Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Latest Articles
45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of heat transfer performance of a channel mounted with square-wing perforated V-type baffles

, , , , &
Received 20 Jun 2023, Accepted 05 Apr 2024, Published online: 19 Apr 2024

References

  • S. Kumar, S. K. Singh, and D. Sharma, “A comprehensive review on thermal performance enhancement of plate heat exchanger,” Int. J. Thermophys., vol. 43, no. 7, pp. 109, May 2022. DOI: 10.1007/s10765-022-03036-7.
  • I. Tahmasebian, A. Ghafouri, E. Assareh, and M. Moravej, “Intensification of heat transfer of a wavy channel with a series of detachable vortex generators; Numerical analysis with rans model modification,” Eur. Phys. J. Plus, vol. 137, no. 6, pp. 718, Jun. 2022. DOI: 10.1140/epjp/s13360-022-02912-3.
  • T. Adgale, P. Zainith, N. K. Mishra, and A. Sharma, “Heat transfer and flow analysis in a circular tube equipped with triangular helical strip inserts under turbulent flow conditions for the application of boiler,” Int. J. Thermophys., vol. 44, no. 1, pp. 1, Oct. 2022. DOI: 10.1007/s10765-022-03112-y.
  • B. Souayeh, S. Bhattacharyya, N. Hdhiri, and F. Hammami, “Numerical investigation on heat transfer augmentation in a triangular solar air heater tube fitted with angular-cut varied-length twisted tape,” Eur. Phys. J. Plus, vol. 136, no. 6, pp. 643, Jun. 2021. DOI: 10.1140/epjp/s13360-021-01614-6.
  • S. Eiamsa-Ard, N. Koolnapadol, and P. Promvonge, “Heat transfer behavior in a square duct with tandem wire coil element insert,” Chin. J. Chem. Eng., vol. 20, no. 5, pp. 863–869, Oct. 2012. DOI: 10.1016/S1004-9541(12)60411-X.
  • K. H. Ko and N. K. Anand, “Use of porous baffles to enhance heat transfer in a rectangular channel,” Int. J. Heat Mass Transf., vol. 46, no. 22, pp. 4191–4199, Oct. 2003. DOI: 10.1016/S0017-9310(03)00251-5.
  • P. Promvonge and C. Thianpong, “Thermal performance assessment of turbulent channel flow over different shape ribs,” Int. Commun. Heat Mass Transf., vol. 35, no. 10, pp. 1327–1334, Dec. 2008. DOI: 10.1016/j.icheatmasstransfer.2008.07.016.
  • K. M. Kelkar and S. V. Patankar, “Numerical prediction of flow and heat transfer in a parallel plate channel with staggered fins,” Trans. ASME. J. Heat Transf., vol. 109, no. 1, pp. 25–30, Feb. 1987. DOI: 10.1115/1.3248058.
  • Z. Guo and N. K. Anand, “Three-dimensional heat transfer in a channel with a baffle in the entrance region,” Numer. Heat Trans. Part A: Appl., vol. 31, no. 1, pp. 21–35, Aug. 1996. DOI: 10.1080/10407789708914023.
  • S. S. Mousavi and K. Hooman, “Heat and fluid flow in entrance region of a channel with staggered baffles,” Energy Convers. Manag., vol. 47, no. 15–16, pp. 2011–2019, Sept. 2006. DOI: 10.1016/j.enconman.2005.12.018.
  • J. R. Lopez, N. K. Anand, and L. S. Fletcher, “Heat transfer in a three-dimensional channel with baffles,” Nume. Heat. Transfer, Part A: Appl., vol. 30, no. 2, pp. 189–205, Feb. 1996. DOI: 10.1080/10407789608913835.
  • M. M. Sahu and J. L. Bhagoria, “Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater,” Renew. Energy, vol. 30, no. 13, pp. 2057–2073, Oct. 2005. DOI: 10.1016/j.renene.2004.10.016.
  • P. Promvonge, T. Chompookham, S. Kwankaomeng, and C. Thianpong, “Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators,” Energy Convers. Manag., vol. 51, no. 6, pp. 1242–1249, Jun. 2010. DOI: 10.1016/j.enconman.2009.12.035.
  • T. Chompookham, C. Thianpong, S. Kwankaomeng, and P. Promvonge, “Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators,” Int. Commun. Heat Mass Transf., vol. 37, no. 2, pp. 163–169, Feb. 2010. DOI: 10.1016/j.icheatmasstransfer.2009.09.012.
