178
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Research progress on the formation, function, and impact of calcium oxalate crystals in plants

, , &
Pages 31-60 | Received 17 Jul 2023, Accepted 18 Jan 2024, Published online: 13 Feb 2024

References

  • Prychid CJ, Rudall PJ. Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Ann Bot. 1999;84:725–739. doi:10.1006/anbo.1999.0975
  • Nakata PA. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci. 2003;164:901–909. doi:10.1016/S0168-9452(03)00120-1
  • Yu L, Jiang J, Zhang C, et al. Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J Exp Bot. 2010;61:1625–1634. doi:10.1093/jxb/erq028
  • Franceschi VR, Horner HT. Calcium oxalate crystals in plants. Bot Rev. 1980;46:361–427. doi:10.1007/BF02860532
  • Tütüncü Konyar S, Öztürk N, Dane F. Occurrence, types and distribution of calcium oxalate crystals in leaves and stems of some species of poisonous plants. Bot Stud. 2014;55:32. doi:10.1186/1999-3110-55-32
  • Faheed F, Mazen A, Elmohsen S. Physiological and ultrastructural studies on calcium oxalate crystal formation in some plants. Turk J Bot. 2013;37:139–152.
  • Raman V, Horner HT, Khan IA. New and unusual forms of calcium oxalate raphide crystals in the plant kingdom. J Plant Res. 2014;127:721–730. doi:10.1007/s10265-014-0654-y
  • Contreras-Padilla M, Pérez-Torrero E, Hernández-Urbiola MI, et al. Evaluation of oxalates and calcium in nopal pads (Opuntia ficus-indica var. redonda) at different maturity stages. J Food Compost Anal. 2011;24:38–43. doi:10.1016/j.jfca.2010.03.028
  • Paiva EAS. Are calcium oxalate crystals a dynamic calcium store in plants? New Phytol. 2019;223:1707–1711. doi:10.1111/nph.15912
  • Ruiz N, Ward D, Saltz D. Calcium oxalate crystals in leaves of Pancratiumsickenbergeri: constitutive or induced defence? Funct Ecol. 2002;16:99–105. doi:10.1046/j.0269-8463.2001.00594.x
  • Paiva ÉAS. Do calcium oxalate crystals protect against herbivory? Sci Nat. 2021;108:24. doi:10.1007/s00114-021-01735-z
  • Tooulakou G, Giannopoulos A, Nikolopoulos D, et al. Alarm photosynthesis: calcium oxalate crystals as an internal CO2 source in plants. Plant Physiol. 2016;171:2577–2585. doi:10.1104/pp.16.00111
  • Fu L, Chen F, Zhao S, et al. Analysis of coumarin in food and plant tissue without extraction based on voltammetry of microparticles. J Food Meas Charact. 2021;15:5439–5444. doi:10.1007/s11694-021-01098-z
  • Zheng Y, Li X, Han F, et al. Identification of foliage plants Heuchera based on electrochemical profile of active molecules. Int J Electrochem Sci. 2021;16:211136. doi:10.20964/2021.11.44
  • Yang R, Fan B, Wang S, et al. Electrochemical voltammogram recording for identifying varieties of ornamental plants. Micromachines (Basel). 2020;11:967. doi:10.3390/mi11110967
  • Kapridaki C, Verganelaki A, Dimitriadou P, et al. Conservation of monuments by a three-layered compatible treatment of TEOS-nano-calcium oxalate consolidant and TEOS-PDMS-TiO2 hydrophobic/photoactive hybrid nanomaterials. Materials (Basel). 2018;11:684. doi:10.3390/ma11050684
