95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genetic Variability and Its Influence on the Fermentative Parameters of Kluyveromyces marxianus

, ORCID Icon, , , , , & ORCID Icon show all

References

  • Alcazar-Valle, M., A. Gschaedler, H. Gutierrez-Pulido, A. Arana-Sanchez, and M. Arellano-Plaza. 2019. Fermentative capabilities of native yeast strains grown on juices from different agave species used for tequila and mezcal production. Braz. J. Microbiol. 50 (2):379–388. doi:10.1007/s42770-019-00049-7.
  • Almeida, I. C., T. F. Pacheco, F. Machado, and S. B. Gonçalves. 2022. Evaluation of different strains of Saccharomyces cerevisiae for ethanol production from high-amylopectin BRS AG rice (Oryza sativa L.). Sci. Rep. 12 (1):1–15. doi:10.1038/s41598-022-06245-0.
  • Alvarez-Ainza, M. L., A. García-Galaz, H. González-Ríos, G. Macrina Moreno-Ibarra, M. De la Torre-Martínez, K. Alejandra Zamora-Quiñones, and E. Acedo-Félix. (2020). Characterization and selection of native yeast isolated from natural fermentation for the production of the artisanal beverage bacanora Caracterización y selección de levaduras nativas aisladas de la fermentación natural de la producción artesanal de la b. 21–27. http://biotecnia.unison.mx.
  • Belloch, C., E. Barrio, M. D. García, and A. Querol. 1998. Inter–and intraspecific chromosome pattern variation in the yeast genus kluyveromyces. Yeast 14 (15):1341–1354. doi:10.1002/(SICI)1097-0061(199811)14:15<1341:AID-YEA328>3.0.CO;2-U.
  • Chen, K., C. Liu, Y. Wang, Z. Wang, F. Li, L. Ma, and J. Li. 2021. Predominance of indigenous non-saccharomyces yeasts in the traditional fermentation of greengage wine and their significant contribution to the evolution of terpenes and ethyl esters. Food. Res. Int. 143:2–11. doi:10.1016/j.foodres.2021.110253.
  • Crafack, M., M. B. Mikkelsen, S. Saerens, M. Knudsen, A. Blennow, S. Lowor, J. Takrama, J. H. Swiegers, G. B. Petersen, H. Heimdal, et al. 2013. Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. Int. J. Food Microbiol. 167 (1):103–116. doi:10.1016/j.ijfoodmicro.2013.06.024.
  • da Silva, B., L. V. Gonzaga, R. Fett, and A. C. O. Costa. 2019. Simplex-centroid design and derringer’s desirability function approach for simultaneous separation of phenolic compounds from Mimosa scabrella Bentham honeydew honeys by HPLC/DAD. J. Chromatogr. A. 1585:182–191. doi:10.1016/j.chroma.2018.11.072.
  • Dunn, B., R. P. Levine, and G. Sherlock. 2005. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genom. 53:1–21. doi:10.1186/1471-2164-6-53.
  • Ejiofor, A. O., Y. Chisti, and M. Moo-Young. 1996. Culture of Saccharomyces cerevisiae on hydrolyzed waste cassava starch for production of baking-quality yeast. Enzyme Microb. Technol. 18 (7):519–525. doi:10.1016/0141-0229(95)00166-2.
  • Escalante-Minakata, P., H. P. Blaschek, A. P. Barba de la Rosa, L. Santos, and A. De León-Rodríguez. 2008. Identification of yeast and bacteria involved in the mezcal fermentation of agave salmiana. Lett. Appl. Microbiol. 46:626–630. doi:10.1111/j.1472-765X.2008.02359.x.
  • Fassoli, G., R. Tofalo, R. Lanciotti, M. Schirone, F. Patrignani, G. Perpetuini, and G. Suzzi. 2015. Chromosome arrangement, differentiation of growth kinetics and volatile molecule profiles in Kluyveromyces marxianus strains from Italian cheeses. Int. J. Food Microbiol. 214:151–158. doi:10.1016/j.ijfoodmicro.2015.08.001.
