.
  • Salomon F, Cuneo RC, Hesp R, Sönksen PH. The effects of treatment with recombinant human growth hormone on body composition and metabolism in adults with growth hormone deficiency. N Engl J Med. 1989;321(26):1797–1803. doi:10.1056/nejm198912283212605.
  • Sklar C, Wolden S. Therapy for pediatric brain tumors and the risk of growth hormone deficiency. J Clin Oncol. 2011;29(36):4743–4744. doi:10.1200/jco.2011.38.9833.
  • Strobl JS, Thomas MJ. Human growth hormone. Pharmacol Rev. 1994;46(1):1–34.
  • Pilecka I, Whatmore A, Hooft van Huijsduijnen R, Destenaves B, Clayton P. Growth hormone signalling: sprouting links between pathways, human genetics and therapeutic options. Trends Endocrinol Metab. 2007;18(1):12–18. doi:10.1016/j.tem.2006.11.004.
  • Clayton PE, Silva CM. Growth hormone signal transduction and possible defects in children. J Pediatr Endocrinol Metab. 2002;15(Suppl 5):1451–1452.
  • Baserga R. The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res. Cancer Res. 1995;55(2):249–252.
  • Baserga R, Sell C, Porcu P, Rubini M. The role of the IGF-I receptor in the growth and transformation of mammalian cells. Cell Prolif. 1994;27(2):63–71. doi:10.1111/j.1365-2184.1994.tb01406.x.
  • Reiss K, Valentinis B, Tu X, Xu SQ, Baserga R. Molecular markers of IGF-I-mediated mitogenesis. Exp Cell Res. 1998;242(1):361–372. doi:10.1006/excr.1998.4113.
  • Trojanek J, Ho T, Del Valle L, et al. Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination. Mol Cell Biol. 2003;23(21):7510–7524. doi:10.1128/mcb.23.21.7510-7524.2003.
  • Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA. Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA. 2000;97(18):10236–10241. doi:10.1073/pnas.170008497.
  • Fideleff HL, Boquete HR, Suárez MG, Azaretzky M. Burden of growth hormone deficiency and excess in children. Prog Mol Biol Transl Sci. 2016;138:143–166. doi:10.1016/bs.pmbts.2015.10.009.
  • Schwetye KE, Dahiya SM. Sellar tumors. Surg Pathol Clin. 2020;13(2):305–329. doi:10.1016/j.path.2020.02.006.
  • Chinoy A, Murray PG. Diagnosis of growth hormone deficiency in the paediatric and transitional age. Best Pract Res Clin Endocrinol Metab. 2016;30(6):737–747. doi:10.1016/j.beem.2016.11.002.
  • Waqar M, Rampersad S, Bennett D, Kearney T, Gnanalingham KK. Pre- and postoperative need for pituitary hormone replacement in non-adenomatous sellar and parasellar lesions: importance of the sellar encroachment score. Acta Neurochir (Wien). 2020;162(10):2371–2379. doi:10.1007/s00701-020-04440-4.
  • Darzy KH, Pezzoli SS, Thorner MO, Shalet SM. Cranial irradiation and growth hormone neurosecretory dysfunction: a critical appraisal. J Clin Endocrinol Metab. May 2007;92(5):1666–1672. doi:10.1210/jc.2006-2599.
  • Darzy KH, Shalet SM. Pathophysiology of radiation-induced growth hormone deficiency: efficacy and safety of GH replacement. Growth Horm IGF Res. 2006;16(Suppl A):S30–S40. doi:10.1016/j.ghir.2006.03.002.
  • Gurney JG, Kadan-Lottick NS, Packer RJ, et al. Endocrine and cardiovascular late effects among adult survivors of childhood brain tumors: Childhood Cancer Survivor Study. Cancer. 2003;97(3):663–673. doi:10.1002/cncr.11095.
  • Mulder RL, Kremer LC, van Santen HM, et al. Prevalence and risk factors of radiation-induced growth hormone deficiency in childhood cancer survivors: a systematic review. Cancer Treat Rev. 2009;35(7):616–632. doi:10.1016/j.ctrv.2009.06.004.
  • Bogusz A, Boekhoff S, Warmuth-Metz M, Calaminus G, Eveslage M, Müller HL. Posterior hypothalamus-sparing surgery improves outcome after childhood craniopharyngioma. Endocr Connect. 2019;8(5):481–492. doi:10.1530/ec-19-0074.