  • M. E. Taslim, T. Li, and D. M. Kercher, “Experimental heat transfer and friction in channels roughened with angled, V-shaped, and discrete ribs on two opposite walls,” Trans. ASME, J. Turbomach., vol. 118, no. 1, pp. 20–28, Jan. 1996. DOI: 10.1115/1.2836602.
  • P. R. Chandra, C. R. Alexander, and J. C. Han, “Heat transfer and friction behaviour in rectangular channels with varying number of ribbed walls,” Int. J. Heat Mass Transf., vol. 46, no. 3, pp. 481–495, Jan. 2003. DOI: 10.1016/S0017-9310(02)00297-1.
  • K. D. Huang, et al. “Experimental study of fluid flow and heat transfer characteristics in the square channel with a perforation baffle,” Int. Commun. Heat Mass Transf., vol. 35, no. 9, pp. 1106–1112, Nov. 2008. DOI: 10.1016/j.icheatmasstransfer.2008.07.013.
  • A. Layek, J. S. Saini, and S. C. Solanki, “Second law optimization of a solar air heater having chamfered rib–groove roughness on absorber plate,” Renew. Energy, vol. 32, no. 12, pp. 1967–1980, Oct. 2007. DOI: 10.1016/j.renene.2006.11.005.
  • R. P. Varun Saini and S. K. Singal, “Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate,” Renew. Energy, vol. 33, no. 6, pp. 1398–1405, Jun. 2008. DOI: 10.1016/j.renene.2007.07.013.
  • W. Peng, P. X. Jiang, Y. P. Wang, and B. Y. Wei, “Experimental and numerical investigation of convection heat transfer in channels with different types of ribs,” Appl. Therm. Eng., vol. 31, no. 14–15, pp. 2702–2708, Oct. 2011. DOI: 10.1016/j.applthermaleng.2011.04.040.
  • A. Lanjewar, J. L. Bhagoria, and R. M. Sarviya, “Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-rib roughness,” Exp. Therm. Fluid Sci., vol. 35, no. 6, pp. 986–995, Sept. 2011. DOI: 10.1016/j.expthermflusci.2011.01.019.
  • S. Singh, S. Chander, and J. S. Saini, “Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs,” Energy, vol. 36, no. 8, pp. 5053–5064, Aug. 2011. DOI: 10.1016/j.energy.2011.05.052.
  • P. Promvonge and S. Kwankaomeng, “Periodic laminar flow and heat transfer in a channel with 45° staggered V-baffles,” Int. Commun. Heat Mass Transf., vol. 37, no. 7, pp. 841–849, Aug. 2010. DOI: 10.1016/j.icheatmasstransfer.2010.04.002.
  • P. Promvonge, “Heat transfer and pressure drop in a channel with multiple 60° V-baffles,” Int. Commun. Heat Mass Transf., vol. 37, no. 7, pp. 835–840, Aug. 2010. DOI: 10.1016/j.icheatmasstransfer.2010.04.003.
  • P. Promvonge, W. Jedsadaratanachai, and S. Kwankaomeng, “Numerical study of laminar flow and heat transfer in square channel with 30° inline angled baffle turbulators,” Appl. Therm. Eng., vol. 30, no. 11–12, pp. 1292–1303, Aug. 2010. DOI: 10.1016/j.applthermaleng.2010.02.014.
  • P. Promvonge, W. Jedsadaratanachai, S. Kwankaomeng, and C. Thianpong, “3D simulation of laminar flow and heat transfer in V-baffled square channel,” Int. Commun. Heat Mass Transf., vol. 39, no. 1, pp. 85–93, Jan. 2012. DOI: 10.1016/j.icheatmasstransfer.2011.09.004.
  • P. Promvonge, S. Skullong, S. Kwankaomeng, and C. Thianpong, “Heat transfer in square duct fitted diagonally with angle-finned tape—Part 1: Experimental study,” Int. Commun. Heat Mass Transf., vol. 39, no. 5, pp. 617–624, May. 2012. DOI: 10.1016/j.icheatmasstransfer.2012.03.007.
  • W. Jedsadaratanachai, S. Suwannapan, and P. Promvonge, “Numerical study of laminar heat transfer in baffled square channel with various pitches,” Energy Procedia, vol. 9, pp. 630–642, 2011. DOI: 10.1016/j.egypro.2011.09.073.
  • P. Sriromreun, C. Thianpong, and P. Promvonge, “Experimental and numerical study on heat transfer enhancement in a channel with Z-shaped baffles,” Int. Commun. Heat Mass Transf., vol. 39, no. 7, pp. 945–952, Aug. 2012. DOI: 10.1016/j.icheatmasstransfer.2012.05.016.
