123
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolution of Kombucha Tea from Isolated Acetic Acid Bacteria, Lactic Acid Bacteria and Yeast in Single- and Mixed-Cultures: Characteristics, Bioactivities, Fermentation Performance and Kinetics

ORCID Icon & ORCID Icon

References

  • Abuduaibifu, A., and C. E. Tamer. 2019. Evaluation of physicochemical and bioaccessibility properties of Goji Berry Kombucha. J. Food Process. Preserv. 43 (9):e14077. doi:10.1111/jfpp.14077.
  • Agyirifo, D. S., M. Wamalwa, E. P. Otwe, I. Galyuon, S. Runo, J. Takrama, and J. Ngeranwa. 2019. Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon 5 (7):e02170. doi:10.1016/j.heliyon.2019.e02170.
  • Ahmed, R. F., M. S. Hikal, and K. A. Abou-Taleb. 2020. Biological, chemical and antioxidant activities of different types kombucha. Ann. Agric. Sci. 65 (1):35–41. doi:10.1016/j.aoas.2020.04.001.
  • Amarasinghe, H., N. S. Weerakkody, and V. Y. Waisundara. 2018. Evaluation of physicochemical properties and antioxidant activities of kombucha ‘tea fungus’ during extended periods of fermentation. Food Sci. Nutr. 6 (3):659–665. doi:10.1002/fsn3.605.
  • Andreson, M., J. Kazantseva, R. Kuldjärv, E. Malv, H. Vaikma, A. Kaleda, M.-L. Kütt, and R. Vilu. 2022. Characterisation of chemical, microbial and sensory profiles of commercial kombuchas. Int. J. Food Microbiol. 373:109715. doi:10.1016/j.ijfoodmicro.2022.109715.
  • Ansari, F., H. Pourjafar, A. Kangari, and A. Homayouni. 2019. Evaluation of the glucuronic acid production and antibacterial properties of kombucha black tea. Curr. Pharm. Biotechnol. 20 (11):985–990. doi:10.2174/1389201020666190717100958.
  • Antolak, H., D. Piechota, and A. Kucharska. 2021. Kombucha tea—A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants 10 (10):1541. doi:10.3390/antiox10101541.
  • Arriola, N. D. A., P. M. de Medeiros, E. S. Prudencio, C. M. O. Müller, and R. D. D. M. C. Amboni. 2016. Encapsulation of aqueous leaf extract of Stevia Rebaudiana Bertoni with sodium alginate and its impact on phenolic content. Food Biosci. 13:32–40. doi:10.1016/j.fbio.2015.12.001.
  • Aung, T., and J.-B. Eun. 2022. Impact of time and temperature on the physicochemical, microbiological, and nutraceutical properties of Laver Kombucha (porphyra dentata) during fermentation. LWT 154:112643. doi:10.1016/j.lwt.2021.112643.
  • Axelsson, L. 2004. Lactic acid bacteria: Classification and physiology. Food Sci. Technol. 139:1–66.
  • Bandyopadhyay, A., S. Kanti Chowdhury, S. Dey, J. Christakiran Moses, and B. B. Mandal. 2019. Silk: A promising biomaterial opening new vistas towards affordable healthcare solutions. J. Indian Inst. Sci. 99 (3):445–487. doi:10.1007/s41745-019-00114-y.
  • Battikh, H., K. Chaieb, A. Bakhrouf, and E. Ammar. 2013. Antibacterial and antifungal activities of black and green kombucha teas. J. Food Biochem. 37 (2):231–236. doi:10.1111/j.1745-4514.2011.00629.x.
  • Bishop, P., E. R. Pitts, D. Budner, and K. A. Thompson-Witrick. 2022. Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chem. Adv. 1:100025. doi:10.1016/j.focha.2022.100025.
  • Bortolomedi, B. M., C. Souza Paglarini, and F. Cristiano Angonesi Brod. 2022. Bioactive compounds in kombucha: A review of substrate effect and fermentation conditions. Food Chem. 385:132719. doi:10.1016/j.foodchem.2022.132719.
