100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Perspective of Streptococcus thermophilus Strains as New Probiotics Derived from the Breast Milk of Indian Mothers

, , &

References

  • Afrin, S., S. Akter, S. Begum, and M. N. Hossain. 2021. The prospects of Lactobacillus oris as a potential probiotic with cholesterol-reducing property from mother’s milk. Front. Nutr. 8:619506. doi:10.3389/fnut.2021.619506.
  • Arboleya, S., P. Ruas-Madiedo, A. Margolles, G. Solis, S. Salminen, G. Clara, and M. Gueimonde. 2011. Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int. J. Food Microbiol. 149 (1):28–36. doi:10.1016/j.ijfoodmicro.2010.10.036.
  • Arena, M. P., V. Capozzi, G. Spano, and D. Fiocco. 2017. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl. Microbiol. Biotechnol. 101 (7):2641–2657. doi:10.1007/s00253-017-8182-z.
  • Argyri, A. A., G. Zoumpopoulou, K. A. G. Karatzas, E. Tsakalidou, G. J. E. Nychas, E. Z. Panagou, and C. C. Tassou. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33 (2):282–291. doi:10.1016/j.fm.2012.10.005.
  • Asan-Ozusaglam, M., and A. Gunyakti. 2019. Lactobacillus fermentum strains from human breast milk with probiotic properties and cholesterol-lowering effects. Food Sci. Biotechnol. 28 (2):501–509. doi:10.1007/s10068-018-0494-y.
  • Ballard, O., and A. L. Morrow. 2013. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. North Am. 60 (1):49–74. doi:10.1016/j.pcl.2012.10.002.
  • Ballesta, S., C. Velasco, M. V. Borobio, F. Argueelles, and E. J. Perea. 2008. Fresh versus pasteurized yogurt: Comparative study of the effects on microbiological and immunological parameters, and gastrointestinal comfort. Enferm. Infecc. Microbiol. Clin. 26 (9):552–557. doi:10.1157/13128271.
  • Ban, O. H., S. Oh, C. Park, W. Y. Bang, B. S. Lee, S. Y. Yang, S. A. Chae, Y. H. Jung, and J. Yang. 2020. Safety assessment of Streptococcus thermophilus IDCC 2201 used for product manufacturing in Korea. Food Sci. Nutr. 8 (11):6269–6274. doi:10.1002/fsn3.1925.
  • Burton, J. P., R. M. Chanyi, and M. Schultz. 2017. Common organisms and probiotics: Streptococcus thermophilus (Streptococcus salivarius subsp. thermophilus). In The microbiota in gastrointestinal pathophysiology, ed. Martin H. Floch, Yehuda Ringel and W. Allan Walker, 165–169. USA: Academic Press.
  • Carevic, M., M. Vukasinovic-Sekulic, S. Grbavcic, M. Stojanovic, M. Mihailovic, A. Dimitrijevic, and A. Bezbradica. 2015. Optimization of β-galactosidase production from lactic acid bacteria. Hem. Ind. 69 (3):305–312. doi:10.2298/HEMIND140303044C.
  • Casarotti, S. N., B. Carneiro, S. Todorov, L. Nero, P. Rahal, and A. Penna. 2017. In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Ann. Microbiol. 67 (4):289–301. doi:10.1007/s13213-017-1258-2.
  • CLSI. 2014. Performance standard for antimicrobial susceptibility testing. Twenty—Forth Informational Supplement, 34:M100–S124 .
  • Condon, S. 1983. Aerobic metabolism of lactic acid bacteria. Ir. J. Food Sci. Technol 7 (1):15–25.
  • Corcoran, B. M., C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71 (6):3060–3067. doi:10.1128/AEM.71.6.3060-3067.2005.
  • Davis, C. D., and J. A. Milner. 2009. Gastrointestinal microflora, food components and colon cancer prevention. J. Nutr. Biochem. 20 (10):743–752. doi:10.1016/j.jnutbio.2009.06.001.
  • De Angelis, M., and M. Gobbetti. 2011. Lactic acid bacteria | Lactobacillus spp.: Generalcharacteristics. In Fuquay, encyclopedia of dairy sciences, ed. W. John, 2nd ed., 78–90. USA: Academic Press.
