Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Latest Articles
68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

SiO2@Cu core-shell nanostructure impregnation on phase changed material (paraffin) for thermal energy storage

, &
Received 01 Jan 2024, Accepted 05 Apr 2024, Published online: 16 Apr 2024

References

  • Y. Guo, W. Yang, and Z. Jiang, He, F, Zhang, K, He, R, Wu, J and Fan, J. “Silicone rubber/paraffin@silicon dioxide form-stable phase change materials with thermal energy storage and enhanced mechanical property,” Sol. Energy Mater. Sol. Cells, vol. 196, pp. 16–24, 2019. DOI: 10.1016/j.solmat.2019.03.034.
  • M. Harikrishnan, R. A. Kumar, R. Baby, and S. AK, “An experimental investigation to assess the thermal performance of a sensible storage based-downward solar air heater,” Exp. Heat Transf., pp. 1–25, 2024. DOI: 10.1080/08916152.2024.2312465.
  • R. Luo, S. Wang, T. Wang, Zhu, C., Nomura, T. and Akiyama, T. et al. “Fabrication of paraffin@SiO2 shape-stabilized composite phase change material via chemical precipitation method for building energy conservation,” Energy Build, vol. 108, pp. 373–380, 2015. DOI: 10.1016/j.enbuild.2015.09.043.
  • C. Nie, J. Liu, and S. Deng, “Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage,” Int. J. Heat Mass Transf., vol. 165, pp. 120652, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120652.
  • B. Prabhu and V. A, “Stability analysis of TiO2-Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems,” Renew. Energy., vol. 152, pp. 358–367, 2020. DOI: 10.1016/j.renene.2020.01.043.
  • N. Sun and Z. Xiao, “Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage,” Energy Fuels, vol. 31, no. 9, pp. 10186–10195, 2017. DOI: 10.1021/acs.energyfuels.7b01271.
  • D. Kandpal, S. Kalele, and S. K. Kulkarni, “Synthesis and characterization of silica-gold core-shell (SiO2@au) nanoparticles,” Pramana- J. Phys., vol. 69, no. 2, pp.277–283, 2007. DOI: 10.1007/s12043-007-0128-z.
  • S. Parvate, J. Singh, P. Dixit, Vennapusa, J.R., Maiti, T.K. and Chattopadhyay, S, “Titanium dioxide nanoparticle-decorated polymer microcapsules enclosing phase change material for thermal energy storage and photocatalysis,” ACS. Appl. Polym. Mater., vol. 3, no. 4, pp. 1866–1879, 2021. DOI: 10.1021/acsapm.0c01410.
  • X. Su, S. Jia, G. Lv, and D. Yu, “A unique strategy for polyethylene glycol/hybrid carbon foam phase change materials: morphologies, thermal properties, and energy storage behavior,” Mater. (Basel), vol. 11, no. 10, pp. 2011, 2018. DOI: 10.3390/ma11102011.
  • J. Yu, A. Horibe, and N. Haruki, “Melting and solidification characteristic of mixture of two types of latent heat storage material in direct contact heat exchanger,” Exp. Heat Transf., pp. 1–21, 2024. DOI: 10.1080/08916152.2024.2317768.
  • B. Mazinani, A. Beitollahi, A. K. Masrom, Samiee, L., Ahmadi, Z. and Ahmadi, Z, “Synthesis and photocatalytic performance of hollow sphere particles of SiO2-TiO2 composite of mesocellular foam walls.” Ceram. Int., vol. 43, no. 15, pp. 11786–11791, 2017. DOI: 10.1016/j.ceramint.2017.06.017.
  • R.-A. Mitran, S. Ioniţǎ, D. Lincu, Berger, D. and Matei, C, A Review of Composite Phase Change Materials Based on Porous Silica Nanomaterials for Latent Heat Storage Applications, Molecules vol. 26, 2021. DOI: 10.3390/molecules26010241
  • P. Manoj Kumar and S. P. KM, “Experimental investigations on thermal properties of nano-SiO2/paraffin phase change material (PCM) for solar thermal energy storage applications,” Energy Sour. Part A Recover Util. Environ. Eff, vol. 42, no. 19, pp. 2420–2433, 2020. DOI: 10.1080/15567036.2019.1607942.
  • T. Wang, Y. Liu, R. Meng, and M. Zhang, “Thermal performance of galactitol/mannitol eutectic mixture/expanded graphite composite as phase change material for thermal energy harvesting,” J. Energy. Storage., vol. 34, pp. 101997, 2021. DOI: 10.1016/j.est.2020.101997.