  • Cohen M, Bartels U, Branson H, Kulkarni AV, Hamilton J. Trends in treatment and outcomes of pediatric craniopharyngioma, 1975–2011. Neuro Oncol. 2013;15(6):767–774. doi:10.1093/neuonc/not026.
  • Elowe-Gruau E, Beltrand J, Brauner R, et al. Childhood craniopharyngioma: hypothalamus-sparing surgery decreases the risk of obesity. J Clin Endocrinol Metab. 2013;98(6):2376–2382. doi:10.1210/jc.2012-3928.
  • Sterkenburg AS, Hoffmann A, Gebhardt U, Warmuth-Metz M, Daubenbüchel AM, Müller HL. Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro Oncol. 2015;17(7):1029–1038. doi:10.1093/neuonc/nov044.
  • de Blank P, Bandopadhayay P, Haas-Kogan D, Fouladi M, Fangusaro J. Management of pediatric low-grade glioma. Curr Opin Pediatr. 2019;31(1):21–27. doi:10.1097/mop.0000000000000717.
  • Yeo KK, MacDonald SM. CNS non-germinomatous germ cell tumor (NGGCT): Lessons from the recent past. Neuro Oncol. 2022;24(11):1962–1963. doi:10.1093/neuonc/noac119.
  • Pollack IF, Agnihotri S, Broniscer A. Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr. 2019;23(3):261–273. doi:10.3171/2018.10.Peds18377.
  • Toogood AA. Endocrine consequences of brain irradiation. Growth Horm IGF Res. 2004;14:S118–S124. doi:10.1016/j.ghir.2004.03.038.
  • Darzy KH, Shalet SM. Hypopituitarism as a consequence of brain tumours and radiotherapy. Pituitary. 2005;8(3–4):203–211. doi:10.1007/s11102-006-6042-4.
  • Sklar CA, Antal Z, Chemaitilly W, et al. Hypothalamic-pituitary and growth disorders in survivors of childhood cancer: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(8):2761–2784. doi:10.1210/jc.2018-01175.
  • Darzy KH. Radiation-induced hypopituitarism after cancer therapy: who, how and when to test. Nat Clin Pract Endocrinol Metab. 2009;5(2):88–99. doi:10.1038/ncpendmet1051.
  • Landier W, Armenian SH, Lee J, et al. Yield of screening for long-term complications using the children’s oncology group long-term follow-up guidelines. J Clin Oncol. 2012;30(35):4401–4408. doi:10.1200/jco.2012.43.4951.
  • Wei C, Crowne EC. The hypothalamic-pituitary-adrenal axis in childhood cancer survivors. Endocr Relat Cancer. 2018;25(10):R479–R496. doi:10.1530/erc-18-0217.
  • Müller HL. Childhood craniopharyngioma. Pituitary. 2013;16(1):56–67. doi:10.1007/s11102-012-0401-0.
  • Lu M, Flanagan JU, Langley RJ, Hay MP, Perry JK. Targeting growth hormone function: strategies and therapeutic applications. Signal Transduct Target Ther. 2019;4:3. doi:10.1038/s41392-019-0036-y.
  • Takala J, Ruokonen E, Webster NR, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;341(11):785–792. doi:10.1056/nejm199909093411102.
  • Cheng Y, Li W, Gui R, et al. Dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers. Front Cell Dev Biol. 2021;9:671247. doi:10.3389/fcell.2021.671247.
  • Rogers PC, Komp D, Rogol A, Sabio H. Possible effects of growth hormone on development of acute lymphoblastic leukaemia. Lancet. 1977;2(8035):434–435. doi:10.1016/s0140-6736(77)90613-4.
  • Moon HD, Simpson ME, Li CH, Evans HM. Neoplasms in rats treated with pituitary growth hormone; pulmonary and lymphatic tissues. Cancer Res. 1950;10(5):297–308.
  • Ogilvy-Stuart AL. Safety of growth hormone after treatment of a childhood malignancy. Horm Res. 1995;44(Suppl 3):73–79. doi:10.1159/000184677.
  • Zadik Z, Estrov Z, Karov Y, Hahn T, Barak Y. The effect of growth hormone and IGF-I on clonogenic growth of hematopoietic cells in leukemic patients during active disease and during remission–a preliminary report. J Pediatr Endocrinol. 1993;6(1):79–83. doi:10.1515/jpem.1993.6.1.79.
  • Tedeschi B, Spadoni GL, Sanna ML, et al. Increased chromosome fragility in lymphocytes of short normal children treated with recombinant human growth hormone. Hum Genet. 1993;91(5):459–463. doi:10.1007/bf00217772.
