17
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synergetic effects of inter- and intramolecular hydrogen bonding interactions in XC5H3HC = Y···HO···H2O2 complexes (X = N, P, As and Sb; Y = O, S and NH): the role of aromaticity and exchange interactions

, &
Received 29 Jan 2024, Accepted 01 Apr 2024, Published online: 19 Apr 2024

References

  • Jeffrey GA. An introduction to hydrogen bonding. New York: Oxford University Press; 1997.
  • Nelson DL, Cox MM. Lehninger principles of biochemistry. 6th ed. New York: W. H. Freeman and Company; 2012.
  • Kuhn B, Mohr P, Stahl M. Intramolecular hydrogen bonding in medicinal chemistry. J Med Chem. 2010;53:2601–2611. doi:10.1021/jm100087s
  • Pellizzaro ML, Houton KA, Wilson AJ. Sequential and PhototriggeredSupramolecular self-sorting cascades using hydrogen-bonded motifs. Chem Sci. 2013;4:1825–1829. doi:10.1039/c3sc22194f
  • Yang L, Tan X, Wang Z, et al. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem Rev. 2015;115:7196–7239. doi:10.1021/cr500633b
  • Roy N, Bruchmann B, Lehn J-M. DYNAMERS: dynamic polymers as self-healing materials. Chem Soc Rev. 2015;44:3786–3807. doi:10.1039/C5CS00194C
  • Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed. 2015;54:3290–3327. doi:10.1002/anie.201408487
  • Grabowski SJ. What is the covalency of hydrogen bonding? Chem Rev. 2011;111:2597–2625. doi:10.1021/cr800346f
  • Gilli G, Belluci F, Ferreti V, et al. Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the beta-diketone fragment. J Am Chem Soc. 1989;111:1023–1028. doi:10.1021/ja00185a035
  • Gilli P, Bertolasi V, Ferreti V, et al. Evidence for resonance-assisted hydrogen bonding. 4. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H-O system by crystal structure correlation methods. J Am Chem Soc. 1994;116:909–915. doi:10.1021/ja00082a011
  • Perrin CL, Nelson JB. ‘Strong’ hydrogen bonds in chemistry and biology. Annu Rev Phys Chem. 1997;48:511–544. doi:10.1146/annurev.physchem.48.1.511
  • Grabowski SJ. Hydrogen bonding strength – measures based on geometric and topological parameters. J Phys Org Chem. 2003;16:797. doi:10.1002/poc.685
  • Srinivasan R, Feenstra JS, Park ST, et al. Direct determination of hydrogen-bonded structures in resonant and tautomeric reactions using ultrafast electron diffraction. J Am Chem Soc. 2004;126:2266–2267. doi:10.1021/ja031927c
  • Paul BK, Guchhait N. A computational investigation on the intramolecular hydrogen bonding interaction and excited state intramolecular proton transfer process in 2-quinolin-2-yl-phenol. Comput Theor Chem. 2011;978:67–76. doi:10.1016/j.comptc.2011.09.040
  • Rusinska-Roszak D. Intramolecular hydrogen bond energy via O-H … O-C the molecular tailoring approach to RAHB structures. J Phys Chem A. 2015;119:3674–3687. doi:10.1021/acs.jpca.5b02343
  • Nakhaei E, Nowroozi A. On the performance of resonance assisted hydrogen bond theory in malonaldehyde derivatives. Comput Theor Chem. 2016;1096:27–32. doi:10.1016/j.comptc.2016.09.029
  • Jiang X, Zhang H, Wu W, et al. Critical check for the role of resonance in intramolecular hydrogen bonding. Chem Eur J. 2017;23:16885–16891. doi:10.1002/chem.201703952
  • Karimi P, Sanchooli M. Investigation of resonance assisted hydrogen bond (RAHB) in some pyridine-based complexes: intramolecular and intermolecular interactions. J Mol Strcut. 2020;1204:127546. doi:10.1016/j.molstruc.2019.127546
  • Gurbanov AV, Kuznetsov ML, Demukhamedova SD, et al. Role of substituents on resonance assisted hydrogen bonding vs. intermolecular hydrogen bonding. Cryst Eng Comm. 2020;22:628–633. doi:10.1039/C9CE01744E
  • Karimi P, Sanchooli M. Tuning the resonance-assisted hydrogen bond (RAHB) of malonaldehyde using π-conjugated substituents and presentation of its energy decomposition. J Mol Graph Model. 2022;112:108142. doi:10.1016/j.jmgm.2022.108142
  • Raczyńska ED, Kosińska W, Ośmiałowski B, et al. Equilibria in relation to Pi-electron delocalization. Chem Rev. 2005;105:3561–3612. doi:10.1021/cr030087h
  • Filarowski A, Kochel A, Cieslik K, et al. Steric and aromatic impact on intramolecular hydrogen bonds in o-hydroxyaryl ketones and ketimines. J Phys Org Chem. 2005;18:986–993. doi:10.1002/poc.942
  • Krygowski TM, Szatylowicz H, Stasyuk OA, et al. Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem Rev. 2014;114:6383–6422. doi:10.1021/cr400252h
  • Gilli P, Pretto L, Bertolasi V, et al. Predicting hydrogen-bond strengths from acid–base molecular properties. The pKa slide rule: toward the solution of a long-lasting problem. Acc Chem Res. 2009;42:33–44. doi:10.1021/ar800001k
  • Sharif S, Denisov GS, Toney MD, et al. NMR studies of solvent-assisted proton transfer in a biologically relevant Schiff base: toward a distinction of geometric and equilibrium H-bond isotope effects. J Am Chem Soc. 2006;128:3375–3387. doi:10.1021/ja056251v
  • Krause M, Rouleau A, Stark H, et al. Synthesis, X-ray crystallography, and pharmacokinetics of novel AzomethineProdrugs of (R)-alpha-methylhistamine: highly potent and selective histamine H3 receptor agonists. J Med Chem. 1995;38:4070–4079. doi:10.1021/jm00020a022
  • Kanda T, Sasaki R, Nakamoto S, et al. The sirtuin inhibitor sirtinol inhibits hepatitis A virus (HAV) replication by inhibiting HAV internal ribosomal entry site activity. Biochem Biophys Res Commun. 2015;466:567–571. doi:10.1016/j.bbrc.2015.09.083
  • Hu J, Jing H, Lin H. Sirtuin inhibitors as anticancer agents. Future Med Chem. 2014;6:945–966. doi:10.4155/fmc.14.44
  • Klein RA. Electron density topological analysis of hydrogen bonding in glucopyranose and hydrated glucopyranose. J Am Chem Soc. 2002;124:13931–13937. doi:10.1021/ja0206947
  • Buemi G, Zuccarello F. Is the intramolecular hydrogen bond energy valuable from internal rotation barriers? J Mol Struct THEOCHEM. 2002;581:71–85. doi:10.1016/S0166-1280(01)00745-X
  • Estacio SG, Couto PC, Cabral BJC, et al. Energetics of intramolecular hydrogen bonding in di-substituted benzenes by the ortho-para method. J Phys Chem A. 2004;108:10834–10843. doi:10.1021/jp0473422
  • Nowroozi A, Raissi H, Farzad F. The presentation of an approach for estimating the intramolecular hydrogen bond strength in conformational study of β-aminoacrolein. J Mol Struct (THEOCHEM). 2005;730:161–169. doi:10.1016/j.theochem.2005.04.018
  • Jabłoński M, Kaczmarek A, Sadle AJ. Estimates of the energy of intramolecular hydrogen bonds. J Phys Chem A. 2006;110:10890–10898. doi:10.1021/jp062759o
  • Rozas I, Alkorta I, Elguero J. Intramolecular hydrogen bonds in ortho-substituted hydroxybenzenes and in 8-susbtituted 1-hydroxynaphthalenes: can a methyl group be an acceptor of hydrogen bonds? J Phys Chem A. 2001;105:10462–10467. doi:10.1021/jp013125e
  • Deshmukh MM, Gadre SR, Bartolotti LJ. Estimation of intramolecular hydrogen bond energy via molecular tailoring approach. J Phys Chem A. 2006;110:12519–12523. doi:10.1021/jp065836o
  • Karimi P, Sanchooli M, Kiyanee-Ghaleno M. Assessment of O–H···O and O–H···S intramolecular hydrogen bond energies in some substituted pyrimidines using quantum chemistry methods. J Mol Graph Model. 2021;104:107847. doi:10.1016/j.jmgm.2021.107847
  • Karimi P, Sanchooli M, Shojaa-Hormozzahi F. Estimation of resonance assisted hydrogen bond (RAHB) energies using properties of ring critical points in some dihydrogen-bonded complexes. J Mol Strcut. 2021;1242:130710. doi:10.1016/j.molstruc.2021.130710
  • Espinosa E, Molins M, Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett. 1998;285:170–173. doi:10.1016/S0009-2614(98)00036-0
  • Jeffrey GA, Maluszynska H. A survey of the geometry of hydrogen bonds in the crystal structures of barbiturates, purines and pyrimidines. J Mol Struct. 1986;147:127–142. doi:10.1016/0022-2860(86)87064-8
  • Massa L, Matta CF, Yonath Y, et al. Quantum biochemistry. Matta CF, editor. Weinheim: Wiley-VCH Verlag GmbH & Co, KgaA; 2010.
  • Mata I, Alkorta I, Espinosa E, et al. Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chem Phys Lett. 2011;507:185–189. doi:10.1016/j.cplett.2011.03.055
  • Nikolaienko TY, Bulavin LA, Hovorun DM. Bridging QTAIM with vibrational spectroscopy: the energy of intramolecular hydrogen bonds in DNA-related biomolecules. Phys Chem Chem Phys. 2012;14:7441–7447. doi:10.1039/c2cp40176b
  • Jabłonski M, Monaco G. Different zeroes of interaction energies as the cause of opposite results on the stabilizing nature of C–H O intramolecular interactions. J Chem Inf Model. 2013;53:1661–1675. doi:10.1021/ci400085t
  • Afonin AV, Vashchenko AV, Sigalov MV. Estimating the energy of intramolecular hydrogen bonds from 1H NMR and QTAIM calculations. Org Biomol Chem. 2016;14:11199–11211. doi:10.1039/C6OB01604A
  • Gilli G, Gilli P. The nature of the hydrogen bond–outline of a comprehensive hydrogen bond theory. New York: Oxford University Press; 2009.
  • Musin RN, Mariam YH. An integrated approach to the study of intramolecular hydrogen bonds in malonaldehyde enol derivatives and naphthazarin: trend in energetic versus geometrical consequences. J Phys Org Chem. 2006;19:425–444. doi:10.1002/poc.1102
  • Iogansen AV, Rassad in BV. Dependence of intensity and shift in the infrared bands of the hydroxyl group on hydrogen bonding energy. J Appl Spectrosc. 1969;11:1318–1325. doi:10.1007/BF00607982
  • Iogansen AV. Direct proportionality of the hydrogen bonding energy and the intensification of the stretching υ(XH) vibration in infrared spectra. Spectrochim Acta Part A. 1999;55:1585–1612. doi:10.1016/S1386-1425(98)00348-5
  • Masumian E, Nowroozi A. Comparative study of resonance-inhibited hydrogen bonded (RIHB) systems with different atoms involved: the leading role of σ-planarity. Mol Phys. 2019;117:1871–1881. doi:10.1080/00268976.2018.1557350
  • Katritzky AR, Barczynski P, Musumarra G, et al. Aromaticity as a quantitative concept. 1. A statistical demonstration of the orthogonality of classical and magnetic aromaticity in five- and six-membered heterocycles. J Am Chem Soc. 1989;111:7–15. doi:10.1021/ja00183a002
  • Schleyer PVR, Jiao H. What is aromaticity? Pure Appl Chem. 1996;68:209–2018. doi:10.1351/pac199668020209
  • Krygowski TM, Cyran´ski MK, Czarnocki Z, et al. Aromaticity: a theoretical concept of immense practical importance. Tetrahedron. 2000;56:1783–1796. doi:10.1016/S0040-4020(99)00979-5
  • Chen Z, Wannere CS, Corminboeuf C, et al. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev. 2005;105:3842–3888. doi:10.1021/cr030088+
  • Cyran´ski MK, Krygowski TM, Katritzky AR, et al. To what extent can aromaticity be defined uniquely? J Org Chem. 2002;67:1333–1338. doi:10.1021/jo016255s
  • Gatfaoui S, Issaoui N, Th R, et al. Synthesis, experimental and computational study of a non-centrosymmetric material 3-methylbenzylammonium trioxonitrate. J Mol Struct. 2021;1225:129132. doi:10.1016/j.molstruc.2020.129132
  • Daghar C, Issaoui N, Roisnel T, et al. Empirical and computational studies on newly synthesis cyclohexylammonium perchlorate. J Mol Struct. 2021;1230:129820. doi:10.1016/j.molstruc.2020.129820
  • Habli H, Mejrissi L, Issaoui N, et al. Ab initio calculation of the electronic structure of the strontium hydride ion (SrH+). Inter J Quantum Chem. 2015;115:172–186. doi:10.1002/qua.24813
  • Kazachenko AS, Medimagh M, Issaoui N, et al. Sulfamic acid/water complexes (SAA-H2O(1-8)) intermolecular hydrogen bond interactions: FTIR,X-ray, DFT and AIM analysis. J Mol Struct. 2022;1265:133394. doi:10.1016/j.molstruc.2022.133394
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision A.02. Wallingford: Gaussian, Inc.; 2009. Available from: http://www.gaussian.com.
  • Riley KE, Op’t Holt BT, Merz KM, Jr. Critical assessment of the performance of density functional methods for several atomic and molecular properties. J Chem Theory Comput. 2007;3:407–433. doi:10.1021/ct600185a
  • Becke AD. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys. 1993;98:5648–5652. doi:10.1063/1.464913
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev. 1988;B37:785–789. doi:10.1103/PhysRevB.37.785
  • Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem. 2004;25:1463–1473. doi:10.1002/jcc.20078
  • Bader RFW. Atoms in molecules: a quantum theory. Oxford: Oxford University Press; 1990.
  • Reed AE, Curtiss LA, Weinhold FJ. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1998;88:899–926. doi:10.1021/cr00088a005
  • Glendening ED, Reed AE, Carpenter JE, et al. (2003). NBO version 3.1. Pittsburgh: Gaussian Inc.
  • Hameka HF. On the nuclear magnetic shielding in the hydrogen molecule. Mol Phys. 1958;1:203–215. doi:10.1080/00268975800100261
  • Poater J, Fradera X, Duran M, et al. The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. Chem Eur J. 2003;9:400–406. doi:10.1002/chem.200390041
  • Su P, Li H. Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys. 2009;131:014102. doi:10.1063/1.3159673
  • Schmidt MW, Baldridge KK, Boatz JA, et al. General atomic and molecular electronic structure system. J Comput Chem. 1993;14:1347. doi:10.1002/jcc.540141112
  • Hansen PE, Spanget-Larsen J. NMR and IR investigations of strong intramolecular hydrogen bonds. Molecules. 2017;22:552. doi:10.3390/molecules22040552
  • Lu T, Chen FW. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–592. doi:10.1002/jcc.22885
  • Gilli P, Bertolasi V, Pretto L, et al. Covalent versus electrostatic nature of the strong hydrogen bond: discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in β-DiketoneEnol RAHB systems. J Am Chem Soc. 2004;126:3845–3855. doi:10.1021/ja030213z
  • Pant S, Zhang J, Kim EC, et al. PIP2-dependent coupling of voltage sensor and pore domains in Kv7.2 channel. Commun Biol. 2021;4:1189–1203.
  • Espinosa E, Molins M. Retrieving interaction potentials from the topology of the electron density distribution: The case of hydrogen bonds. J Chem Phys. 2000;113:5686. doi:10.1063/1.1290612
  • Halder A, Data D, Seelam PP, et al. Estimating strengths of individual hydrogen bonds in RNA base pairs: toward a consensus between different computational approaches. ACS Omega. 2019;4:7354–7368. doi:10.1021/acsomega.8b03689
  • Espinosa E. From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. J Chem Phys. 2002;117:5529–5542. doi:10.1063/1.1501133
  • Yurenko YP, Zhurakivsky RO, Ghomi M, et al. Ab initio comprehensive conformational analysis of 2’-deoxyuridine, the biologically significant DNA minor nucleoside, and reconstruction of its low-temperature matrix infrared spectrum. J Phys Chem B. 2008;112:1240–1250. doi:10.1021/jp074747o
  • Karimi P. Investigation of intramolecular hydrogen bonding in conjunction with cation-π interactions in complexes involving 4-substituted-8-hydroxyquinolines. J Mol Strcut. 2019;1182:1–5. doi:10.1016/j.molstruc.2019.01.024
  • Lozynski M, Rusinska-Roszak D. Finding the direct energy-structure correlations in intramolecular aromaticity assisted hydrogen bonding (AAHB). J Mol Graph Model. 2021;105:107884. doi:10.1016/j.jmgm.2021.107884
  • Medimagh M, Ben Mleh C, Issaoui N, et al. DFT and molecular docking study of the effect of a green solvent (water and DMSO) on the structure, MEP, and FMOs of the 1-ethylpiperazine-1,4-diium bis(hydrogenoxalate) compound. J Mol Liq. 2023;369:120851. doi:10.1016/j.molliq.2022.120851
  • Mhadhbi N, Issaoui N, Hamadou WS, et al. Physico-chemical properties, pharmacokinetics, molecular docking and in-vitro pharmacological study of a cobalt (II) complex based on 2-aminopyridine. ChemistrySelect. 2022;7:e202103592. doi:10.1002/slct.202103592
  • Hammami F, Issaoui N, Nasr S. Investigation of hydrogen bonded structure of urea-water mixtures through infra-red spectroscopy and non-covalent interaction (NCI) theoretical approach. Comput Theor Chem. 2021;1199:113218. doi:10.1016/j.comptc.2021.113218
  • Kazachenko AS, Vasilieva NY, Fetisova OY, et al. New reactions of betulin with sulfamic acid and ammonium sulfamate in the presence of solid catalysts. Biomass Convers Biorefinery. 2022;14:4245–4256. doi:10.1007/s13399-022-02587-x
  • Contreras-García J, Johnson ER, Keinan S, et al. NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput. 2011;7:625–632. doi:10.1021/ct100641a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.