  • De Vries, M. C., E. E. Vaughan, M. Kleerebezem, and W. M. de Vos. 2006. Lactobacillus plantarum—Survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 16 (9):1018–1028. doi:10.1016/j.idairyj.2005.09.003.
  • Del Campo, R., D. Bravo, R. Canton, P. Ruiz-Garbajosa, R. García-Albiach, A. Montesi-Libois, F.-J. Yuste, V. Abraira, and F. Baquero. 2005. Scarce evidence of yogurt lactic acid bacteria in human feces after daily yogurt consumption by healthy volunteers. Appl. Environ. Microbiol. 71 (1):547–549. doi:10.1128/AEM.71.1.547-549.2005.
  • Diaz-Ropero, M. P., R. Martin, S. Sierra, F. Lara-Villoslada, J. M. Rodriguez, J. Xaus, and M. Olivares. 2007. Two Lactobacillus strains isolated from breast milk, differently modulate the immune response. J. Appl. Microbiol. 102 (2):337–343. doi:10.1111/j.1365-2672.2006.03102.x.
  • Duraisamy, S., F. Husain, S. Balakrishnan, A. Sathyan, P. Subramani, P. Chidambaram, S. Arokiyaraj, W. H. Al-Qahtani, J. Rajabathar, and A. Kumarasamy. 2022. Phenotypic assessment of probiotic and bacteriocinogenic efficacy of indigenous LAB strains from human breast milk. Curr. Issues Mol. Biol. 44 (2):731–749. doi:10.3390/cimb44020051.
  • Evivie, S. E., G. C. Huo, J. O. Igene, and X. Bian. 2017. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food Nutr. Res. 61 (1):1318034. doi:10.1080/16546628.2017.1318034.
  • Ghanbari, M., M. Jami, K. J. Domig, and W. Kneifel. 2013. Seafood biopreservation by lactic acid bacteria-A review. LWT-Food Sci. Technol. 54 (2):315–324. doi:10.1016/j.lwt.2013.05.039.
  • Gharbi, Y., I. Fhoula, P. Ruas-Madiedo, N. Afef, A. Boudabous, M. Gueimonde, and H. I. Ouzari. 2019. In vitro characterization of potentially probiotic Lactobacillus strains isolated from human microbiota: Interaction with pathogenic bacteria and the enteric cell line HT29. Ann. Microbiol. 69 (1):61–72. doi:10.1007/s13213-018-1396-1.
  • Hamad, G. M., N. M. Abdelmotilib, A. M. Z. Darwish, and A. M. Zeitoun. 2020. Commercial probiotic cell-free supernatants for inhibition of Clostridium perfringens poultry meat infection in Egypt. Anaerobe 62:102181. doi:10.1016/j.anaerobe.2020.102181.
  • Huang, L., H. Goda, M. Abdel-Hamid, J. A. Jr Renye, P. Yang, Z. Huang, Q. K. Zeng, and L. Li. 2021. Partial characterization of probiotic lactic acid bacteria isolated from Chinese dairy products. Int. J. Food Sci 24 (1):446–456. doi:10.1080/10942912.2021.1900233.
  • Inchaurrondo, V. A., M. Flores, and C. Voget. 1998. Growth and β-galactosidase synthesis in aerobic chemostat cultures of Kluyveromyces lactis. J. Ind. Microbiol. Biotechnol. 20 (5):291–298. doi:10.1038/sj.jim.2900526.
  • Jacobsen, C. N., V. R. Nielsen, A. E. Hayford, P. L. Moller, K. F. Michaelsen, A. Pærregaard, B. Sandström, M. Tvede, and M. Jakobsen. 1999. Screening of probiotic activities of forty-seven strains of lactobacillus spp. By In vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 65 (11):4949–4956. doi:10.1128/AEM.65.11.4949-4956.1999.
  • Jeong, Y., H. Kim, J. Y. Lee, G. Won, S. I. Choi, G. H. Kim, and C. H. Kang. 2021. The antioxidant, anti-diabetic, and anti-adipogenesis potential and probiotic properties of lactic acid bacteria isolated from human and fermented foods. Fermentation 7 (3):123. doi:10.3390/fermentation7030123.