  • García, B. E., E. Rodríguez, Y. Salazar, P. A. Valle, A. C. Flores-Gallegos, O. M. Rutiaga-Quiñones, and R. Rodríguez-Herrera. 2021. Primary model for biomass growth prediction in batch fermentation. Symmetry 13 (8):1468. doi:https://doi.org/10.3390/sym13081468.
  • Henriques, D., J. Alonso-Del-Real, A. Querol, and E. Balsa-Canto. 2018. Saccharomyces cerevisiae and S. kudriavzevii synthetic wine fermentation performance dissected by predictive modeling. Front. Microbiol. 9:1–14. doi:10.3389/fmicb.2018.00088.
  • Inokuma, K., J. Ishii, K. Y. Hara, M. Mochizuki, T. Hasunuma, and A. Kondo. 2015. Complete genome sequence of Kluyveromyces marxianus NBRC1777, a nonconventional thermotolerant yeast. Genome. Announc. 3 (2):e00389–15. doi:10.1128/genomeA.00389-15.
  • Jiménez-Islas, D., J. Páez-Lerma, N. O. Soto-Cruz, and J. Gracida. 2014. Modelling of ethanol production from red beet juice by Saccharomyces cerevisiae under thermal and acid stress conditions. Food. Sci. Biotechnol. 52 (1):93–100.
  • Lane, M. M., and J. P. Morrissey. 2010. Kluyveromyces marxianus: A yeast emerging from its sister’s shadow. Fungal. Bio. Rev. 24 (1–2):17–26. doi:10.1016/j.fbr.2010.01.001.
  • Lara-Hidalgo, C, S. W. Ruiz-Valdiviezo, and M. A. Archila. 2017. Agave americana honey fermentation by Kluyveromyces marxianus strain for “comiteco” production, a spirit from Mexican southeast. Revista Mexicana de Ingeniería Química 16 (3):771–779.
  • Lopes, C. A., M. E. Rodríguez, M. Sangorrín, A. Querol, and A. C. Caballero. 2007. Patagonian wines: The selection of an indigenous yeast starter. J. Ind. Microbiol. Biotechnol. 34:539–546. doi:10.1007/s10295-007-0227-3.
  • Martínez, C., S. Gac, A. Lavín, and M. Ganga. 2004. Genomic characterization of Saccharomyces cerevisiae strains isolated from wine-producing areas in South America. J. Appl. Microbiol. 96 (5):1161–1168. doi:10.1111/j.1365-2672.2004.02255.x.
  • Ortiz-Merino, R. A., J. A. Varela, A. Y. Coughlan, H. Hoshida, W. B. da Silveira, C. Wilde, and J. P. Morrissey. 2018. Ploidy variation in Kluyveromyces marxianus separates dairy and non-dairy isolates. Front. Genet. 9:94. doi:10.3389/fgene.2018.00094.
  • Pentjuss, A., E. Stalidzans, J. Liepins, A. Kokina, J. Martynova, P. Zikmanis, I. Mozga, R. Scherbaka, H. Hartman, M. G. Poolman, et al. 2017. Model-based biotechnological potential analysis of Kluyveromyces marxianus central metabolism. J. Ind. Microbiol. Biotechnol. 44 (8):1177–1190. doi:10.1007/s10295-017-1946-8.
  • Pérez, E., J. C. González-Hernández, M. C. Chávez-Parga, and C. Cortés-Penagos. 2013. Fermentative characterization of producers ethanol yeast from agave cupreata juice in mezcal elaboration. Revista Mexicana de Ingeniera Química 12 (3):451–461.
  • Perpetuini, G., F. Tittarelli, P. Mattarelli, M. Modesto, E. Cilli, G. Suzzi, and R. Tofalo. 2018. Intraspecies polymorphisms of Kluyveromyces marxianus strains from Yaghnob valley. FEMS Microbiol. Lett. 365 (6):fny028. doi:10.1093/femsle/fny028.
