39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular dynamics study of melting and crystallization of nickel nanoparticles with carbon impurity

, , &
Received 28 Feb 2024, Accepted 09 Apr 2024, Published online: 22 Apr 2024

References

  • Dekker encyclopedia of nanoscience and nanotechnology. 3rd ed. Schwarz JA, Lyshevski SE, Contescu CI, editors. Boca Raton: CRC Press, 2014. 4200 p.
  • Cao G, Wang Y. Nanostructures and nanomaterials: synthesis, properties, and applications. In: Spaepen F, editor. World scientific series in nanoscience and nanotechnology, 2nd ed., vol. 2. Singapore: World Scientific Publishing Co Pte Ltd; 2011. p. 61–141. doi:10.1142/7885
  • Humbert C, Noblet T, Dalstein L, et al. Sum-frequency generation spectroscopy of plasmonic nanomaterials: a review. Materials. 2019;12:836. doi:10.3390/ma12050836
  • Mantri Y, Jokerst JV. Engineering plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano. 2020;14:9408–9422. doi:10.1021/acsnano.0c05215
  • Jain TK, Morales MA, Sahoo SK, et al. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. 2005;2:194–205. doi:10.1021/mp0500014
  • Shim SY, Lim DK, Nam JM. Ultrasensitive optical biodiagnostic methods using metallic nanoparticles. Nanomedicine. 2008;3:215–232. doi:10.2217/17435889.3.2.215
  • Kodama K, Nagai T, Kuwaki A, et al. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat Nanotechnol. 2021;16:140–147. doi:10.1038/s41565-020-00824-w
  • Mitchell S, Qin R, Zheng N, et al. Nanoscale engineering of catalytic materials for sustainable technologies. Nat Nanotechnol. 2021;16:129–139. doi:10.1038/s41565-020-00799-8
  • Wagener P, Jakobi J, Rehbock C, et al. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles. Sci Rep. 2016;6:23352. doi:10.1038/srep23352
  • Ziefub AR, Reichenberger S, Rehbock C, et al. Laser fragmentation of colloidal gold nanoparticles with high-intensity nanosecond pulses is driven by a single-step fragmentation mechanism with a defined educt particle-size threshold. J Phys Chem C. 2018;122:22125–22136. doi:10.1021/acs.jpcc.8b04374
  • Amikura K, Kimura T, Hamada M, et al. Copper oxide particles produced by laser ablation in water. Appl Surf Sci. 2008;254:6976–6982. doi:10.1016/j.apsusc.2008.05.091
  • Barcikowski S, Compagnini G. Advanced nanoparticle generation and excitation by lasers in liquids. Phys Chem Chem Phys. 2013;15:3022–3026. doi:10.1039/C2CP90132C
  • Buffat P, Borel J-P. Size effect on the melting temperature of gold particles. Phys Rev A. 1976;13:2287. doi:10.1103/PhysRevA.13.2287
  • Allen GL, Bayles RA, Gile WW, et al. Small particle melting of pure metals. Thin Solid Films. 1986;144:297–308. doi:10.1016/0040-6090(86)90422-0
  • Castro Т, Reifenberger R, Choi E, et al. Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B. 1990;42:8548. doi:10.1103/PhysRevB.42.8548
  • Chepkasov IV, Gafner YY, Vysotin MA, et al. A study of melting of various types of Pt-Pd nanoparticles. Phys Solid State. 2017;59:2076–2081. doi:10.1134/S1063783417100109
  • Qi Y, Cagin Т, Johnson WL, et al. Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys. 2001;115:385–394. doi:10.1063/1.1373664
  • Poletaev GM, Gafner YY, Gafner SL. Molecular dynamics study of melting, crystallization and devitrification of nickel nanoparticles. Lett Mater. 2023;13(4):298–303. doi:10.22226/2410-3535-2023-4-298-303
  • Nguyen TD, Nguyen CC, Tran VH. Molecular dynamics study of microscopic structures, phase transitions and dynamic crystallization in Ni nanoparticles. RSC Adv. 2017;7:25406–25413. doi:10.1039/C6RA27841H
  • Poletaev GM, Bebikhov YV, Semenov AS. Molecular dynamics study of the formation of the nanocrystalline structure in nickel nanoparticles during rapid cooling from the melt. Mater Chem Phys. 2023;309:128358. doi:10.1016/j.matchemphys.2023.128358
  • Gafner Y, Gafner S, Redel L, et al. Estimation of the structure of binary Ag-Cu nanoparticles during their crystallization by computer simulation. J Nanoparticle Res. 2023;25:205. doi:10.1007/s11051-023-05850-y