  • J. S. Aulakh and D. P. Joshi, “Thermal and morphological study of paraffin/SEBS/expanded graphite composite phase change material for thermal energy storage,” Energy Sour. Part A Recover Util. Environ. Eff, vol. 44, no. 1, pp. 986–1003, 2022a. DOI: 10.1080/15567036.2022.2053764.
  • S. Paneliya, et al. “Core shell paraffin/silica nanocomposite: A promising phase change material for thermal energy storage,” Renew. Energy, vol. 167, pp. 591–599, 2021. DOI: 10.1016/j.renene.2020.11.118.
  • Q. Yao, Z.-H. Lu, Z. Zhang, Chen, X. and Lan, Y, “One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane,” Sci. Rep., vol. 4, no. 1, pp. 7597, 2014. DOI: 10.1038/srep07597.
  • Y. S. Prasanna and S. S. Deshmukh, “Significance of nanomaterials in solar energy storage applications,” Mater. Today: Proc., vol. 38, pp. 2633–2638, 2021. DOI: 10.1016/j.matpr.2020.08.218.
  • H. Lee and J.-H. Han, “Experimental study on the melting behavior of a phase change material under random vibration,” Exp. Heat Transf., vol. 37, no. 1, pp. 98–118, 2024. DOI: 10.1080/08916152.2022.2105451.
  • S. K. Singh, V. Kumar, A. Kumar, and S. Yadav, “Experimental study of the thermal characteristic of a double tube heat exchanger with tapered wire coil inserts using PCM-dispersed mono/hybrid nanofluids,” Exp. Heat Transf., pp. 1–17, 2023. DOI: 10.1080/08916152.2023.2256315.
  • C. Suresh and R. P. Saini, “Performance comparison of sensible and latent heat-based thermal storage system during discharging – an experimental study,” Exp. Heat Transf., vol. 35, no. 1, pp. 45–61, 2022. DOI: 10.1080/08916152.2020.1817178.
  • D. Gowthami, R. K. Sharma, V. V. Tyagi, Rathore, P.K.S. and Sarı, A, “Development of a novel form-stable phase change material based on alkali activated date seed biochar to harvest solar thermal energy,” J. Energy. Storage., vol. 83, pp. 110699, 2024. DOI: 10.1016/j.est.2024.110699.
  • P. K. S. Rathore, K. K. Gupta, B. Patel, Sharma, R.K. and Gupta, N.K, “Beeswax as a potential replacement of paraffin wax as shape stabilized solar thermal energy storage material: An experimental study,” J. Energy. Storage., vol. 68, pp. 107714, 2023. DOI: 10.1016/j.est.2023.107714.
  • P. Singh, R. K. Sharma, and R. Goyal, Hekimoğlu, G.Ö.K.H.A.N., Sarı, A., Rathore, P.K.S. and Tyagi, V.V, “Development and characterization a novel leakage-proof form stable composite of graphitic carbon nitride and fatty alcohol for thermal energy storage,” J. Energy. Storage., vol. 55, pp. 105761, 2022. DOI: 10.1016/j.est.2022.105761.
  • B. M. Tripathi, S. K. Shukla, and P. K. S. Rathore, “A comprehensive review on solar to thermal energy conversion and storage using phase change materials,” J. Energy. Storage., vol. 72, pp. 108280, 2023. DOI: 10.1016/j.est.2023.108280.
  • J. S. Aulakh and D. P. Joshi, “development of paraffin-based shape-stable phase change material for thermal energy storage,” Polym. Sci. Ser. A, vol. 64, no. 4, pp.308–317, 2022b. DOI: 10.1134/S0965545X22200056.
  • P. P. Deka, A. K. Ansu, R. K. Sharma, Tyagi, V.V. and Sarı, A, “Development and characterization of form-stable porous TiO2/tetradecanoic acid based composite PCM with long-term stability as solar thermal energy storage material,” Int. J. Energy Res., vol. 44, no. 13, pp. 10044–10057, 2020. DOI: 10.1002/er.5615.
  • S. Jebaraj and S. Iniyan, “A review of energy models,” Renew. Sustain. Energy Rev, vol. 10, no. 4, pp. 281–311, 2006. DOI: 10.1016/j.rser.2004.09.004.
  • H. H. Huang, F. Q. Yan, and Y. M. Kek, et al. “Synthesis, characterization, and nonlinear optical properties of copper nanoparticles,” Langmuir, vol. 13, no. 2, pp. 172–175, 1997. DOI: 10.1021/la9605495.
  • J. Zhou, J. Yang, Z. Zhang, Liu, W. and Xue, Q, “Study on the structure and tribological properties of surface-modified Cu nanoparticles,” Mater. Res. Bull., vol. 34, no. 9, pp. 1361–1367, 1999. DOI: 10.1016/S0025-5408(99)00150-6.
  • J. Ramyadevi, K. Jeyasubramanian, and A. Marikani, Rajakumar, G. and Rahuman, A.A, “Synthesis and antimicrobial activity of copper nanoparticles,” Mater. Lett., vol. 71, pp. 114–116, 2012. DOI: 10.1016/j.matlet.2011.12.055.
  • X. Chen, Z. Tang, and P. Liu, et al. “Smart utilization of multifunctional metal oxides in phase change materials.” Matter, vol. 3, no. 3, pp. 708–741, 2020. DOI: 10.1016/j.matt.2020.05.016.
  • T.-P. Teng and C.-C. Yu, “Characteristics of phase-change materials containing oxide nano-additives for thermal storage,” Nanoscale. Res. Lett., vol. 7, no. 1, pp. 611, 2012. DOI: 10.1186/1556-276X-7-611.
  • S. A. Akintelu, A. S. Folorunso, F. A. Folorunso, and A. K. Oyebamiji, “Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation,” Heliyon, vol. 6, no. 7, pp. e04508, 2020. DOI: 10.1016/j.heliyon.2020.e04508.
  • B. Balasubramanian, K. L. Kraemer, and N. A. Reding, et al. “Synthesis of monodisperse TiO2−paraffin core−shell nanoparticles for improved dielectric properties.” ACS Nano., vol. 4, no. 4, pp. 1893–1900, 2010. DOI: 10.1021/nn9016422.
  • V. Mahalingam and M. Sivaraju, “Microwave-assisted sol-gel synthesis of silica nanoparticles using rice husk as a precursor for corrosion protection application,” Silicon, vol. 15, no. 13, pp. 5603–5613, 2023. DOI: 10.1007/s12633-023-02469-5.
  • N. K. Pandey, L. Chudal, J. Phan, Lin, L., Johnson, O., Xing, M., Liu, J.P., Li, H., Huang, X., Shu, Y. and Chen, W. “A facile method for the synthesis of copper–cysteamine nanoparticles and study of ROS production for cancer treatment,” J. Mater. Chem. B, vol. 7, no. 42, pp. 6630–6642, 2019. DOI: 10.1039/C9TB01566C.
  • W. Zhang, Y. Tian, H. He, Xu, L., Li, W. and Zhao, D, “Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications,” Natl. Sci. Rev., vol. 7, no. 11, pp. 1702–1725, 2020. DOI: 10.1093/nsr/nwaa021.
  • Y. Zhang, Y. ZhangY. Li, Yao, M., Miao, X., Liu, C., Zhao, H., Shao, Y. and Xu, F, “BaTiO3@C core–shell nanoparticle/paraffin composites for wide-band microwave absorption,” ACS. Appl. Nano. Mater., vol. 4, no. 12, pp. 13176–13184, 2021. DOI: 10.1021/acsanm.1c02724.
  • T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc, and M. C. Dang, “Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method,” Adv. Nat. Sci.: Nanosci. Nanotechnol., vol. 2, no. 1, pp. 15009, 2011. DOI: 10.1088/2043-6262/2/1/015009.
  • Y. Li, M. Dong, and W. Song, et al. “Preparation and characterization of paraffin/mesoporous silica shape-stabilized phase change materials for building thermal insulation,” Mater. (Basel), vol. 14, no. 7, pp. 1775, 2021. DOI: 10.3390/ma14071775.
  • M. T. Mahdi and I. H. Kara, “Thermophysical characteristic of nano-TiO2 paraffin wax composite material,” J. Mech. Eng. Res. Dev, vol. 44, pp. 48–58, 2021.
  • M. S. Usman, Z. M. El, K. Shameli, Zainuddin, N., Salama, M. and Ibrahim, N.A. “Synthesis, characterization, and antimicrobial properties of copper nanoparticles,” Int. J.Nanomed, pp. 4467–4479, 2013. DOI:10.2147/IJN.S50837.
  • N. Zhang, Y. Gao, H. Zhang, Feng, X., Cai, H. and Liu, Y. “Preparation and characterization of core–shell structure of SiO2@Cu antibacterial agent,” Colloids Surf. B., vol. 81, no. 2, pp. 537–543, 2010. DOI: 10.1016/j.colsurfb.2010.07.054.