  • Petersen, K. M., and L. Jespersen. 2004. Genetic diversity of the species Debaryomyces hansenii and the use of chromosome polymorphism for typing of strains isolated from surface-ripened cheeses. J. App. Microb. 97:205–213. doi:10.1111/j.1365-2672.2004.02293.x.
  • Rebnegger, C., T. Vos, A. B. Graf, M. Valli, J. T. Pronk, P. Daran-Lapujade, D. Mattanovicha, and D. Cullen. 2016. Pichia pastoris exhibits high viability and a low maintenance energy requirement at near-zero specific growth rates. Appl. Environ. Microb. 82 (15):4570–4583. doi:10.1128/AEM.00638-16.
  • Ricci, A., A. Allende, D. Bolton, M. Chemaly, R. Davies, R. Girones, K. Koutsoumanis, L. Herman, R. Lindqvist, B. Nørrung, et al. 2017. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 5: Suitability of taxonomic units notified to EFSA until September 2016. EFSA. J. 15 (3):4663. doi:10.2903/j.efsa.2017.4663.
  • Salazar, Y., P. A. Valle, E. Rodríguez, N. O. Soto-Cruz, J. B. Páez-Lerma, and F. J. Reyes-Sánchez. 2023. Mechanistic modelling of biomass growth, glucose consumption and ethanol production by Kluyveromyces marxianus in batch fermentation. Entropy 25 (3):497. doi:10.3390/e25030497.
  • Schwartz, D. C., and C. R. Cantor. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell May 37 (1):67–75. PMID: 6373014. doi:10.1016/0092-8674(84)90301-5.
  • Solieri, L., S. Cassanelli, M. A. Croce, and P. Giudici. 2008. Genome size and ploidy level: New insights for elucidating relationships in zygosaccharomyces species. Fungal Genet. Biol. 45:1582–1590. doi:10.1016/j.fgb.2008.10.001.
  • Sor, F., and H. Fukuhara. 1989. Analysis of chromosomal DNA patterns of the genus kluyveromyces. Yeast 5 (1):1–10. doi:10.1002/yea.320050103.
  • Soto–Cruz, O., E. Favela–Torres, and G. Saucedo–Castañeda. 2002. Modeling of growth, lactate consumption, and volatile fatty acid production by megasphaera elsdenii cultivated in minimal and complex media. Biotechnol. Prog. 18 (2):193–200. doi:10.1021/bp010189y.
  • Vilanova, M., S. Zamuz, A. Masa, and C. Sieiro. 2007. Evaluation of PFGE and MTDNA restriction analysis methods to detect genetic diversity of Saccharomyces cerevisiae strains associated to vitis vinifera. J. Int. Sci. Vigne Vin. 41:155–159. doi:10.20870/oeno-one.2007.41.3.848.
  • Wacher, C., A. Cañas, E. Bárzana, P. Lappe, M. Ulloa, and J. D. Owens. 2000. Microbiology of Indian and mestizo pozol fermentations. Food Microbiol. 17:251–256. doi:10.1006/fmic.1999.0310.
  • Walker, G. M., and J. D. O’Neill. 1990. Morphological and metabolic changes in the yeast Kluyveromyces marxianus var. marxianus NRRLy2415 during fermentation of lactose. J. Chem. Technol. Biot. 49 (1):75–89. doi:10.1002/jctb.280490108.
  • Zafar, M., S. Kumar, S. Kumar, A. K. Dhiman, and H. S. Park. 2014. Maintenance-energy-dependent dynamics of growth and poly(3-hydroxybutyrate) [p(3hb)] production by azohydromonas lata mtcc 2311 using simple and renewable carbon substrates. Braz. J. Chem. Eng. 31 (2):313–323. doi:10.1590/0104-6632.20140312s00002434.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.