  • Ahmed S, Hasan MM, Khan H, et al. The mechanistic insight of polyphenols in calcium oxalate urolithiasis mitigation. Biomed Pharmacother. 2018;106:1292–1299. doi:10.1016/j.biopha.2018.07.080
  • Weber E, Verch A, Levy D, et al. Amorphous biogenic calcium oxalate. ChemistrySelect. 2016;1:132–135. doi:10.1002/slct.201600039
  • Le QTN, Vivas EL, Cho K. Calcium oxalate/calcium silicate hydrate (Ca-Ox/C-S-H) from blast furnace slag for the highly efficient removal of Pb2 + and Cd2 + from water. J Environ Chem Eng. 2021;9:106287. doi:10.1016/j.jece.2021.106287
  • Verganelaki A, Kilikoglou V, Karatasios I, et al. A biomimetic approach to strengthen and protect construction materials with a novel calcium-oxalate–silica nanocomposite. Constr Build Mater. 2014;62:8–17. doi:10.1016/j.conbuildmat.2014.01.079
  • Monje PV, Baran EJ. Characterization of calcium oxalates generated as biominerals in cacti. Plant Physiol. 2002;128:707–713. doi:10.1104/pp.010630
  • Groom P. Preliminary note on the relation between calcium and the conduction op carbohydrates in plants. Ann Bot. 1896;os-10:91–96. doi:10.1093/oxfordjournals.aob.a088602
  • Weber RA. Raphides, the cause of the acridity of certain plant. J Am Chem Soc. 1891;13:215–217. doi:10.1021/ja02124a034
  • Kraemer H. The crystals in datura stramonium L. Bull Torrey Bot Club. 1900;27:37–39. doi:10.2307/2477741
  • Poll A. Plant-Crystals. J R Microsc Soc. 1882;2:597–600. doi:10.1111/j.1365-2818.1882.tb00196.x
  • Wager H. Use of calcium is to neutralize this poisonous salt. Schimper also proved that sugar can travel in leaves containing no appreciable. Ann Bot. 1896;10:91.
  • Von Sachs J. History of botany (1530-1860). Read Books Ltd; 2013.
  • Franceschi V. Calcium oxalate in plants. Trends Plant Sci. 2001;6:331. doi:10.1016/S1360-1385(01)02014-3
  • Sunell LA, Healey PL. Distribution of calcium oxalate crystal idioblasts in corms of taro (Colocasia esculenta). Am J Bot. 1979;66:1029–1032. doi:10.1002/j.1537-2197.1979.tb06318.x
  • Tilton V, Horner Jr H. Calcium oxalate raphide crystals and crystalliferous idioblasts in the carpels of Ornithogalum caudatum. Ann Bot. 1980;46:533–539. doi:10.1093/oxfordjournals.aob.a085951
  • Schadel W, Walter W. Calcium oxalate crystals in the roots of sweet Potato1. J Am Soc Hortic Sci. 1980;105:851–854. doi:10.21273/JASHS.105.6.851
  • Gallaher R. The occurrence of calcium in plant tissue as crystals of calcium oxalate. Commun Soil Sci Plant Anal. 1975;6:315–330. doi:10.1080/00103627509366570
  • Christiansen M, Foy C. Fate and function of calcium in tissue. Commun Soil Sci Plant Anal. 1979;10:427–442. doi:10.1080/00103627909366906
  • Ilarslan H, Palmer R, Imsande J, et al. Quantitative determination of calcium oxalate and oxalate in developing seeds of soybean (Leguminosae). Am J Bot. 1997;84:1042–1046. doi:10.2307/2446147
  • Ward D, Spiegel M, Saltz D. Gazelle herbivory and interpopulation differences in calcium oxalate content of leaves of a desert lily. J Chem Ecol. 1997;23:333–346. doi:10.1023/B:JOEC.0000006363.34360.9d
  • Finley DS. Patterns of calcium oxalate crystals in young tropical leaves: a possible role as an anti-herbivory defense. Revista de Biología Tropical. 1999;47:27–31.
  • Arnott HJ, Webb MA. Twinned raphides of calcium oxalate in grape (vitis): implications for crystal stability and function. Int J Plant Sci. 2000;161:133–142. doi:10.1086/314230
  • Kostman TA, Franceschi VR. Cell and calcium oxalate crystal growth is coordinated to achieve high-capacity calcium regulation in plants. Protoplasma. 2000;214:166–179. doi:10.1007/BF01279061
  • McConn MM, Nakata PA. Oxalate reduces calcium availability in the pads of the prickly pear cactus through formation of calcium oxalate crystals. J Agric Food Chem. 2004;52:1371–1374. doi:10.1021/jf035332c
  • Franceschi VR, Schueren AM. Incorporation of strontium into plant calcium oxalate crystals. Protoplasma. 1986;130:199–205. doi:10.1007/BF01276601
  • Jáuregui-Zúñiga D, Reyes-Grajeda J, Sepúlveda-Sánchez J, et al. Crystallochemical characterization of calcium oxalate crystals isolated from seed coats of Phaseolus vulgaris and leaves ofVitis vinifera. J Plant Physiol. 2003;160:239–245. doi:10.1078/0176-1617-00947
  • Liang H, Maynard CA, Allen RD, et al. Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol. 2001;45:619–629. doi:10.1023/A:1010631318831
  • Nakata PA, McConn MM. Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation1. Plant Physiol. 2000;124:1097–1104. doi:10.1104/pp.124.3.1097
  • Donaldson PA, Anderson T, Lane BG, et al. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. Physiol Mol Plant Pathol. 2001;59:297–307. doi:10.1006/pmpp.2001.0369
  • Matsushima U, Hilger A, Graf W, et al. Calcium oxalate crystal distribution in rose peduncles: non-invasive analysis by synchrotron X-ray micro-tomography. Postharvest Biol Technol. 2012;72:27–34. doi:10.1016/j.postharvbio.2012.04.013
  • Tazzoli V, Domeneghetti C. The crystal structures of whewellite and weddellite: re-examination and comparison. Am Min. 1980;65:327–334.
  • Zhao W, Sharma N, Jones F, et al. Anhydrous calcium oxalate polymorphism: a combined computational and synchrotron X-ray diffraction study. Cryst Growth Des. 2016;16:5954–5965. doi:10.1021/acs.cgd.6b01005
  • Daudon M, Bazin D, André G, et al. Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J Appl Crystallogr. 2009;42:109–115. doi:10.1107/S0021889808041277
  • Stephens W. Whewellite and its key role in living systems. Geol Today. 2012;28:180–185. doi:10.1111/j.1365-2451.2012.00849.x
  • Lafuente B, Downs RT, Yang H, et al. 1. The power of databases: the RRUFF project. In: Highlights in mineralogical crystallography. 2015. p. 1–30.
  • Deganello S, Kampf AR, Moore PB. The crystal structure of calcium oxalate trihydrate: Ca (H2O) 3 (C2O4). Am Min. 1981;66:859–865.
  • Baran EJ. Natural oxalates and their analogous synthetic complexes. J Coord Chem. 2014;67:3734–3768. doi:10.1080/00958972.2014.937340
  • Echigo T, Kimata M, Kyono A, et al. Re-investigation of the crystal structure of whewellite [Ca (C2O4)· H2O] and the dehydration mechanism of caoxite [Ca (C2O4)· 3H2O]. Mineral Mag. 2005;69:77–88. doi:10.1180/0026461056910235
  • Ihli J, Wang Y-W, Cantaert B, et al. Precipitation of amorphous calcium oxalate in aqueous solution. Chem Mater. 2015;27:3999–4007. doi:10.1021/acs.chemmater.5b01642
  • Hajir M, Graf R, Tremel W. Stable amorphous calcium oxalate: synthesis and potential intermediate in biomineralization. Chem Commun. 2014;50:6534–6536. doi:10.1039/C4CC02146K
  • Izatulina AR, Gurzhiy VV, Krzhizhanovskaya MG, et al. Hydrated calcium oxalates: crystal structures, thermal stability, and phase evolution. Cryst Growth Des. 2018;18:5465–5478. doi:10.1021/acs.cgd.8b00826
  • Hochrein O, Thomas A, Kniep R. Revealing the crystal structure of anhydrous calcium oxalate, Ca [C2O4], by a combination of atomistic simulation and rietveld refinement. Zeitschrift für anorganische und allgemeine Chemie. 2008;634:1826–1829. doi:10.1002/zaac.200800207
  • Nuss RF, Loewus FA. Further studies on oxalic acid biosynthesis in oxalate-accumulating plants. Plant Physiol. 1978;61:590–592. doi:10.1104/pp.61.4.590
  • Zindler-Frank E. Oxalate biosynthesis in relation to photosynthetic pathway and plant productivity – a survey. Zeitschrift für Pflanzenphysiologie. 1976;80:1–13. doi:10.1016/S0044-328X(76)80044-X
  • Ohno KM, Clausen CA, Green F, et al. Insights into the mechanism of copper-tolerance in Fibroporia radiculosa: the biosynthesis of oxalate. Int Biodeterior Biodegradation. 2015;105:90–96. doi:10.1016/j.ibiod.2015.08.016
  • Guo Z, Tan H, Zhu Z, et al. Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. Plant Physiol Biochem. 2005;43:955–962. doi:10.1016/j.plaphy.2005.08.007
  • Li XX, Franceschi VR. Distribution of peroxisomes and glycolate metabolism in relation to calcium oxalate formation in Lemna minor L. Eur J Cell Biol. 1990;51:9–16.
  • Loewus FA. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry. 1999;52:193–210. doi:10.1016/S0031-9422(99)00145-4
  • Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001;59:270–276. doi:10.1046/j.1523-1755.2001.00488.x
  • Keates SE, Tarlyn NM, Loewus FA, et al. L-Ascorbic acid and L-galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes. Phytochemistry. 2000;53:433–440. doi:10.1016/S0031-9422(99)00448-3
  • Kostman TA, Tarlyn NM, Franceschi VR. Research note:Autoradiography utilising labelled ascorbic acid reveals biochemical and morphological details in diverse calcium oxalate crystal-forming species. Funct Plant Biol. 2007;34:339–342. doi:10.1071/FP06275
  • Kostman TA, Tarlyn NM, Loewus FA, et al. Biosynthesis of l-Ascorbic acid and conversion of carbons 1 and 2 of l-Ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts1. Plant Physiol. 2001;125:634–640. doi:10.1104/pp.125.2.634
  • Green MA, Fry SC. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-l-threonate. Nature. 2005;433:83–87. doi:10.1038/nature03172
  • Kostman TA, Franceschi VR, Nakata PA. Endoplasmic reticulum sub-compartments are involved in calcium sequestration within raphide crystal idioblasts of Pistia stratiotes L. Plant Sci. 2003;165:205–212. doi:10.1016/S0168-9452(03)00160-2
  • Parsons HT, Yasmin T, Fry SC. Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem J. 2011;440:375–385. doi:10.1042/BJ20110939
  • Kartal C. Calcium oxalate crystals in some species of the Tribe Cardueae (Asteraceae). Bot Sci. 2016;94:107–119. doi:10.17129/botsci.259
  • Golob A, Stibilj V, Nečemer M, et al. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum. J Photochem Photobiol B, Biol. 2018;180:51–55. doi:10.1016/j.jphotobiol.2018.01.018
  • Nakata PA. Engineering calcium oxalate crystal formation in arabidopsis. Plant Cell Physiol. 2012;53:1275–1282. doi:10.1093/pcp/pcs071
  • Foster J, Luo B, Nakata PA. An Oxalyl-CoA dependent pathway of oxalate catabolism plays a role in regulating calcium oxalate crystal accumulation and defending against oxalate-secreting phytopathogens in Medicago truncatula. PLoS One. 2016;11:e0149850.
