120
Views
0
CrossRef citations to date
0
Altmetric
Review Paper

Dietary factors in circadian rhythm modulation and their impact on metabolic diseases: a state of the science review

& ORCID Icon
Pages 233-259 | Received 06 Dec 2023, Accepted 17 Mar 2024, Published online: 30 Mar 2024

References

  • Abulmeaty MMA, Almajwal AM, Al Numair KS, Razak S, Hasan MM, Fawzy A, Farraj AI, Abudawood M, Aljuraiban GS. 2021. Effect of long-term continuous light exposure and Western diet on adropin expression, lipid metabolism, and energy homeostasis in rats. Biology. 10(5):413. doi: 10.3390/biology10050413.
  • Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. 2021. Importance of circadian timing for aging and longevity. Nat Commun. 12(1):2862. doi: 10.1038/s41467-021-22922-6.
  • Adafer R, Messaadi W, Meddahi M, Patey A, Haderbache A, Bayen S, Messaadi N. 2020. Food timing, circadian rhythm and chrononutrition: a systematic review of time-restricted eating’s effects on human health. Nutrients. 12(12):3770. doi: 10.3390/nu12123770.
  • Ajabnoor GMA, Bahijri S, Shaik NA, Borai A, Alamoudi AA, Al-Aama JY, Chrousos GP, Oster H. 2017. Ramadan fasting in Saudi Arabia is associated with altered expression of CLOCK, DUSP and IL-1alpha genes, as well as changes in cardiometabolic risk factors. PLoS One. 12(4):e0174342. doi: 10.1371/journal.pone.0174342.
  • Alli A, Yu L, Holzworth M, Richards J, Cheng K-Y, Lynch IJ, Wingo CS, Gumz ML. 2019. Direct and indirect inhibition of the circadian clock protein Per1: effects on ENaC and blood pressure. Am J Physiol-Renal. 316(5):F807–F813. doi: 10.1152/ajprenal.00408.2018.
  • Almeneessier AS, BaHammam AS. 2018. How does diurnal intermittent fasting impact sleep, daytime sleepiness, and markers of the biological clock? Current insights. Nat Sci Sleep. 10:439–452. doi: 10.2147/NSS.S165637.
  • Almeneessier AS, BaHammam AA, Alzoghaibi M, Olaish AH, Nashwan SZ, BaHammam AS, Oster H. 2019. The effects of diurnal intermittent fasting on proinflammatory cytokine levels while controlling for sleep/wake pattern, meal composition and energy expenditure. PLoS One. 14(12):e0226034. doi: 10.1371/journal.pone.0226034.
  • Almeneessier A, Bahammam A, Sharif M, Bahammam S, Nashwan S, Pandi Perumal S, Cardinali D, Alzoghaibi M. 2017. The influence of intermittent fasting on the circadian pattern of melatonin while controlling for caloric intake, energy expenditure, light exposure, and sleep schedules: a preliminary report. Ann Thorac Med. 12(3):183. doi: 10.4103/atm.ATM_15_17.
  • Al-Rawi N, Madkour M, Jahrami H, Salahat D, Alhasan F, BaHammam A, Al-Islam Faris M, Kumar NA. 2020. Effect of diurnal intermittent fasting during ramadan on ghrelin, leptin, melatonin, and cortisol levels among overweight and obese subjects: a prospective observational study. PLoS One. 15(8):e0237922. doi: 10.1371/journal.pone.0237922.
  • Antoni R, Johnston KL, Collins AL, Robertson MD. 2017. Effects of intermittent fasting on glucose and lipid metabolism. Proc Nutr Soc. 76(3):361–368. doi: 10.1017/S0029665116002986.
  • BaHammam AS, Almeneessier AS. 2020. Recent evidence on the impact of ramadan diurnal intermittent fasting, mealtime, and circadian rhythm on cardiometabolic risk: a review. Front Nutr. 7:28. doi: 10.3389/fnut.2020.00028.
  • Blancas-Velazquez AS, Unmehopa UA, Eggels L, Koekkoek L, Kalsbeek A, Mendoza J, la Fleur SE. 2018. A free-choice high-fat high-sugar diet alters day–night per2 gene expression in reward-related brain areas in rats. Front Endocrinol. 9:154. doi: 10.3389/fendo.2018.00154.
  • Boucsein A, Rizwan MZ, Tups A. 2019. Hypothalamic leptin sensitivity and health benefits of time‐restricted feeding are dependent on the time of day in male mice. FASEB J. 33(11):12175–12187. doi: 10.1096/fj.201901004R.
  • Bravo R, Chini A, Ugartemendia L, Franco L, Mesa M, Rodriguez AB, Cubero J, Barriga C. 2017. High-fat diet and glucose and albumin circadian rhythms’ chronodisruption in rats. Turk J Biol. 41(2):364–369. https://journals.tubitak.gov.tr/biology/abstract.htm?id=20351.
  • Charlot A, Hutt F, Sabatier E, Zoll J. 2021. Beneficial effects of early time-restricted feeding on metabolic diseases: importance of aligning food habits with the circadian clock. Nutrients. 13(5):1405. doi: 10.3390/nu13051405.
  • Chawla S, Beretoulis S, Deere A, Radenkovic D. 2021. The window matters: a systematic review of time restricted eating strategies in relation to cortisol and melatonin secretion. Nutrients. 13(8):2525. doi: 10.3390/nu13082525.
  • Christie S, Vincent AD, Li H, Frisby CL, Kentish SJ, O’Rielly R, Wittert GA, Page AJ. 2018. A rotating light cycle promotes weight gain and hepatic lipid storage in mice. Am J Physiol-Gastr L. 315(6):G932–G942. doi: 10.1152/ajpgi.00020.2018.
  • Clayton DJ, Mode WJA, Slater T. 2020. Optimising intermittent fasting: evaluating the behavioural and metabolic effects of extended morning and evening fasting. Nutr Bull. 45(4):444–455. doi: 10.1111/nbu.12467.
  • Cleal JK, Bruce KD, Shearer JL, Thomas H, