19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hydrogen bonds and elastic anisotropy of nitrile molecular crystals: an investigation from first-principles

, &
Received 06 Feb 2024, Accepted 09 Apr 2024, Published online: 24 Apr 2024

References

  • Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries. Adv Mater. 2018;30:1800561–1800585. doi:10.1002/adma.201800561
  • Xu K. Li-ion battery electrolytes. Nat Energy. 2021;6:763–763. doi:10.1038/s41560-021-00841-6
  • Alarco PJ, Abu-Lebdeh Y, Abouimrane A, et al. The plasttic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat Mater. 2004;3:476–481. doi:10.1038/nmat1158
  • McFarlane DR, Forsyth M. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv Mater. 2001;13:957–966. doi:10.1002/1521-4095(200107)13:12/13<957::AID-ADMA957>3.0.CO;2-#
  • Long S, McFarlane DR, Forsyth M. Fast ion conduction in molecular plastic crystals. Solid State Ionics. 2003;161:105–112. doi:10.1016/S0167-2738(03)00208-X
  • Long S, Howlett PC, McFarlane DR, et al. Fast ion conduction in an acid doped pentaglycerine plastic crystal. Solid State Ionics. 2006;177:647–652. doi:10.1016/j.ssi.2005.12.036
  • Yang H, Wu N. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review. Energy Sci Eng. 2022;10:1643–1671. doi:10.1002/ese3.1163
  • Das S, Prathapa SJ, Menezes PV, et al. Study of ion transport in lithium perchlorate-succinonitrile plastic crystalline electrolyte via ionic conductivity and in situ cryo-crystallography. J Phys Chem B. 2009;113:5025–5031. doi:10.1021/jp809465u
  • Das S, Bhadram VS, Narayana C, et al. Brillouin scattering investigation of solvation dynamics in succinonitrile-lithium salt plastic crystalline electrolytes. J Phys Chem B. 2011;115:12356–12361. doi:10.1021/jp204869t
  • Das S, Bhattacharyya AJ. Dielectric relaxation spectroscopy for evaluation of the influence of solvent dynamics on ion transport in succinonitrile-salt plastic crystalline electrolytes. J Phys Chem B. 2011;115:2148–2154. doi:10.1021/jp108848b
  • Derollez P, Lefebvre J, Descamps M, et al. Structure of succinonitrile in its plastic phase. J Phys Condens Matter. 1990;2:6893–6903. doi:10.1088/0953-8984/2/33/002
  • Derollez P, Lefebvre J, Descamps M, et al. Neutron diffuse scattering in the plastic phase of succinonitrile. J Phys Condens Matt. 1990;2:9975–9987. doi:10.1088/0953-8984/2/50/002
  • Whitfield PS, Le Page Y, Abouimrane A, et al. Ab initio structure determination of the low-temperature phase of succinonitrile from laboratory X-ray powder diffraction data – coping with potential poor powder quality using DFT ab initio methods. Powder Diffract. 2008;23:292–299. doi:10.1154/1.3009635
  • Hore S, Dinnebier R, Wen W, et al. Structure of plastic crystalline succinonitrile: high-resolution in situ powder diffraction. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2009;635:88–93. doi:10.1002/zaac.200800404
  • Enjalbert R, Galy J. CH3CN: X-ray structural investigation of a unique single crystal, β → α phase transition and crystal structure. Acta Crystall Sec B: Struct Sci. 2002;58:1005–1010. doi:10.1107/S0108768102017603
  • Dove MT. The re-entrant phase transitions in crystalline malononitrile, CH 2(CN)2: a neutron powder diffraction study. J Phys Condens Matt. 2011;23:225402–225409. doi:10.1088/0953-8984/23/22/225402
  • Abouimrane A, Whitfield PS, Niketic S, et al. Investigation of Li salt doped succinonitrile as potential solid electrolytes for lithium batteries. J Power Sources. 2007;174:883–888. doi:10.1016/j.jpowsour.2007.06.103
  • Riddick JA, Bungh WB, Sakano TK. Organic solvents: physical properties and methods of purification; 1986.