  • Shalet SM, Brennan BM, Reddingius RE. Growth hormone therapy and malignancy. Horm Res. 1997;48(Suppl 4):29–32. doi:10.1159/000191309.
  • Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM. The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res. 2008;14(20):6364–6370. doi:10.1158/1078-0432.Ccr-07-4879.
  • Dhifallah H, Aissi S, Njima M, Zakhama A, Kenani A. IGF1 polymorphisms and colon cancer risk in Tunisian population. Tunis Med. 2019;97(12):1407–1414.
  • Gao S, Ni Q, Wu X, Cao T. GHR knockdown enhances the sensitivity of HCC cells to sorafenib. Aging (Albany NY). 2020;12(18):18127–18136. doi:10.18632/aging.103625.
  • Slater M, Cooper M, Murphy CR. Human growth hormone and interleukin-6 are upregulated in endometriosis and endometrioid adenocarcinoma. Acta Histochem. 2006;108(1):13–18. doi:10.1016/j.acthis.2006.01.004.
  • Hankinson SE, Willett WC, Colditz GA, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet. 1998;351(9113):1393–1396. doi:10.1016/S0140-6736(97)10384-1.
  • Mucci LA, Stark JR, Pollak MN, et al. Plasma levels of acid-labile subunit, free insulin-like growth factor-I, and prostate cancer risk: a prospective study. Cancer Epidemiol Biomarkers Prev. 2010;19(2):484–491. doi:10.1158/1055-9965.EPI-09-0836.
  • Ng ST, Zhou J, Adesanya OO, Wang J, LeRoith D, Bondy CA. Growth hormone treatment induces mammary gland hyperplasia in aging primates. Nat Med. 1997;3(10):1141–1144. doi:10.1038/nm1097-1141.
  • Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915–928. doi:10.1038/nrc2536.
  • Fouladi M, Perentesis JP, Wagner LM, et al. A Phase I Study of Cixutumumab (IMC-A12) in Combination with Temsirolimus (CCI-779) in Children with Recurrent Solid Tumors: A Children’s Oncology Group Phase I Consortium Report. Clin Cancer Res. 2015;21(7):1558–1565. doi:10.1158/1078-0432.Ccr-14-0595.
  • Wagner LM, Fouladi M, Ahmed A, et al. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62(3):440–444. doi:10.1002/pbc.25334.
  • Jenkins PJ, Fairclough PD, Richards T, et al. Acromegaly, colonic polyps and carcinoma. Clin Endocrinol. 1997;47(1):17–22. doi:10.1046/j.1365-2265.1997.1911029.x.
  • Friend KE, Radinsky R, McCutcheon IE. Growth hormone receptor expression and function in meningiomas: effect of a specific receptor antagonist. J Neurosurg. 1999;91(1):93–99. doi:10.3171/jns.1999.91.1.0093.
  • Ergun-Longmire B, Mertens AC, Mitby P, et al. Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J Clin Endocrinol Metab. 2006;91(9):3494–3498. doi:10.1210/jc.2006-0656.
  • Smith TR, Cote DJ, Jane JA, Jr., Laws ER.Jr. Physiological growth hormone replacement and rate of recurrence of craniopharyngioma: the Genentech National Cooperative Growth Study. J Neurosurg Pediatr. 2016;18(4):408–412. doi:10.3171/2016.4.Peds16112.
  • Sklar CA, Mertens AC, Mitby P, et al. Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2002;87(7):3136–3141. doi:10.1210/jcem.87.7.8606.
  • Thomas-Teinturier C, Oliver-Petit I, Pacquement H, et al. Influence of growth hormone therapy on the occurrence of a second neoplasm in survivors of childhood cancer. Eur J Endocrinol. 2020;183(4):471–480. doi:10.1530/eje-20-0369.
  • Price DA, Wilton P, Jonsson P, et al. Efficacy and safety of growth hormone treatment in children with prior craniopharyngioma: an analysis of the Pharmacia and Upjohn International Growth Database (KIGS) from 1988 to 1996. Horm Res. 1998;49(2):91–97. doi:10.1159/000023133.
  • Arslanian SA, Becker DJ, Lee PA, Drash AL, Foley TP.Jr. Growth hormone therapy and tumor recurrence. Findings in children with brain neoplasms and hypopituitarism. Am J Dis Child. 1985;139(4):347–350. doi:10.1001/archpedi.1985.02140060029020.