  • Bustos, A. Y., G. F. de Valdez, S. Fadda, and M. P. Taranto. 2018. New insights into bacterial bile resistance mechanisms: The role of bile salt hydrolase and its impact on human health. Food Res. Int. 112:250–262. doi:10.1016/j.foodres.2018.06.035.
  • Cardoso, R. R., R. O. Neto, C. T. dos Santos D’Almeida, T. P. Do Nascimento, C. G. Pressete, L. Azevedo, H. Stampini Duarte Martino, L. Claudio Cameron, M. Simões Larraz Ferreira, and F. A. R. de Barros. 2020. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int. 128:108782. doi:10.1016/j.foodres.2019.108782.
  • Chadha, U., P. Bhardwaj, S. Kumaran Selvaraj, S. P. Kaviya Arasu, A. Pavan, M. Khanna, P. Singh, S. Singh, and A. Chakravorty. 2022. Current trends and future perspectives of nanomaterials in food packaging application. J. Nano Mater. 2022:1–32. doi:10.1155/2022/2745416.
  • Chu, S.-C., and C. Chen. 2006. Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chem. 98 (3):502–507. doi:10.1016/j.foodchem.2005.05.080.
  • Ciandrini, E., R. Campana, and W. Baffone. 2017. Live and Heat-Killed Lactobacillus Spp. Interfere with streptococcus mutans and streptococcus oralis during biofilm development on titanium surface. Arch. Oral Biol. 78:48–57. doi:10.1016/j.archoralbio.2017.02.004.
  • Clinical and Laboratory Standards Institute. 2006. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. Seventh Edition M7-A7. Vol.26 No.2. Pennsylvania, USA.
  • Collado, M. C., J. Meriluoto, and S. Salminen. 2008. Adhesion and aggregation properties of probiotic and pathogen strains. Eur. Food Res. Technol. 226 (5):1065–1073. doi:10.1007/s00217-007-0632-x.
  • de Noronha, M. C., R. R. Cardoso, C. T. dos Santos D’Almeida, M. A. Vieira Do Carmo, L. Azevedo, V. G. Maltarollo, J. I. R. Júnior, Eller, M.R., Cameron, L.C., Ferreira, M.S.L. et al. 2022. Black Tea Kombucha: Physicochemical, microbiological and comprehensive phenolic profile changes during fermentation, and antimalarial activity. Food Chem. 384:132515. doi:10.1016/j.foodchem.2022.132515.
  • De Vuyst, L., and F. Leroy. 2020. Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol. Rev. 44 (4):432–453. doi:10.1093/femsre/fuaa014.
  • De Vuyst, L., and S. Weckx. 2016. The cocoa bean fermentation process: From ecosystem analysis to starter culture development. J. Appl. Microbiol. 121 (1):5–17. doi:10.1111/jam.13045.
  • Devanthi, P. V. P., K. Kho, R. Nurdiansyah, A. Briot, M. J. Taherzadeh, and S. Aslanzadeh. 2021. Do kombucha symbiotic cultures of bacteria and yeast affect bacterial cellulose yield in molasses? J. Fungi 7 (9):705. doi:10.3390/jof7090705.
  • Devnani, B., L. Ong, S. E. Kentish, P. J. Scales, and S. L. Gras. 2022. Physicochemical and rheological properties of commercial almond-based yoghurt alternatives to dairy and soy yoghurts. Future Foods. 6:100185. doi:10.1016/j.fufo.2022.100185.
  • Díaz-Muñoz, C., D. Van de Voorde, A. Comasio, M. Verce, C. Eduardo Hernandez, S. Weckx, and L. De Vuyst. 2021. Curing of cocoa beans: Fine-scale monitoring of the starter cultures applied and metabolomics of the fermentation and drying steps. Front. Microbiol. 11:616875. doi:10.3389/fmicb.2020.616875.
  • Dutta, H., and S. K. Paul. 2019. Kombucha drink: Production, quality, and safety aspects. In Production and management of beverages, ed. A. M. Grumezescu and A. M. Holban, 259–288. UK: Elsevier.
  • Essawet, N. A., D. Cvetković, A. Velićanski, J. Čanadanović-Brunet, J. Vulić, V. Maksimović, and S. Markov. 2015. Polyphenols and antioxidant activities of kombucha beverage enriched with Coffeeberry® extract. Chem. Ind. Chem. Eng. Q. 21 (3):399–409. doi:10.2298/CICEQ140528042E.
  • Gomes, R. J., M. de Fatima Borges, M. de de Freitas Rosa, R. Jorge Hernan Castro-Gómez, and W. Aparecida Spinosa. 2018. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Sci. Biotechnol. 56 (2):139. doi:10.17113/ftb.56.02.18.5593.
  • Gomes, R. J., E. Iouko Ida, and W. Aparecida Spinosa. 2022. Nutritional supplementation with amino acids on bacterial cellulose production by Komagataeibacter Intermedius: Effect analysis and application of response surface methodology. Appl. Biochem. Biotechnol. 194 (11):5017–5036. doi:10.1007/s12010-022-04013-4.
  • Grujović, M. Ž., K. G. Mladenović, T. Semedo‐Lemsaddek, M. Laranjo, O. D. Stefanović, and S. D. Kocić‐Tanackov. 2022. Advantages and disadvantages of non‐starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Compr. Rev. Food Sci. Food Saf. 21 (2):1537–1567. doi:10.1111/1541-4337.12897.
  • Gu, X.C., X.-G. Luo, C.-X. Wang, D.-Y. Ma, Y. Wang, Y.-Y. He, L. Wen, H. Zhou, and T.-C. Zhang. 2014. Cloning and analysis of bile salt hydrolase genes from Lactobacillus Plantarum CGMCC No. 8198. Biotechnol. Lett. 36 (5):975–983. doi:10.1007/s10529-013-1434-9.
  • Halstead, F. D., M. Rauf, N. S. Moiemen, A. Bamford, C. M. Wearn, A. P. Fraise, P. A. Lund, B. A. Oppenheim, M. A. Webber, and L. Leoni. 2015. The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PLoS One. 10 (9):e0136190. doi:10.1371/journal.pone.0136190.
  • Harnentis, H., Y. Marlida, Y. Shafan Nur, W. Wizna, M. Afnida Santi, N. Septiani, F. Adzitey, and N. Huda. 2020. Novel probiotic lactic acid bacteria isolated from indigenous fermented foods from West Sumatera, Indonesia. Vet. World 13 (9):1922. doi:10.14202/vetworld.2020.1922-1927.
  • Hernández-Gómez, J. G., A. López-Bonilla, G. Trejo-Tapia, S. V. Ávila-Reyes, A. R. Jiménez-Aparicio, and H. Hernández-Sánchez. 2021. In vitro bile salt hydrolase (BSH) activity screening of different probiotic microorganisms. Foods 10 (3):674. doi:10.3390/foods10030674.
  • Hsieh, Y., M.-C. Chiu, and J.-Y. Chou. 2021. Efficacy of the kombucha beverage derived from green, black, and pu’er teas on chemical profile and antioxidant activity. J. Food. Qual. 2021:1–9. doi:10.1155/2021/1735959.
  • ISO. 2005. ISO 14502-1: 2005, determination of substances characteristic of green and black tea—part 1: Content of total polyphenols in tea-colorimetric method using folin-ciocalteu reagent, “ISO 14502-1 international standardization.” International Organization for Standardization Switzerland, 10.
  • Ivanišová, E., K. Meňhartová, M. Terentjeva, L. Godočíková, J. Árvay, and M. Kačániová. 2019. Kombucha Tea Beverage: Microbiological characteristic, antioxidant activity, and phytochemical composition. Acta Aliment. Hung. 48 (3):324–331. doi:10.1556/066.2019.48.3.7.
  • Jayasekara, S., and R. Ratnayake. 2019. Microbial cellulases: An overview and applications. Cellulose 22:92.
  • Jena, P. K., D. Trivedi, K. Thakore, H. Chaudhary, S. Sankar Giri, and S. Seshadri. 2013. Isolation and characterization of probiotic properties of lactobacilli isolated from rat fecal microbiota. Microbiol. Immunol. 57 (6):407–416. doi:10.1111/1348-0421.12054.
  • Kaashyap, M., M. Cohen, and N. Mantri. 2021. Microbial diversity and characteristics of kombucha as revealed by Metagenomic and physicochemical analysis. Nutrients 13 (12):4446. doi:10.3390/nu13124446.
  • Kaewkod, T., S. Bovonsombut, and Y. Tragoolpua. 2019. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 7 (12):700. doi:10.3390/microorganisms7120700.
  • Kapp, J. M., and W. Sumner. 2019. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 30:66–70. doi:10.1016/j.annepidem.2018.11.001.
  • Khosravi, S., M. Safari, Z. Emam‐Djomeh, and M. Golmakani. 2019. Development of Fermented Date Syrup Using Kombucha Starter Culture. J. Food Process. Preserv. 43 (2):e13872. doi:10.1111/jfpp.13872.
  • Landis, E. A., E. Fogarty, J. C. Edwards, A. M. E. Otilia Popa, and B. E. Wolfe. 2022. Microbial diversity and interaction specificity in kombucha tea fermentations. M. Systems 7 (3):e00157–22. doi:10.1128/msystems.00157-22.
  • Lazo‐Vélez, M. A., S. O. Serna‐Saldívar, M. F. Rosales‐Medina, M. Tinoco‐Alvear, and M. Briones‐García. 2018. Application of Saccharomyces Cerevisiae Var. Boulardii in food processing: A review. J. Appl. Microbiol. 125 (4):943–951. doi:10.1111/jam.14037.
  • Li, R., Y. Xu, J. Chen, F. Wang, C. Zou, and J. Yin. 2022. Enhancing the proportion of gluconic acid with a microbial community reconstruction method to improve the taste quality of kombucha. LWT 155:112937. doi:10.1016/j.lwt.2021.112937.
  • Lina, M., B. Zhijie, Y. Xue, W. Zhang, Q. Huang, L. Zhang, and Y. Huang. 2020. Bacterial cellulose: An encouraging eco-friendly nano-candidate for energy storage and energy conversion. J. Mater. Chem. A 8 (12):5812–5842. doi:10.1039/C9TA12536A.
  • Lopes, D. R., L. Oliveira Santos, and C. Prentice‐Hernández. 2021. Antioxidant and antibacterial activity of a beverage obtained by fermentation of yerba-maté (ilex paraguariensis) with symbiotic kombucha culture. J. Food Process. Preserv. 45 (2):e15101. doi:10.1111/jfpp.15101.
  • Malbaša, R., E. Lončar, and M. Djurić. 2008. Comparison of the products of kombucha fermentation on sucrose and molasses. Food Chem. 106 (3):1039–1045. doi:10.1016/j.foodchem.2007.07.020.
  • Marinova, G., and V. Batchvarov. 2011. Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulg. J. Agric. Sci. 17 (1):11–24.
  • Maslanka, R., and R. Zadrag‐Tecza. 2019. Less is more or more is less: Implications of glucose metabolism in the regulation of the reproductive potential and total lifespan of the Saccharomyces Cerevisiae yeast. J. Cell. Physiol. 234 (10):17622–17638. doi:10.1002/jcp.28386.
  • Matei, B., J. Salzat, C. F. DIGUȚĂ, C. C. Petruta, G. LUȚĂ, E. R. Utoiu, F. Matei, and L. Gabriela. 2018. Lactic acid bacteria strains isolated from kombucha with potential probiotic effect. Rom. Biotechnol. Lett. 23 (3):13592–13598.