  • D. Fernández-González, I. Ruiz-Bustinza, C. González-Gasca, Noval, J.P., Mochón-Castaños, J., Sancho-Gorostiaga, J. and Verdeja, L.F. et al. “Concentrated solar energy applications in materials science and metallurgy,” Sol. Energy, vol. 170, pp. 520–540, 2018. DOI: 10.1016/j.solener.2018.05.065.
  • T. Nomura, C. Zhu, N. Sheng, Tabuchi, K., Sagara, A. and Akiyama, T. et al. “Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2,” Sol. Energy Mater. Sol. Cells, vol. 143, pp. 424–429, 2015. DOI: 10.1016/j.solmat.2015.07.028.
  • A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renew. Sustain. Energy Rev, vol. 13, no. 2, pp. 318–345, 2009. DOI: 10.1016/j.rser.2007.10.005.
  • S. Son, S. H. Hwang, C. Kim, Yun, J.Y. and Jang, J, “Designed synthesis of sio2/tio2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells,” ACS Appl. Mater. Interfaces, vol. 5, no. 11, pp. 4815–4820, 2013. DOI: 10.1021/am400441v.
  • F. Wu, Z. Lin, T. Xu, Chen, J., Huang, G., Wu, H., Zhou, X., Wang, D., Liu, Y. and Hu, J. et al. “Development and thermal properties of a novel sodium acetate trihydrate-acetamide-micron/nano aluminum nitride composite phase change material,” Mater. Des., vol. 196, pp. 109113, 2020. DOI: 10.1016/j.matdes.2020.109113.
  • N. Bora, D. P. Joshi, and J. S. Aulakh, “Influence of polyaniline conducting polymer on thermal properties of phase change material for thermal energy storage,” Polym. Bull., vol. 81, no. 2, pp. 1597–1621, 2023. DOI: 10.1007/s00289-023-04778-6.
  • H. Li, H. Chen, X. Li, and J. G. Sanjayan, “Development of thermal energy storage composites and prevention of PCM leakage,” Appl. Energy., vol. 135, pp. 225–233, 2014. DOI: 10.1016/j.apenergy.2014.08.091.
  • X. Li, H. Chen, H. Li, Liu, L., Lu, Z., Zhang, T. and Duan, W.H. et al. “Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage,” Appl. Energy, vol. 159, pp. 601–609, 2015. DOI: 10.1016/j.apenergy.2015.09.031.
  • T. Wang, S. Wang, R. Luo, Zhu, C., Akiyama, T. and Zhang, Z, “Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage,” Appl. Energy, vol. 171, pp. 113–119, 2016. DOI: 10.1016/j.apenergy.2016.03.037.
  • L. Liang, X. Guo, Z. Bai, Zhao, B. and Zhang, R. et al. “Synthesis of core-shell fishbone-like Cu@Ni composites and their electromagnetic wave absorption properties,” Powder Technol., vol. 319, pp. 245–252, 2017. DOI: 10.1016/j.powtec.2017.06.063.
  • S. C. Lin and A.-K. HH, “Evaluation of copper nanoparticles – Paraffin wax compositions for solar thermal energy storage,” Sol. Energy., vol. 132, pp. 267–278, 2016. DOI: 10.1016/j.solener.2016.03.004.
  • E. C. Peres, J. C. Slaviero, A. M. Cunha, Hosseini–Bandegharaei, A. and Dotto, G.L, “Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 649–659, 2018. DOI: 10.1016/j.jece.2017.12.062.
  • G. Zhao, J. Li, H. Wang, Chen, S., Li, Z., Lv, B., Liu, W., Gao, G., Ren, J. and Yang, D. et al. “Improved tribological performance of epoxy composites containing core–shell PE wax@SiO2 nanoparticles,” Polym. Eng. Sci, vol. 62, no. 9, pp. 2863–2877, 2022. DOI: 10.1002/pen.26068.
  • N. A. Dhas, C. P. Raj, and A. Gedanken, “Synthesis, characterization, and properties of metallic copper nanoparticles,” Chem. Mater., vol. 10, no. 5, pp.1446–1452, 1998. DOI: 10.1021/cm9708269.
  • Z. Li, et al. “M-SiO2@Cu and m-SiO2@TiO2@Cu core–shell microspheres: synthesis, characterization and catalytic activities,” J. Mater. Sci., vol. 57, no. 8, pp. 4990–5005, 2022. DOI: 10.1007/s10853-022-06910-9.
  • M. Choi, W.-K. Choi, C.-H. Jung, and S.-B. Kim, “The surface modification and characterization of SiO2 nanoparticles for higher foam stability,” Sci. Rep., vol. 10, no. 1, pp. 19399, 2020. DOI: 10.1038/s41598-020-76464-w.