  • Meacham LR, Sullivan K. Characteristics of growth hormone therapy for pediatric patients with brain tumors in the National Cooperative Growth Study (NCGS) and from a survey of pediatric endocrinologists. J Pediatr Endocrinol Metab. 2002;15(Suppl 2):689–696. doi:10.1515/jpem.2002.15.s2.689.
  • Ogilvy-Stuart AL, Shalet SM. Tumour occurrence and recurrence. Horm Res. 1992;38 Suppl 1(Suppl 1):50–55. doi:10.1159/000182570.
  • Swerdlow AJ, Reddingius RE, Higgins CD, et al. Growth hormone treatment of children with brain tumors and risk of tumor recurrence. J Clin Endocrinol Metab. 2000;85(12):4444–4449. doi:10.1210/jcem.85.12.7044.
  • Olsson DS, Buchfelder M, Wiendieck K, et al. Tumour recurrence and enlargement in patients with craniopharyngioma with and without GH replacement therapy during more than 10 years of follow-up. Eur J Endocrinol. 2012;166(6):1061–1068. doi:10.1530/EJE-12-0077.
  • Karavitaki N, Warner JT, Marland A, et al. GH replacement does not increase the risk of recurrence in patients with craniopharyngioma. Clin Endocrinol. 2006;64(5):556–560. doi:10.1111/j.1365-2265.2006.02508.x.
  • Packer RJ, Boyett JM, Janss AJ, et al. Growth hormone replacement therapy in children with medulloblastoma: use and effect on tumor control. J Clin Oncol. 2001;19(2):480–487. doi:10.1200/JCO.2001.19.2.480.
  • Patterson BC, Chen Y, Sklar CA, et al. Growth hormone exposure as a risk factor for the development of subsequent neoplasms of the central nervous system: a report from the childhood cancer survivor study. J Clin Endocrinol Metab. 2014;99(6):2030–2037. doi:10.1210/jc.2013-4159.
  • Shen L, Sun CM, Li XT, Liu CJ, Zhou YX. Growth hormone therapy and risk of recurrence/progression in intracranial tumors: a meta-analysis. Neurol Sci. 2015;36(10):1859–1867. doi:10.1007/s10072-015-2269-z.
  • Mostoufi-Moab S, Grimberg A. Pediatric brain tumor treatment: growth consequences and their management. Pediatr Endocrinol Rev. 2010;8(1):6–17.
  • Pollock NI, Cohen LE. Growth hormone deficiency and treatment in childhood cancer survivors. Front Endocrinol (Lausanne). 2021;12:745932. doi:10.3389/fendo.2021.745932.
  • Gasco V, Caputo M, Cambria V, et al. Progression of pituitary tumours: impact of GH secretory status and long-term GH replacement therapy. Endocrine. 2019;63(2):341–347. doi:10.1007/s12020-018-1787-x.
  • Boguszewski MCS, Boguszewski CL, Chemaitilly W, et al. Safety of growth hormone ­replacement in survivors of cancer and intracranial and pituitary tumours: a consensus statement. Eur J Endocrinol. 2022;186(6):P35–P52. doi:10.1530/eje-21-1186.
  • Baserga R. The IGF-I receptor in cancer research. Exp Cell Res. 1999;253(1):1–6. doi:10.1006/excr.1999.4667.
  • Grimberg A. Mechanisms by which IGF-I may promote cancer. Cancer Biol Ther. 2003;2(6):630–635.
  • Petridou E, Dessypris N, Spanos E, et al. Insulin-like growth factor-I and binding protein-3 in relation to childhood leukaemia. Int J Cancer. 1999;80(4):494–496. doi:10.1002/(sici)1097-0215(19990209)80:4 < 494::aid-ijc2 > 3.0.co;2-k.
  • Cohen P, Clemmons DR, Rosenfeld RG. Does the GH-IGF axis play a role in cancer pathogenesis? Growth Horm IGF Res. 2000;10(6):297–305. doi:10.1054/ghir.2000.0171.
  • Pollak M. Insulin, insulin-like growth factors and neoplasia. Best Pract Res Clin Endocrinol Metab. 2008;22(4):625–638. doi:10.1016/j.beem.2008.08.004.
  • Vewinger N, Huprich S, Seidmann L, et al. IGF1R is a potential new therapeutic target for HGNET-BCOR brain tumor patients. Int J Mol Sci. 2019;20(12):3027. doi:10.3390/ijms20123027.
  • Svalina MN, Kikuchi K, Abraham J, et al. IGF1R as a key target in high risk, metastatic medulloblastoma. Sci Rep. 2016;6:27012. doi:10.1038/srep27012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.