  • J. Lamont, et al. “Heat transfer enhancement in narrow diverging channels,” J. Turbomach., vol. 135, no. 4, pp. 041017, Jul. 2013. DOI: 10.1115/1.4007740.
  • K. Nanan, M. Pimsarn, C. Thianpong, and S. Eiamsa-Ard, “Heat transfer enhancement by helical screw tape coupled with rib turbulators,” J. Mech. Sci. Technol., vol. 28, no. 11, pp. 4771–4779, Jun. 2014. DOI: 10.1007/s12206-014-1044-z.
  • J. Park, S. Park, and P. M. Ligrani, “Numerical predictions of detailed flow structural characteristics in a channel with angled rib turbulators,” J. Mech. Sci. Technol., vol. 29, no. 11, pp. 4981–4991, Jul. 2015. DOI: 10.1007/s12206-015-1046-5.
  • P. Singh, B. V. Ravi, and S. V. Ekkad, “Experimental and numerical study of heat transfer due to developing flow in a two-pass rib roughened square duct,” Int. J. Heat Mass Transf., vol. 102, pp. 1245–1256, Nov 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.015.
  • I. Mayo, T. Arts, and L. Y. M. Gicquel, “The three-dimensional flow field and heat transfer in a rib-roughened channel at large rotation numbers,” Int. J. Heat Mass Transf., vol. 123, pp. 848–866, Aug 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.009.
  • A. Boonloi and W. Jedsadaratanachai, “3D-numerical predictions of flow structure and heat transfer behavior in heat exchanger tubes inserted with different patterns of double-V baffles,” Case Stud. Therm. Eng., vol. 39, pp. 102385, Nov. 2022. DOI: 10.1016/j.csite.2022.102385.
  • R. Maithani, A. Kumar, and S. Sharma, “Effect of straight slot rib height on heat transfer enhancement of nanofluid flow through rectangular channel,” Mater. Today: Proc., vol. 50, pp. 1159–1163, 2022. DOI: 10.1016/j.matpr.2021.08.040.
  • A. Kumar, et al. “Enhancement of heat transfer of SiO2-H2O based nanofluid flow through 45° angled slot ribbed square duct,” Mater. Today: Proc., vol. 69, pp. 328–332, 2022. DOI: 10.1016/j.matpr.2022.08.544.
  • M. Sheikholeslami and M. Jafaryar, “Performance of energy storage unit equipped with vase-shaped fins including nanoparticle enhanced paraffin,” J. Energy. Storage., vol. 58, pp. 106416, Feb. 2023. DOI: 10.1016/j.est.2022.106416.
  • P. Promvonge, et al. “Effect of arc-shaped twisted-baffles on augmented heat transfer in a rectangular duct,” Case Stud. Therm. Eng., vol. 58, pp. 106416, Feb. 2023. DOI: 10.1016/j.csite.2023.102754.
  • C. E. Bensaci, et al. “Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions,” Renew. Energy, vol. 155, pp. 1231–1244, Aug. 2022. DOI: 10.1016/j.renene.2020.04.017.
  • A. Boonloi and W. Jedsadaratanachai, “CFD analysis on heat transfer characteristics and fluid flow structure in a square duct with modified wavy baffles,” Case Stud. Therm. Eng., vol. 29, pp. 101660, Jan. 2022. DOI: 10.1016/j.csite.2021.101660.
  • A. Berber, M. Gürdal, and M. Yetimoğlu, “Experimental study on the heat transfer enhancement in a rectangular channel with curved winglets,” Exp. Heat Transf., vol. 35, no. 6, pp. 797–817, Mar. 2021. DOI: 10.1080/08916152.2021.1951897.
  • S. Chaurasia, A. Dwivedi, M. Sethi, A. Debbarma, and V. Goel, “Experimental investigation on heat transfer and friction factor characteristics for novel hybrid roughness used in solar air heater,” Exp. Heat Transf., pp. 1–17, Mar. 2024. DOI: 10.1080/08916152.2024.2329662.
  • S. Bhattacharyya, D. K. Vishwakarma, and M. K. Soni, “The influence of a novel ribbed wave tape on the enhancement of heat transfer in a solar air heater operating in a transitional flow regime: an experimental study,” Exp. Heat Transf., pp. 1–19. Published online 16 Oct. 2023. DOI: 10.1080/08916152.2023.2265208.
  • T. Alam and D. Gupta, “Thermohydraulic performance of hybrid ribs pattern combining V and arc shape ribs in solar air heater,” Exp. Heat Transf., pp. 1–16. Published online 20 Sep. 2023 DOI: 10.1080/08916152.2023.2260378.