  • May, A., S. Narayanan, J. Alcock, A. Varsani, C. Maley, and A. Aktipis. 2019. Kombucha: A novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. Peer J. 7:e7565. doi:10.7717/peerj.7565.
  • Merico, A., P. Sulo, J. Piškur, and C. Compagno. 2007. Fermentative lifestyle in yeasts belonging to the saccharomyces complex. FEBS J. 274 (4):976–989. doi:10.1111/j.1742-4658.2007.05645.x.
  • Metsoviti, M. N., G. Papapolymerou, I. T. Karapanagiotidis, and N. Katsoulas. 2019. Effect of light intensity and quality on growth rate and composition of chlorella vulgaris. Plants 9 (1):31. doi:10.3390/plants9010031.
  • Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31 (3):426–428. doi:10.1021/ac60147a030.
  • Moradali, M. F., and H. A. R. Bernd. 2020. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol. 18 (4):195–210. doi:10.1038/s41579-019-0313-3.
  • Murooka, Y., and M. Yamshita. 2008. Traditional healthful fermented products of Japan. J. Ind. Microbiol. Biotechnol. 35 (8):791. doi:10.1007/s10295-008-0362-5.
  • Nyiew, K., P. J. Kwong, and Y. Yow. 2022. An overview of antimicrobial properties of kombucha. Compr. Rev. Food Sci. Food Saf. 21 (2):1024–1053. doi:10.1111/1541-4337.12892.
  • Orłowski, A., and M. Bielecka. 2006. Preliminary Characteristics of Lactobacillus and Bifidobacterium Strains as Probiotic Candidates. Polish J. Nutr. Food Sci. 56 (3):269–275.
  • Pei, J., W. Jin, D. A. Baranenko, X. Gou, H. Zhang, J. Geng, L. Jiang, D. Chen, and T. Yue. 2020. Isolation, purification, and structural identification of a new bacteriocin made by lactobacillus plantarum found in conventional kombucha. Food Control. 110:106923. doi:10.1016/j.foodcont.2019.106923.
  • R Core Team. 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria: R foundation for statistical computing. www.R-project.org.
  • Reygaert, W. C. 2014. The antimicrobial possibilities of green tea. Front Microbiol. 5:434. doi:10.3389/fmicb.2014.00434.
  • Rodrigues, F., P. Ludovico, and C. Leão. 2006. Sugar metabolism in yeasts: An overview of aerobic and anaerobic glucose catabolism. In Biodiversity and ecophysiology of yeasts. The yeast handbook, ed. G. Péter and C. Rosa, 101–121. doi:10.1007/3-540-30985-3_6.
  • Ryssel, H., O. Kloeters, G. Germann, G. W. Th Schäfer, and M. Oehlbauer. 2009. The antimicrobial effect of acetic acid—An alternative to common local antiseptics? Burns 35 (5):695–700. doi:10.1016/j.burns.2008.11.009.
  • Saimaiti, A., S.-Y. Huang, R.-G. Xiong, W. Si-Xia, D.-D. Zhou, Z.-J. Yang, M. Luo, R.-Y. Gan, and L. Hua-Bin. 2022. Antioxidant capacities and polyphenol contents of kombucha beverages based on vine tea and sweet tea. Antioxidants 11 (9):1655. doi:10.3390/antiox11091655.
  • Sarkaya, P., E. Akan, and O. Kinik. 2021. Use of kombucha culture in the production of fermented dairy beverages. LWT 137:110326. doi:10.1016/j.lwt.2020.110326.
  • Sharma, R., P. Garg, P. Kumar, S. Kant Bhatia, and S. Kulshrestha. 2020. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6 (4):106. doi:10.3390/fermentation6040106.
  • Shehata, M. G., S. A. El Sohaimy, M. A. El-Sahn, and M. M. Youssef. 2016. Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann. Agric. Sci. 61 (1):65–75. doi:10.1016/j.aoas.2016.03.001.
