Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Latest Articles
65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of waveforms on the heat transfer behavior of multi-orifice synthetic jet

, , &
Received 22 Feb 2024, Accepted 05 Apr 2024, Published online: 22 Apr 2024

References

  • E. Ergur and T. Calisir, “Numerical investigation of the thermal and flow characteristics of impinging synthetic jet with different nozzle geometries at low nozzle-to-plate distances,” Int. J. Therm. Sci., vol. 193, pp. 108463, 2023. DOI: 10.1016/j.ijthermalsci.2023.108463.
  • D. Sykes and A. Carpenter, “Experimental investigation of the effect of multiple synthetic jets on heat transfer and pressure loss in minichannels.” Exp. Heat Transf., vol. 29, no. 4, pp. 500–519, 2016. DOI: 10.1080/08916152.2015.1036179.
  • S. Rakhsha, M. R. Zargarabadi, and S. Saedodin, “Experimental and numerical study of flow and heat transfer from a pulsed jet impinging on a pinned surface,” Exp. Heat Transf., vol. 34, no. 4, pp. 376–391, 2021. DOI: 10.1080/08916152.2020.1755388.
  • M. Ikhlaq, M. Yasir, O. Ghaffari, and M. Arik, “Acoustic and heat transfer characteristics of piezolectric driven central orifice synthetic jet actuators,” Exp. Heat Transf., vol. 35, no. 6, pp. 758–779, 2022. DOI: 10.1080/08916152.2021.1946211.
  • P. K. Singh, S. K. Sahu, and P. K. Upadhyay, ““Experimental investigation of the thermal behaviour a single cavity and multiple-orifice synthetic jet impingement driven by electromagnetic actuator for electronics cooling,” Exp. Heat. Transf, vol. 35, no. 2, pp. 132–158, 2022. DOI: 10.1080/08916152.2020.1825546.
  • P. Sharma, S. Sahu, and H. Yadav, “Experimental investigation of the flow and thermal characteristics of synthetic jet issuing from sharp edge orifices,” Exp. Heat Transf., vol. 37, no. 1, pp. 73–97, 2024. DOI: 10.1080/08916152.2022.2105449.
  • P. Gil, E. Smyk, R. Gałek, and Ł. Przeszłowski, “Thermal, flow and acoustic characteristics of the heat sink integrated inside the synthetic jet actuator cavity,” Int. J. Therm. Sci., vol. 170, pp. 107171, 2021. DOI: 10.1016/j.ijthermalsci.2021.107171.
  • J. Pasa, S. Panda, and V. Arumuru, “Focusing of jet from synthetic jet array using non-linear phase delay,” Phys. Fluids, vol. 35, no. 5, pp. 055141, 2023. DOI: 10.1063/5.0148794.
  • M. Kim, H. Lee, and W. Hwang, “Experimental study on the flow interaction between two synthetic jets emanating from a dual round orifice,” Exp. Therm. Fluid Sci., vol. 126, pp. 110400, 2021. DOI: 10.1016/j.expthermflusci.2021.110400.
  • H. Yadav, A. Joshi, M. Chaudhari, and A. Agrawal, “An experimental study of a multi-orifice synthetic jet with application to cooling of compact devices,” AIP Adv., vol. 9, no. 12, pp. 125108–125111, 2019. DOI: 10.1063/1.5128776.
  • P. Gil, “Flow and heat transfer characteristics of single and multiple synthetic jets impingement cooling,” Int. J. Heat Mass Transf., vol. 201, pp. 123590, 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123590.
  • G. Ceglia, et al. “Flow characterization of an array of finite-span synthetic jets in quiescent ambient,” Exp. Therm. Fluid Sci., vol. 119, pp. 110208, 2020. DOI: 10.1016/j.expthermflusci.2020.110208.
  • H. Herwig and G. Middelberg, “The physics of unsteady jet impingement and its heat transfer performance,” Acta Mech, vol. 201, no. 1–4, pp. 171–184, 2008. DOI: 10.1007/s00707-008-0080-0.
  • A. V. Gorasiya and R. P. Vedula, “Heat transfer characteristics of jet impingement onto the concave surface of a cone.” Exp. Heat Transf., vol. 37, no. 3, pp. 246–270, 2024. DOI: 10.1080/08916152.2022.2126029.