  • A. American National Standard, Measurement of Fluid Flow in Pipes Using Orifice, Nozzle and Venturi; ASME-MFC-3M-2004. New York, NY, USA: United Engineering Center, 2004.
  • S. J. Kline and F. A. McClintock, “Describing uncertainties in single sample experiments,” Mech. Eng., vol. 75, pp. 3–8, Jan. 1953. DOI: 10.1007/BF02970970.
  • W. Grassi, D. Testi, D. D. Vista, and G. Torelli, “Calibration of a sheet of thermosensitive liquid crystals viewed non-orthogonally,” Measurement, vol. 40, no. 9–10, pp. 898–903, Nov. 2007. DOI: 10.1016/j.measurement.2006.10.020.
  • W. M. Yan, H. C. Liu, C. Y. Soong, and W. J. Yang, “Experimental study of impinging heat transfer along rib-roughened walls by using transient liquid crystal technique,” Int. Commun. Heat Mass Transf., vol. 48, no. 12, pp. 2420–2428, Jun. 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.12.048.
  • N. A. Abdullah, R. A. Talib, A. A. Jaafar, M. A. M. Salleh, and W. T. Chong, “The basics and issues of thermochromic liquid crystal calibrations,” Exp. Therm. Fluid Sci., vol. 34, no. 8, pp. 1089–1121, Nov. 2010. DOI: 10.1016/j.expthermflusci.2010.03.011.
  • R. L. Webb and N. H. Kim, Principles of Enhanced Heat Transfer, 2nd ed. New York: Taylor & Francis, 2005.
  • P. Promvonge, et al. “Characterization of heat transfer and artificial neural networks prediction on overall performance index of a channel installed with arc-shaped baffle turbulators,” Case Stud. Therm. Eng., vol. 26, pp. 101067, Aug. 2021. DOI: 10.1016/j.csite.2021.101067.
  • S. Chamoli, “Preference selection index approach for optimization of V down perforated baffled roughened rectangular channel,” Energy, vol. 93, pp. 1418–1425, Dec. 2015. DOI: 10.1016/j.energy.2015.09.125.
  • F. Incropera and P. D. Dewitt, Introduction to Heat Transfer. 3rd ed. John Wiley & Sons Inc, 1996.
  • E. Battista and H. C. Perkins, “Turbulent heat and momentum transfer in a square duct with moderate property variations,” Int. J. Heat Mass Transf., vol. 13, no. 6, pp. 1063–1065, Jun. 1970. DOI: 10.1016/0017-9310(70)90172-9.
  • M. David, A. Toutant, and F. Bataille, “Numerical development of heat transfer correlation in asymmetrically heated turbulent channel flow,” Int. J. Heat Mass Transfer., vol. 164, pp. 120599, Jan. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120599.
  • S. Eiamsa-Ard, A. Suksangpanomrung, and P. Promthaisong, “Enhanced heat transfer mechanism and flow topology of a channel contained with semi-circular hinged V-shaped baffles,” Int. J. Therm. Sci., vol. 177, pp. 107577, Jul 2022. DOI: 10.1016/j.ijthermalsci.2022.107577.
  • X. Li, G. Xie, J. Liu, and B. Sunden, “Parametric study on flow characteristics and heat transfer in rectangular channels with strip slits in ribs on one wall,” Int. J. Heat Mass Transf., vol. 149, pp. 118396, Mar 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.07.046.
  • M. A. E. Habet, S. A. Ahmed, and M. A. Saleh, “Thermal/hydraulic characteristics of a rectangular channel with inline/staggered perforated baffles,” Int. Commun. Heat Mass Transf., vol. 128, pp. 105591, Nov. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105591.
  • M. A. E. Habet, S. A. Ahmed, and M. A. Saleh, “The effect of using staggered and partially tilted perforated baffles on heat transfer and flow characteristics in a rectangular channel,” Int. J. Therm. Sci., vol. 174, pp. 107422, Apr. 2022. DOI: 10.1016/j.ijthermalsci.2021.107422.
  • A. Kumar and M. H. Kim, “Thermal hydraulic performance in a solar air heater channel with multi V-Type Perforated Baffles,” Energies, vol. 9, no. 7, pp. 564, Jul. 2016. DOI: 10.3390/en9070564.
  • R. Pandey and M. Kumar, “Efficiencies assessment of an indoor designed solar air heater characterized by V baffle blocks having staggered racetrack-shaped perforation geometry,” Sustain. Energy Technol. Assess., vol. 47, pp. 101362, Oct. 2021. DOI: 10.1016/j.seta.2021.101362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.