  • Skowron, K., A. Budzyńska, K. Grudlewska-Buda, N. Wiktorczyk-Kapischke, M. Andrzejewska, E. Wałecka-Zacharska, and E. Gospodarek-Komkowska. 2022. Two faces of fermented foods—The benefits and threats of its consumption. Front Microbiol. 13:845166. doi:10.3389/fmicb.2022.845166.
  • Srihari, T., and U. Satyanarayana. 2012. Changes in free radical scavenging activity of kombucha during fermentation. J. Pharma. Sci. Res. 4 (11):1978.
  • Tapias, Y. A. R., M. Victoria Di Monte, M. A. Peltzer, and A. G. Salvay. 2022. Bacterial cellulose films production by kombucha symbiotic community cultured on different herbal infusions. Food Chem. 372:131346. doi:10.1016/j.foodchem.2021.131346.
  • Tilwani, Y. M., A. Kant Lakra, L. Domdi, N. Jha, and V. Arul. 2022. Characterization of potential probiotic bacteria enterococcus faecium MC-5 isolated from the gut content of cyprinus Carpio Specularis. Microb. Pathog. 172:105783. doi:10.1016/j.micpath.2022.105783.
  • Topçu, K. C., M. Kaya, and G. Kaban. 2020. Probiotic properties of lactic acid bacteria strains isolated from pastırma. LWT 134:110216. doi:10.1016/j.lwt.2020.110216.
  • Tran, T., C. Grandvalet, F. Verdier, A. Martin, H. Alexandre, and R. Tourdot-Maréchal. 2020. Microbial dynamics between yeasts and acetic acid bacteria in kombucha: Impacts on the chemical composition of the beverage. Foods 9 (7):963. doi:10.3390/foods9070963.
  • Wang, B., K. Rutherfurd-Markwick, X.-X. Zhang, and A. N. Mutukumira. 2022. Isolation and characterisation of dominant acetic acid bacteria and yeast isolated from kombucha samples at point of Sale in New Zealand. Current Res. Food Sci. 5:835–844. doi:10.1016/j.crfs.2022.04.013.
  • Wang, J., K. Yang, M. Liu, J. Zhang, X. Wei, and M. Fan. 2018. Screening for potential probiotic from spontaneously fermented non-dairy foods based on in vitro probiotic and safety properties. Ann. Microbiol. 68 (12):803–813. doi:10.1007/s13213-018-1386-3.
  • Wang, S., L. Zhang, Q. Libo, H. Liang, X. Lin, L. Shengjie, Y. Chenxu, and J. Chaofan. 2020. Effect of synthetic microbial community on nutraceutical and sensory qualities of kombucha. Int. J. Food Sci. Tech. 55 (10):3327–3333. doi:10.1111/ijfs.14596.
  • Wang, Y., J. Baoping, W. Wei, R. Wang, Z. Yang, D. Zhang, and W. Tian. 2014. Hepatoprotective effects of kombucha tea: Identification of functional strains and quantification of functional components. J. Sci. Food Agric. 94 (2):265–272. doi:10.1002/jsfa.6245.
  • Wang, Y., W. Jiangtao, L. Mengxin, Z. Shao, M. Hungwe, J. Wang, X. Bai, J. Xie, Y. Wang, and W. Geng. 2021. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front. Bioeng. Biotechnol. 9:612285. doi:10.3389/fbioe.2021.612285.
  • Xia, X., Y. Dai, W. Han, X. Liu, Y. Wang, L. Yin, Z. Wang, L. Xiaonan, and J. Zhou. 2019. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J. Funct. Foods 62:103549. doi:10.1016/j.jff.2019.103549.
  • Zubaidah, E., R. A. Ifadah, and C. A. Afgani. 2019. Changes in chemichal characteristics of kombucha from various cultivars of snake fruit during fermentation. In IOP Conference Series: Earth and Environmental Science, 230:012098. IOP Publishing, Universitas Brawijaya, East Java, Indonesia.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.