  • Jiang, M., F. Zhang, C. Wan, Y. Xiong, N. P. Shah, H. Wei, and X. Tao. 2016. Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk. J. Dairy Sci. 99 (3):1736–1746. doi:10.3168/jds.2015-10434.
  • Kang, W., L. Pan, C. Peng, L. Dong, S. Cao, H. Cheng, Y. Wang, C. Zhang, R. Gu, J. Wang, et al. 2020. Isolation and characterization of lactic acid bacteria from human milk. J. Dairy Sci. 103 (11):9980–9991. doi:10.3168/jds.2020-18704.
  • Kara, F. 2004. Release and characterization of beta-galactosidase from Lactobacillus plantarum. Thesis, Middle-East technical university.
  • Kim, K. S., J. Morrison, and A. Bayer. 1982. Deficient autolytic enzyme activity in antibiotic tolerant lactobacilli. Infect. Immun. 36 (2):582–585. doi:10.1128/iai.36.2.582-585.1982.
  • Klare, I., C. Konstabel, S. Muller-Bertling, R. Reissbrodt, G. Huys, M. Vancanneyt, J. Swings, H. Goossens, and W. Witte. 2005. Evaluation of new broth media for microdilution antibiotic susceptibility testing of lactobacilli, pediococci, lactococci, and bifidobacteria. Appl. Environ. Microbiol. 71 (12):8982–8986. doi:10.1128/AEM.71.12.8982-8986.2005.
  • Kook, S. Y., E. C. Chung, Y. Lee, D. W. Lee, and S. Kim. 2019. Isolation and characterization of five novel probiotic strains from Korean infant and children faeces. PLoS One 14 (10):e0223913. doi:10.1371/journal.pone.0223913.
  • Kullisaar, T., M. Zilmer, M. Mikelsaar, T. Vihalemm, H. Annuk, A. Kairane, and C. Kilk. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 72 (3):215–224. doi:10.1016/S0168-1605(01)00674-2.
  • Kurkutia, D. K., N. Mistry, and M. Dwivedi. 2019. Probiotic properties and in vitro biosafety assessment of human breast milk isolates. J. Pure Appl. Microbiol. 13 (2):1121–1135. doi:10.22207/JPAM.13.2.51.
  • Liu, C., Y. P. Tseng, L. P. Chan, and C.-H. Liang. 2021. The potential of Streptococcus thermophiles (TCI633) in the anti-aging. J. Cosmet. Dermatol. 21 (6):2635–2647. doi:10.1111/jocd.14445.
  • Liu, Q., S. Liu, Q. Ye, X. Hou, G. Yang, J. Lu, Y. Hai, J. Shen, and Y. Fang. 2022. A novel Streptococcus thermophilus FUA329 isolated from human breast milk capable of producing urolithin a from ellagic acid. Foods 11 (20):3280. doi:10.3390/foods11203280.
  • Lubiech, K., and M. Twaruzek. 2020. Lactobacillus bacteria in breast milk. Nutrients 12 (12):3783–3795. doi:10.3390/nu12123783.
  • Martinovic, A., R. Cocuzzi, S. Arioli, and D. Mora. 2020. Streptococcus thermophilus: To survive, or not to survive the gastrointestinal tract, that is the question! Nutrients 12 (8):2175. doi:10.3390/nu12082175.
  • Mehanna, N. S., N. F. Tawfik, and M. M. E. Salem. 2013. Assessment of potential probiotic bacteria isolated from breast milk. Middle-East J. Sci. Res. 14 (3):354–360.
  • Mezaini, A., and A. D. Bouras. 2013. Antibacterial activity and probiotic properties of some lactic acid bacteria isolated from dairy products. Afr. J. Biotechnol. 12 (20):2949–2956.
  • Miller, R. S., and L. C. Hoskins. 1981. Mucin degradation in human colon ecosystems: Fecal population densities of mucin-degrading bacteria estimated by a “most probable number” method. Gastroenterology 81 (4):759–765. doi:10.1016/0016-5085(81)90503-5.