  • Olejniczak A, Katrusiak A. Supramolecular reaction between pressure-frozen acetonitrile phases α and β. J Phys Chem B. 2008;112:7183–7190. doi:10.1021/jp800753n
  • Fontaine H, Bée M. Sur la structure du succinonitrile dans sa phase plastique. Bulletin de La Société Française de Minéralogie et de Cristallographie. 1972;95:441–450. doi:10.3406/bulmi.1972.6707
  • Wulff CA, Westrum EF. Heat capacities and thermodynamic properties of globular molecules. VI. Succinonitrile. J Phys Chem. 1963;67:2376–2381. doi:10.1021/j100805a028
  • Dosseh G, Fressigné C, Rousseau B, et al. The phases and dynamics of succinonitrile: an NMR absorption line study. J de Chimie Phys. 1990;87:1821–1833. doi:10.1051/jcp/1990871821
  • Wasylishen RE, Pettitt BA. 13C spin-lattice relaxation in rotationally disordered solids I. Succinonitrile. Mol Phys. 1978;36:1459–1467. doi:10.1080/00268977800102501
  • Descamps M. Space correlations in succinonitrile observed by X-ray scattering. Solid State Commun. 1974;14:77–81. doi:10.1016/0038-1098(74)90236-1
  • Leadbetter AJ, Turnbull A. Molecular reorientation in three orientationally disordered molecular crystals by incoherent neutron scattering. J Chem Soc Faraday Trans 2 Mol Chem Phys. 1977;73:1788–1804. doi:10.1039/f29777301788
  • Dai Y, Wang K, Zhou B, et al. Gauche-trans conformational equilibrium of succinonitrile under high pressure. J Phys Chem C. 2016;120:5340–5346. doi:10.1021/acs.jpcc.5b12341
  • Pace EL, Noe LJ. Infrared spectra of acetonitrile and acetonitrile-d3. J Chem Phys. 1968;49:5317–5325. doi:10.1063/1.1670050
  • Anderson A, Zeng WY. Raman and far-infrared study of the lattice vibrations of methyl cyanide. J Raman Spectrosc. 1986;17:447–451. doi:10.1002/jrs.1250170604
  • Marzocchi MP, Migliorini MG. Raman spectra and phase transition of crystalline CH3CN and CD3CN. Spectrochimica Acta Part A Mol Spectrosc. 1973;29:1643–1651. doi:10.1016/0584-8539(73)80114-X
  • Abramczyk H, Paradowska-Moszkowska K. The correlation between the phase transitions and vibrational properties by Raman spectroscopy: liquid-solid β and solid β-solid α acetonitrile transitions. Chem Phys. 2001;265:177–191. doi:10.1016/S0301-0104(01)00271-3
  • Putnam WE, Mceachern DM, Kilpatrick JE. Entropy and related thermodynamic properties of acetonitrile (Methyl cyanide). J Chem Phys. 1965;42:749–755. doi:10.1063/1.1696002
  • Barrow MJ. α-Acetonitrile at 215 K. Acta Crystall Sec B Struct Crystall Cryst Chem. 1981;37:2239–2242. doi:10.1107/S0567740881008510
  • Antson OK, Tilli KJ, Andersen NH. Neutron powder diffraction study of deuterated β-acetonitrile. Acta Crystall Sect B. 1987;43:296–301. doi:10.1107/S0108768187097866
  • Brackemeyer T, Erker G, Fröhlich R, et al. Cp3Zr(acetonitrile)+: structure of an electron-rich organometallic d0-cation. Chemische Berichte. 1997;130:899–902. doi:10.1002/cber.19971300714
  • Yamawaki H, Aoki K, Kakudate Y, et al. High-pressure Raman study of a polar molecule, acetonitrile. Chem Phys Lett. 1990;169:77–80. doi:10.1016/0009-2614(90)85168-C
  • Yenice KM, Lee SA, Anderson A. Raman studies of molecular crystals at high pressures. IV. Acetonitrile, CH3CN andCD3CN. J Raman Spectrosc. 1996;27:835–840. doi:10.1002/(SICI)1097-4555(199611)27:11<835::AID-JRS26>3.0.CO;2-N
  • Zussman A, Alexander S. Displacive phase transitions in malononitrile 1. J Chem Phys. 1968;49:3792–3803. doi:10.1063/1.1670683
  • Savoie R, Brousseau R, Nolin C. Vibrational spectra of crystalline malononitrile. Can J Chem. 1976;54:3293–3302. doi:10.1139/v76-470
  • Le Calvé N, Pasquier B, Novak A. Vibrational study of phase transition of solid malononitrile. J Chem Phys. 1979;72:6409–6413. doi:10.1063/1.439139
  • Tan L, Refson K, Dove MT. Structural phase transitions in malononitrile, CH2(CN)2: crystal structure of the δ phase by neutron powder diffraction, and ab initio calculations of the structures and phonons of the α and δ phases. J Phys Condens Matter. 2019;31:255401–255410. doi:10.1088/1361-648X/ab11a1
  • Dove MT, Rae AI. Structural phase transitions in malononitrile. Faraday Discuss Chem Soc. 1980;69:98–106. doi:10.1039/dc9806900098
  • Nakamura N, Tanisaki S, Obatake K. X-ray study on the phase transition in malononitrile. Phys Lett A. 1971;34:372–373. doi:10.1016/0375-9601(71)90920-0
  • Obatake K, Tanisaki S. The crystal structure of malononitrile. Phys Lett A. 1973;44:341–342. doi:10.1016/0375-9601(73)90774-3
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132:154104–154123. doi:10.1063/1.3382344
  • Fontaine H, Moriamez C. N° 88. — détermination des constantes élastiques du succinonitrile dans la phase plastique. J Chim Phys. 1968;65:969–973. doi:10.1051/jcp/1968650969
  • Gonze X, Jollet F, Abreu Araujo F, et al. Recent developments in the ABINIT software package. Comput Phys Commun. 2016;205:106–131. doi:10.1016/j.cpc.2016.04.003
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871. doi:10.1103/PhysRev.136.B864
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–A1138. doi:10.1103/PhysRev.140.A1133
  • Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B. 1991;43:1993–2006. doi:10.1103/PhysRevB.43.1993
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi:10.1103/PhysRevLett.77.3865
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–5192. doi:10.1103/PhysRevB.13.5188
  • Fischer TH, Almlöf J. General methods for geometry and wave function optimization. J Phys Chem. 1992;96:9768–9774. doi:10.1021/j100203a036
  • Bernasconi M, Chiarotti GL, Focher P, et al. First-principle-constant pressure molecular dynamics. J Phys Chem Solids. 1995;56:501–505. doi:10.1016/0022-3697(94)00228-2
  • Grimme S. Accurate description of van der Waals complexes. J Comput Chem. 2004;25:1463–1473. doi:10.1002/jcc.20078
  • Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27:1787–1799. doi:10.1002/jcc.20495
  • Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32:1456–1465. doi:10.1002/jcc.21759
  • Liu QJ, Zhang NC, Liu FS, et al. Structural, electronic, optical, elastic properties and born effective charges of monoclinic HfO2 from first-principles calculations. Chin Phys B. 2014;23:047101–047108. doi:10.1088/1674-1056/23/4/047101
  • Gavezzotti A. Molecular aggregation: structure analysis and molecular simulation of crystals and liquids. Oxford: Oxford Universiy Press; 2007.