  • Wang A, Yin H, Ren M, et al. Preparation of nickel nanoparticles with different sizes and structures and catalytic activity in the hydrogenation of p-nitrophenol. New J Chem. 2010;34:708–713. doi:10.1039/b9nj00657e
  • Morozov YG, Belousova OV, Kuznetsov MV. Preparation of nickel nanoparticles for catalytic applications. Inorg Mater. 2011;47:36–40. doi:10.1134/S0020168510121027
  • Ruan Y, Wang C, Jiang J. Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors. J Mater Chem A. 2016;4:14509–14538. doi:10.1039/C6TA05104A
  • Purja Pun GP, Mishin Y. Development of an interatomic potential for the Ni-Al system. Phil Mag. 2009;89:3245–3267. doi:10.1080/14786430903258184
  • Levchenko EV, Ahmed T, Evteev AV. Composition dependence of diffusion and thermotransport in Ni-Al melts: a step towards molecular dynamics assisted databases. Acta Mater. 2017;136:74–89. doi:10.1016/j.actamat.2017.06.056
  • Poletaev GM, Zorya IV, Rakitin RY, et al. Interatomic potentials for describing impurity atoms of light elements in fcc metals. Mater Phys Mech. 2019;42(4):380–388. doi:10.18720/MPM.4242019_2
  • Ruda M, Farkas D, Garcia G. Atomistic simulations in the Fe-C system. Comput Mater Sci. 2009;45:550–560. doi:10.1016/j.commatsci.2008.11.020
  • Montejano-Carrizales JM, Iniguez MP, Alonso JA. Evolution of the structural stability of large Cu, Ni, Pd, and Ag clusters with size: an analysis within the embedded atom method. J Clust Sci. 1994;5:287–302. doi:10.1007/BF01170713
  • Ugarte D. Revisiting the structural instability observed in small particles in the electron microscope. Z Phys D – Atoms, Molecules Clusters. 1993;28:177–181. doi:10.1007/BF01436986
  • Liang S-X, Zhang L-C, Reichenberger S, et al. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Phys Chem Chem Phys. 2021;23:11121–11154. doi:10.1039/D1CP00701G
  • Zhong L, Wang J, Sheng H, et al. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature. 2014;512:177–180. doi:10.1038/nature13617
  • Poletaev G, Gafner Y, Gafner S, et al. Molecular dynamics study of the devitrification of amorphous copper nanoparticles in vacuum and in a silver shell. Metals (Basel). 2023;13(10):1664. doi:10.3390/met13101664
  • Chan W-L, Averback RS, Cahill DG, et al. Solidification velocities in deeply undercooled silver. Phys Rev Lett. 2009;102:095701. doi:10.1103/PhysRevLett.102.095701
  • Zhang HY, Liu F, Yang Y, et al. The molecular dynamics study of vacancy formation during solidification of pure metals. Sci Rep. 2017;7:10241. doi:10.1038/s41598-017-10662-x
  • Burlakov VM. Thermal hysteresis in melting-solidification of nanoparticles. Appl Sci. 2023;13(6):3809. doi:10.3390/app13063809
  • Xiong S, Qi W, Cheng Y, et al. Universal relation for size dependent thermodynamic properties of metallic nanoparticles. Phys Chem Chem Phys. 2011;13(22):10652–10660. doi:10.1039/c0cp90161j
  • Nanda KK. Liquid-drop model for the surface energy of nanoparticles. Phys Lett A. 2012;376(19):1647–1649. doi:10.1016/j.physleta.2012.03.055
  • Safaei A, Attarian Shandiz M, Sanjabi S, et al. Modeling the melting temperature of nanoparticles by an analytical approach. J Phys Chem C. 2008;112(1):99–105. doi:10.1021/jp0744681
  • Guisbiers G, Kazan M, Van Overschelde O, et al. Mechanical and thermal properties of metallic and semiconductive nanostructures. J Phys Chem C. 2008;112:4097–4103. doi:10.1021/jp077371n
  • Bandyopadhyay D, Sharma RC, Chakraborti N. The Ti-Ni-C system (titanium-nickel-carbon). J Phase Equilib. 2000;21(2):186–191. doi:10.1361/105497100770340255
  • Tsuzuki H, Branicio PS, Rino JP. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun. 2007;177:518–523. doi:10.1016/j.cpc.2007.05.018
  • Ighalo JO, Amama PB. Recent progress in the design of dry reforming catalysts supported on low-dimensional materials. J CO2 Util. 2024;81:102734. doi:10.1016/j.jcou.2024.102734

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.