  • Zhang X-M, Liu L-X, Su Z-M, et al. Transcriptome analysis of Medicago lupulina seedlings leaves treated by high calcium provides insights into calcium oxalate formation. Plant Soil. 2019;444:299–314. doi:10.1007/s11104-019-04283-8
  • Hao Z, Kuang Y, Kang M. Untangling the influence of phylogeny, soil and climate on leaf element concentrations in a biodiversity hotspot. Funct Ecol. 2015;29:165–176. doi:10.1111/1365-2435.12344
  • Lersten NR, Horner HT. Calcium oxalate crystal types and trends in their distribution patterns in leaves ofPrunus (Rosaceae: Prunoideae). Pl Syst Evol. 2000;224:83–96. doi:10.1007/BF00985267
  • Viñas M, Jiménez VM. Occurrence and characterisation of calcium oxalate crystals in stems and fruits of Hylocereus costaricensis and Selenicereus megalanthus (Cactaceae: Hylocereeae). Micron. 2016;89:21–27. doi:10.1016/j.micron.2016.07.002
  • Monje PV, Baran EJ. Characterization of calcium oxalate biominerals in some (non-Cactaceae) succulent plant species. Zeitschrift für Naturforschung C. 2010;65:429–432. doi:10.1515/znc-2010-7-801
  • Monje PV, Baran EJ. Characterization of calcium oxalate biominerals in Pereskia species (Cactaceae). Zeitschrift für Naturforschung C. 2009;64:763–766. doi:10.1515/znc-2009-11-1201
  • Frausto-Reyes C, Loza-Cornejo S, Terrazas T, et al. Raman spectroscopy study of calcium oxalate extracted from cacti stems. Appl Spectrosc. 2014;68:1260–1265. doi:10.1366/14-07485
  • Tooulakou G, Giannopoulos A, Nikolopoulos D, et al. Reevaluation of the plant “gemstones”: calcium oxalate crystals sustain photosynthesis under drought conditions. Plant Signal Behav. 2016;11:e1215793. doi:10.1080/15592324.2016.1215793
  • Gómez-Espinoza O, González-Ramírez D, Bresta P, et al. Decomposition of calcium oxalate crystals in Colobanthus quitensis under CO2 limiting conditions. Plants. 2020;9:1307. doi:10.3390/plants9101307
  • Volk GM, Lynch-Holm VJ, Kostman TA, et al. The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol (Stuttg). 2002;4:34–45. doi:10.1055/s-2002-20434
  • Smith KT, Shortle WC, Connolly JH, et al. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce. Environ Exp Bot. 2009;67:277–283. doi:10.1016/j.envexpbot.2009.07.007
  • Hocking B, Tyerman SD, Burton RA, et al. Fruit calcium: transport and physiology. Front Plant Sci [Internet]. 2016 [cited 2023 Jul 14]:7. Available from: https://www.frontiersin.org/articles/10.3389fpls.2016.00569
  • Lee JG, Choi CS, Jang YA, et al. Effects of air temperature and air flow rate control on the tipburn occurrence of leaf lettuce in a closed-type plant factory system. Hortic Environ Biotechnol. 2013;54:303–310. doi:10.1007/s13580-013-0031-0
  • Nakata PA. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula. Plant Sci. 2012;185-186:246–249.
  • Tang R-J, Luan S. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Curr Opin Plant Biol. 2017;39:97–105. doi:10.1016/j.pbi.2017.06.009
  • Volk GM, Franceschi VR. Localization of a calcium channel-like protein in the sieve element plasma membrane. Functional Plant Biol. 2000;27:779–784. doi:10.1071/PP99192
  • McAinsh MR, Pittman JK. Shaping the calcium signature. New Phytol. 2009;181:275–294. doi:10.1111/j.1469-8137.2008.02682.x
  • Hudgins JW, Krekling T, Franceschi VR. Distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism? New Phytol. 2003;159:677–690. doi:10.1046/j.1469-8137.2003.00839.x
  • Kuschel G. Curculionid (Coleoptera: Curculionoidea) fauna of Araucaria araucana. Revista Chilena de Entomología. 2000;27:41–51.