  • Taylor R, Wood PA. A million crystal structures: the whole is greater than the sum of its parts. Chem Rev. 2019;119:9427–9477. doi:10.1021/acs.chemrev.9b00155
  • Lee S, Mallik AB, Fredrickson DC. Dipolar-Dipolar interactions and the crystal packing of nitriles, Ketones, Aldehdyes, and C(sp2)-F groups. Cryst Growth Des. 2004;4:279–290. doi:10.1021/cg0300228
  • Dagnino MR, la Manna G, Paoloni L. Ab initio MO study of dipole – dipole interactions in acetonitrile dimers. Chem Phys Lett. 1976;39:552–556. doi:10.1016/0009-2614(76)80327-2
  • Spackman MA, Byrom PG. A novel definition of a molecule in a crystal. Chem Phys Lett. 1997;267:215–220. doi:10.1016/S0009-2614(97)00100-0
  • McKinnon JJ, Spackman MA, Mitchell AS. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystall Sec B: Struct Sci. 2004;60:627–668. doi:10.1107/S0108768104020300
  • Wolff S K, Crystal Explorer. https://crystalexplorer.scb.uwa.edu.au/downloads.html; n.d.
  • Spackman MA, McKinnon JJ. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002;4:378–392. doi:10.1039/B203191B
  • Nye JF. Physical properties of crystals; Oxford University Press; London; 1985.
  • Baroni S, de Gironcoli S, Dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys. 2001;73:515–562. doi:10.1103/RevModPhys.73.515
  • Hamann DR, Wu X, Rabe KM, et al. Metric tensor formulation of strain in density-functional perturbation theory. Phys Rev B Condens Matter Mater Phys. 2005;71:035117–035130. doi:10.1103/PhysRevB.71.035117
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sec A. 1952;65:349–354. doi:10.1088/0370-1298/65/5/307
  • Oganov AR. Computer Simulation Studies of Minerals, PhD thesis, University College London; 2002.
  • Pugh SF. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London Edinburgh Dublin Philos Magaz J Sci. 1954;45:823–843. doi:10.1080/14786440808520496
  • Reddy CM, Rama Krishna G, Ghosh S. Mechanical properties of molecular crystals – applications to crystal engineering. CrystEngComm. 2010;12:2296–2314. doi:10.1039/c003466e
  • Azuri I, Meirzadeh E, Ehre D, et al. Unusually large Young’s moduli of amino acid molecular crystals. Angew Chem. 2015;127:13770–13774. doi:10.1002/ange.201505813
  • Matveychuk YV, Bartashevich EV, Tsirelson VG. How the H-bond layout determines mechanical properties of crystalline amino acid hydrogen maleates. Cryst Growth Des. 2018;18:3366–3375. doi:10.1021/acs.cgd.8b00067
  • Ranganathan SI, Ostoja-Starzewski M. Universal elastic anisotropy index. Phys Rev Lett. 2008;101:055504–055507. doi:10.1103/PhysRevLett.101.055504
  • Chahi G, Bradai D, Belabbas I. Structural and elastic properties of CaCO3 hydrated phases: a dispersion-corrected density functional theory study. J Phys Chem Solids. 2020;138:109295–109307. doi:10.1016/j.jpcs.2019.109295
  • Gaillac R, Pullumbi P, Coudert FX. ELATE: an open-source online application for analysis and visualization of elastic tensors. J Phys Condens Matt. 2016;28:275201–275205. doi:10.1088/0953-8984/28/27/275201
  • https://progs.coudert.name/elate.
  • Bée M, Lechner RE, Amoureux JP, et al. Temperature dependence of rotational isomerisation and molecular reorientation rates in plastic succinonitrile. J Phys C Solid State Phys. 1983;16:4973–4984. doi:10.1088/0022-3719/16/25/006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.