  • Missaoui, J., D. Saidane, R. Mzoughi, and F. Minervini. 2019. Fermented seeds (“Zgougou”) from Aleppo pine as a novel source of potentially probiotic lactic acid bacteria. Microorganisms 7 (12):709. doi:10.3390/microorganisms7120709.
  • Murad, H. A., R. I. Refaea, and E. M. Aly. 2011. Utilization of UF-permeate for production of β-galactosidase by lactic acid bacteria. Pol. J. Microbiol. 60 (2):139–144. doi:10.33073/pjm-2011-019.
  • Nirvan, H., M. K. Selwal, G. Deswal, P. Vats, and K. K. Selwal. 2022. Evaluation of probiotic characteristics of Lactobacillus gasseri HN1 isolated from breast milk of Indian mothers. Microbiol. (Reading, England) 91 (6):783–791. doi:10.1134/S0026261722100812.
  • Notay, M., N. Foolad, A. R. Vaughn, and R. K. Sivamani. 2017. Probiotics, prebiotics, and synbiotics for the treatment and prevention of adult dermatological diseases. Am. J. Clin. Dermatol. 18 (6):721–732. doi:10.1007/s40257-017-0300-2.
  • Pavlovic, G., V. Burrus, B. Gintz, B. Decaris, and G. Guedon. 2004. Evolution of genomic islands by deletion and tandem accretion by site-specific recombination: ICESt1-related elements from Streptococcus thermophilus. Microbiol. (Reading, England) 150 (4):759–774. doi:10.1099/mic.0.26883-0.
  • Putman, M., H. W. van Veen, and W. N. Konings. 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64 (4):672–693. doi:10.1128/MMBR.64.4.672-693.2000.
  • Rajoka, M. S. R., H. Zhao, Y. Lu, Z. Lian, N. Li, N. Hussain, D. Shao, M. Jin, Q. Li, and J. Shi. 2018. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct. 9 (5):2705–2715. doi:10.1039/C8FO00547H.
  • Rajoka, M. S. R., H. Zhao, H. M. Mehwish, N. Li, Y. Lu, Z. Lian, D. Shao, M. Jin, Q. Li, L. Zhao, et al. 2019. Anti-tumor potential of cell free culture supernatant of Lactobacillus rhamnosus strains isolated from human breast milk. Food Res. Int. 123:286–297. doi:10.1016/j.foodres.2019.05.002.
  • Rastogi, S., V. Mittal, and A. Singh. 2020. In vitro evaluation of probiotic potential and safety assessment of Lactobacillus mucosae strains isolated from donkey’s lactation. Probiotics Antimicrob. 12 (3):1045–1056. doi:10.1007/s12602-019-09610-0.
  • Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26 (9–10):1231–1237. doi:10.1016/S0891-5849(98)00315-3.
  • Rodriguez, J. M., K. Murphy, C. Stanton, R. P. Ross, O. I. Kober, N. Juge, E. Avershina, K. Rudi, A. Narbad, M. Jenmalm, et al. 2015. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26 (1):26050. doi:10.3402/mehd.v26.26050.
  • Sangwan, V., S. K. Tomar, B. Ali, R. R. B. Singh, and A. K. Singh. 2015. Production of β-galactosidase from Streptococcus thermophilus for galactooligosaccharides synthesis. J. Food. Sci. Technol. 52 (7):4206–4215. doi:10.1007/s13197-014-1486-4.
  • Selwal, K. K., M. K. Selwal, and D. N. Gandhi. 2011. Effect of freeze drying process on some properties of Streptococcus thermophilus isolated from dairy products. Braz. J. Microbiol. 42 (4):1500–1505. doi:10.1590/S1517-83822011000400037.
  • Senok, A. C., A. Y. Ismaeel, and G. A. Botta. 2005. Probiotics: Facts and myths. Clin. Microbiol. Infect. 11 (12):958–966. doi:10.1111/j.1469-0691.2005.01228.x.
  • Shehata, M. G., M. M. Abu-Serie, N. M. A. El-Aziz, and S. A. El-Sohaimy. 2019. In vitro assessment of antioxidant, antimicrobial and anticancer properties of lactic acid bacteria. Int. J. Pharmacol. 15 (6):651–663. doi:10.3923/ijp.2019.651.663.