  • H. Liu, Z. HuangJ. Huang, Xu, S., Fang, M., Liu, Y.G., Wu, X. and Zhang, S., et al. “Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties,” Sci. Rep., vol. 6, no. 1, pp. 22459, 2016. DOI: 10.1038/srep22459.
  • M. K. Adak, H. K. Basak, and B. Chakraborty. “Ease of Electrochemical Arsenate Dissolution from FeAso4 Microparticles During Alkaline Oxygen Evolution Reaction,” ACS Org Inorg Au, 2023. DOI: 10.1021/acsorginorgau.3c00007.
  • R.-P. Ye, L. Lin, and C.-C. Chen, Yang, J.X., Li, F., Zhang, X., Li, D.J., Qin, Y.Y., Zhou, Z. and Yao, Y.G, “Synthesis of robust mof-derived cu/sio2 catalyst with low copper loading via sol–gel method for the dimethyl oxalate hydrogenation reaction,” ACS. Catal., vol. 8, no. 4, pp. 3382–3394, 2018. DOI: 10.1021/acscatal.8b00501.
  • M. El-Sakhawy, A. M. Adel, M. A. Diab, and A.-S. M, “Facile methods for the preparation of micro- and mesoporous amorphous silica from rice husk,” Biomass Conv. Bioref., vol. 12, no. 10, pp. 4709–4718, 2022. DOI: 10.1007/s13399-020-01112-2.
  • D. Eissa, R. H. Hegab, A. Abou-Shady, and Y. H. Kotp, “Green synthesis of ZnO, MgO and SiO2 nanoparticles and its effect on irrigation water, soil properties, and origanum majorana productivity,” Sci. Rep., vol. 12, no. 1, pp.5780, 2022. DOI: 10.1038/s41598-022-09423-2.
  • M. Pérez-Alvarez, et al. “Green synthesis of copper nanoparticles using cotton.” Polym. (Basel), vol. 13, no. 12, pp. 1906, 2021. DOI: 10.3390/polym13121906.
  • B. Li, T. Liu, L. Hu, Wang, Y. and Gao, L, “Fabrication and properties of microencapsulated paraffin@sio2 phase change composite for thermal energy storage,” ACS Sustainable Chem. Eng., vol. 1, no. 3, pp. 374–380, 2013. DOI: 10.1021/sc300082m.
  • M. K. Adak, A. Rajput, D. Ghosh, and B. Chakraborty, “Role of Fe–O–M bOnd in controlling the electroactive species generation from the femo4 (M: MO AND W) eLectro(pre)catalyst during OER,” ACS. Appl. Energy. Mater., vol. 5, no. 11, pp. 13645–13660, 2022. DOI: 10.1021/acsaem.2c02326.
  • S. Özkayalar, E. Adıgüzel, S. Alay Aksoy, and C. Alkan, “Reversible color-changing and thermal-energy storing nanocapsules of three-component thermochromic dyes,” Mater Chem. Phys., vol. 252, pp. 123162, 2020. DOI: 10.1016/j.matchemphys.2020.123162.
  • Soo, X.Y.D., Tan, S.Y., Cheong, A.K.H., Xu, J., Liu, Z., Loh, X.J. and Zhu, Q, “Electrospun PEO/PEG fibers as potential flexible phase change materials for thermal energy regulation.” Exploration, vol. 4, no. 1, pp. 20230016, 2024. DOI: 10.1002/EXP.20230016.
  • C. Alkan, E. H. Alakara, S. Alay Aksoy, and D. İ, “Cement mortar composites including 1-tetradecanol@PMMA Pickering emulsion particles for thermal energy management of buildings,” J. Chem. Eng., vol. 476, pp. 146843, 2023. DOI: 10.1016/j.cej.2023.146843.
  • X. Zhou, M. Xia, F. Rao, Wu, L., Li, X., Song, Z., Feng, S. and Sun, H. et al. “Understanding phase-change behaviors of carbon-doped ge2sb2te5 for phase-change memory application.” ACS Appl. Mater. Interfaces, vol. 6, no. 16, pp. 14207–14214, 2014. DOI: 10.1021/am503502q.
  • Y. Liu, Y. Chen, J. Zhang, Gao, J. and Han, Z, “Copper microsphere hybrid mesoporous carbon as matrix for preparation of shape-stabilized phase change materials with improved thermal properties.” Sci. Rep., vol. 10, no. 1, pp. 16061, 2020. DOI: 10.1038/s41598-020-73114-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.