  • F. K. Amiri-Gheisvandi and M. Layeghi, “Estimation of the local convective heat transfer coefficients of low frequency two-phase pulsating impingement jets using the IHCP,” Exp. Heat Transf., vol. 36, no. 4, pp. 421–452, 2023. DOI: 10.1080/08916152.2022.2046661.
  • J. Mohammadpour, M. R. Zargarabadi, A. S. Mujumdar, and H. Ahmadi, “Effect of intermittent and sinusoidal pulsed flows on impingement heat transfer from a concave surface,” Int. J. Therm. Sci., vol. 76, pp. 118–127, 2014. DOI: 10.1016/j.ijthermalsci.2013.08.018.
  • Y. Zhang, P. Li, and Y. Xie, “Numerical investigation of the heat transfer characteristics of the impinging synthetic jets with different waveforms,” Int. J. Heat Mass Transf., vol. 125, pp. 1017–1027, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.120.
  • D. Jagannatha, R. Narayanaswamy, and T. T. Chandratilleke, “Analysis of a synthetic jet based electronic cooling module,” Num. Heat Transf. Part A: Appl, vol. 56, no. 3, pp.211–229, 2009. DOI: 10.1080/10407780903163702.
  • V. G. Qayoum, P. K. Panigrahi, and K. Murlidhar, “Influence of amplitude and frequency modulation on the flow created by a synthetic jet actuator,” Sens Actua. A: Phys, vol. 162, no. 1, pp. 36–50, 2010. DOI: 10.1016/j.sna.2010.05.008.
  • P. K. Singh, et al. “An experimental investigation of the flow-field and thermal characteristics of synthetic jet impingement with different waveforms,” Int. J. Heat Mass Transf., vol. 187, pp. 122534, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122534.
  • P. K. Singh, A. K. Shah, S. N. Tripathi, H. Yadav, and A. Et, “Numerical investigation of the flow and thermal behaviour of impinging single and multi-orifice synthetic jets with different waveforms,” Num. Heat Transf. Part A: Appl, vol. 83, no. 6, pp. 573–593, 2022. DOI: 10.1080/10407782.2022.2101808.
  • B. L. Smith and A. Glezer, “The formation and evolution of synthetic jets,” Phy. Fluids, vol. 10, no. 9, pp. 2281–2297, 1998. DOI: 10.1063/1.869828.
  • R. Vinze, S. Chandel, M. D. Limaye, and S. V. Prabhu, “Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets,” Int. J. Therm. Sci., vol. 99, pp. 136–151, 2016. DOI: 10.1016/j.ijthermalsci.2015.08.009.
  • M. J. Rau and S. V. Garimella, “Local two-phase heat transfer from array of confined and submerged impinging jets,” Int. J. Heat Mass Transf., vol. 67, pp. 487–498, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.041.
  • D. Lytle and W. B. Webb, “Air jet impingement heat transfer at low-nozzle plate spacing,” Int. J. Heat Mass Transf., vol. 37, no. 12, pp.1687–1697, 1994. DOI: 10.1016/0017-9310(94)90059-0.
  • T. Astarita, G. Cardone, and G. M. Carlomagno, “Infrared thermography: an optical method in heat transfer and fluid flow visualization,” Optics. Lasers Eng., vol. 44, no. 3–4, pp. 261–281, 2006. DOI: 10.1016/j.optlaseng.2005.04.006.
  • H. W. Coleman and W. G. Steele, Experimental and Uncertainty Analysis for Engineers, 3rd ed. New York: John Wiley & Sons, 2009.
  • M. Chaudhari, G. Verma, B. Puranik, and A. Agrawal, “Frequency response of a synthetic jet cavity,” Exp. Therm. Fluid Sci., vol. 33, no. 3, pp. 439–448, 2009. DOI: 10.1016/j.expthermflusci.2008.10.008.
  • T. X. Ming and Z. J. Zhou, “Flow and heat transfer characteristics under synthetic jets impingement driven by piezoelectric actuator,” Exp. Therm. Fluid Sci., vol. 48, pp. 134–146, 2013. DOI: 10.1016/j.expthermflusci.2013.02.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.