  • Bergin DO. Current knowledge relevant to management of Podocarpus totara for timber. N Z J Bot. 2000;38:343–359. doi:10.1080/0028825X.2000.9512687
  • Petejova N, Martinek A, Zadrazil J, et al. Acute toxic kidney injury. Ren Fail. 2019;41:576–594. doi:10.1080/0886022X.2019.1628780
  • Hanley ME, Lamont BB, Fairbanks MM, et al. Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Evol Syst. 2007;8:157–178. doi:10.1016/j.ppees.2007.01.001
  • Konno K, Inoue TA, Nakamura M. Synergistic defensive function of raphides and protease through the needle effect. PLoS One. 2014;9:e91341. doi:10.1371/journal.pone.0091341
  • Coté GG. Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae). Am J Bot. 2009;96:1245–1254. doi:10.3732/ajb.0800276
  • Kaur I, Kariyat R. Eating barbed wire: Direct and indirect defensive roles of non-glandular trichomes. Plant Cell Environ. 2020: 43.
  • Karabourniotis G, Horner HT, Bresta P, et al. New insights into the functions of carbon–calcium inclusions in plants. New Phytol. 2020;228:845–854. doi:10.1111/nph.16763
  • He H, Veneklaas EJ, Kuo J, et al. Physiological and ecological significance of biomineralization in plants. Trends Plant Sci. 2014;19:166–174. doi:10.1016/j.tplants.2013.11.002
  • Uren NC. Calcium oxalate in soils, its origins and fate – a review. Soil Res. 2018;56:443–450. doi:10.1071/SR17244
  • Cailleau G, Mota M, Bindschedler S, et al. Detection of active oxalate–carbonate pathway ecosystems in the Amazon Basin: global implications of a natural potential C sink. CATENA. 2014;116:132–141. doi:10.1016/j.catena.2013.12.017
  • Bravo D, Braissant O, Cailleau G, et al. Isolation and characterization of oxalotrophic bacteria from tropical soils. Arch Microbiol. 2015;197:65–77. doi:10.1007/s00203-014-1055-2
  • Bolland MDA, Allen DG. Spatial variation of soil test phosphorus and potassium, oxalate-extractable iron and aluminum, phosphorus-retention index, and organic carbon content in soils of Western Australia. Commun Soil Sci Plant Anal. 1998;29:381–392. doi:10.1080/00103629809369952
  • Graustein WC, Cromack K, Sollins P. Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science. 1977;198:1252–1254. doi:10.1126/science.198.4323.1252
  • Peschiutta ML, Bucci SJ, Goldstein G, et al. Leaf herbivory and calcium oxalate crystal production in Prunus avium. Arthropod Plant Interact. 2020;14:727–732. doi:10.1007/s11829-020-09781-6
  • Parsons RF, Attiwill PM, Uren NC, et al. Calcium oxalate and calcium cycling in forest ecosystems. Trees. 2022;36:531–536. doi:10.1007/s00468-021-02226-4
  • Syed S, Buddolla V, Lian B. Oxalate carbonate pathway—conversion and fixation of soil carbon—a potential scenario for sustainability. Front Plant Sci [Internet]. 2020 [cited 2023 Jul 14];11. Available from: https://www.frontiersin.org/articles/10.3389fpls.2020.591297
  • Albert A, Tiwari V, Paul E, et al. Oral administration of oxalate-enriched spinach extract as an improved methodology for the induction of dietary hyperoxaluric nephrocalcinosis in experimental rats. Toxicol Mech Methods. 2018;28:195–204. doi:10.1080/15376516.2017.1388459
  • Nayagam JR, Rajan R. Calcium oxalate crystals as raw food antinutrient: a review. J Pharm Res Int. 2021;33:295–301. doi:10.9734/jpri/2021/v33i41B32368
  • Gouveia CSS, Lebot V, Pinheiro de Carvalho M. Nirs estimation of drought stress on chemical quality constituents of taro (Colocasia esculenta L.) and sweet potato (Ipomoea batatas L.) flours. Appl Sci. 2020;10:8724. doi:10.3390/app10238724
  • Taylor EN, Curhan GC. Oxalate intake and the risk for nephrolithiasis. J Am Soc Nephrol. 2007;18:2198. doi:10.1681/ASN.2007020219
  • Park S-H, Doege SJ, Nakata PA, et al. Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties. Entomol Exp Appl. 2009;131:208–215. doi:10.1111/j.1570-7458.2009.00846.x
  • Nelson LS, Shih RD, Balick MJ, et al. Handbook of poisonous and injurious plants. Springer; 2007.