  • Shen, Q., N. Shang, and P. Li. 2011. In vitro and In vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Curr. Microbiol. 62 (4):1097–1103. doi:10.1007/s00284-010-9827-7.
  • Srikham, K., W. Daengprok, P. Niamsup, and M. Thirabunyanon. 2021. Characterization of Streptococcus salivarius as new probiotics derived from human breast milk and their potential on proliferative inhibition of liver and breast cancer cells and antioxidant activity. Front Microbiol. 12:797445. doi:10.3389/fmicb.2021.797445.
  • Taj, R., T. Masud, A. Sohail, S. Sammi, R. Naz, B. K. Sharma Khanal, and M. A. Nawaz. 2022. In vitro screening of EPS-producing Streptococcus thermophilus strains for their probiotic potential from Dahi. Food Sci. Nutr. 10 (7):2347–2359. doi:10.1002/fsn3.2843.
  • Tarrah, A., J. de Castilhos, R. C. Rossi, V. da, S. Duarte, D. R. Ziegler, V. Corich, and A. Giacomini. 2018. In vitro probiotic potential and anti-cancer activity of newly isolated folate-producing Streptococcus thermophilus strains. Front Microbiol. 9:2214–2224. doi:10.3389/fmicb.2018.02214.
  • Tiago, F. C. P., F. S. Martins, E. L. S. Souza, P. F. P. Pimenta, H. R. C. Araujo, I. M. Castro, R. L. Brandao, and J. R. Nicoli. 2012. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by saccharomyces probiotics. J. Med. Microbiol. 61:1194–1207.
  • Tosi, L., G. Berruti, M. Danielsen, A. Wind, G. Huys, and L. Morelli. 2007. Susceptibility of Streptococcus thermophilus to antibiotics. Anton. Leeuw. 92 (1):21–28. doi:10.1007/s10482-006-9130-6.
  • Tuncer, B. O., and Y. Tuncer. 2014. Exopolysaccharide producer Streptococcus thermophilus ST8. 01 strain; A potential probiotic culture. GIDA 39 (4):195–202.
  • Unban, K., W. Chaichana, S. Baipong, A. Abdullahi, A. Kanpiengjai, K. Shetty, and C. Khanongnuch. 2021. Probiotic and antioxidant properties of lactic acid bacteria isolated from indigenous fermented tea leaves (Miang) of north Thailand and promising application in synbiotic formulation. Fermentation 7 (3):195. doi:10.3390/fermentation7030195.
  • Uriot, O., S. Denis, M. Junjua, Y. Roussel, A. Dary-Mourot, and S. Blanquet-Diot. 2017. Streptococcus thermophilus: From yogurt starter to a new promising probiotic candidate? J. Funct. Foods 37:74–89. doi:10.1016/j.jff.2017.07.038.
  • Vos, P., G. M. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. A. Rainey, K. H. Schleifer, and W. B. Whitman. 2009. Bergey’s manual of systematic bacteriology. Vol. 3. New york: Springer.
  • Wang, J., M. Yang, K. Liu, X. Zhang, J. Wei, and M. Fan. 2018. Screening for potential probiotic from spontaneously fermented non-dairy foods based on In vitro probiotic and safety properties. Ann. Microbiol. 68 (12):803–813. doi:10.1007/s13213-018-1386-3.
  • Witkowska-Zimny, M., and E. Kaminska-El-Hassan. 2017. Cells of human breast milk. Cell. Mol. Biol. Lett. 22 (1):1–11. doi:10.1186/s11658-017-0042-4.
  • Zarate, G., S. Gonzalez, A. P. Chaia, and G. Oliver. 2000. Effect of bile on the β-galactosidase activity of dairy propionibacteria. Le Lait 80 (2):267–276. doi:10.1051/lait:2000125.
  • Zhang, J., M. Liu, J. Xu, Y. Qi, N. Zhao, and M. Fan. 2020. First insight into the probiotic properties of ten Streptococcus thermophilus strains based on in vitro conditions. Curr. Microbiol. 77 (3):343–352. doi:10.1007/s00284-019-01840-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.