  • Mrvos R, Dean BS, Krenzelok EP. Philodendron/dieffenbachia ingestions: are they a problem? J Toxicol: Clin Toxicol. 1991;29:485–491. doi:10.3109/15563659109025745
  • Brzica H, Breljak D, Burckhardt BC, et al. Oxalate: from the environment to kidney stones. Arh Hig Rada Toksikol. 2013;64:609–630. doi:10.2478/10004-1254-64-2013-2428
  • Massey LK, Roman-Smith H, Sutton RAL. Effect of dietary oxalate and calcium on urinary oxalate and risk of formation of calcium oxalate kidney stones. J Am Diet Assoc. 1993;93:901–906. doi:10.1016/0002-8223(93)91530-4
  • Daudon M, Bazin D, Letavernier E. Randall’s plaque as the origin of calcium oxalate kidney stones. Urolithiasis. 2015;43:5–11. doi:10.1007/s00240-014-0703-y
  • Holmes RP, Assimos DG. The impact of dietary oxalate on kidney stone formation. Urol Res. 2004;32:311–316. doi:10.1007/s00240-004-0437-3
  • Okumura N, Tsujihata M, Momohara C, et al. Diversity in protein profiles of individual calcium oxalate kidney stones. PLoS One. 2013;8:e68624. doi:10.1371/journal.pone.0068624
  • Taguchi K, Okada A, Unno R, et al. Macrophage function in calcium oxalate kidney stone formation: a systematic review of literature. Front Immunol [Internet]. 2021 [cited 2023 Jul 14];12. Available from: https://www.frontiersin.org/articles/10.3389fimmu.2021.673690
  • Mitchell T, Kumar P, Reddy T, et al. Dietary oxalate and kidney stone formation. Am J Physiol-Renal Physiol. 2019;316:F409–F413. doi:10.1152/ajprenal.00373.2018
  • Nguyen HaV.H, Savage GP. Oxalate bioaccessibility in raw and cooked rhubarb (Rheum Rhabarbarum L.) during in vitro digestion. J Food Compost Anal. 2020;94:103648. doi:10.1016/j.jfca.2020.103648
  • Liebman M, Murphy S. Low oxalate bioavailability from black tea. Nutr Res. 2007;27:273–278. doi:10.1016/j.nutres.2007.04.004
  • Santamaria P, Elia A, Serio F, et al. A survey of nitrate and oxalate content in fresh vegetables. J Sci Food Agric. 1999;79:1882–1888.
  • Horner A-WI, Palmer HT, G R, et al. Oxalate and phytate of soy foods. J Agric Food Chem. 2005;53:5670–5674. doi:10.1021/jf0506378
  • Ritter M, Savage G. Soluble and insoluble oxalate content of nuts. J Food Compost Anal. 2007;20:169–174. doi:10.1016/j.jfca.2006.12.001
  • Savage G, Klunklin W. Oxalates are found in many different European and Asian foods-effects of cooking and processing. J Food Res. 2018;7:76–81. doi:10.5539/jfr.v7n3p76
  • Bredariol P, de Carvalho RA, Vanin FM. The effect of baking conditions on protein digestibility, mineral and oxalate content of wheat breads. Food Chem. 2020;332:127399. doi:10.1016/j.foodchem.2020.127399
  • Huynh NK, Nguyen DH, Nguyen HV. Effects of processing on oxalate contents in plant foods: a review. J Food Compost Anal. 2022;112:104685. doi:10.1016/j.jfca.2022.104685
  • Laffite G, Leroy C, Bonhomme C, et al. Calcium oxalate precipitation by diffusion using laminar microfluidics: toward a biomimetic model of pathological microcalcifications. Lab Chip. 2016;16:1157–1160. doi:10.1039/C6LC00197A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.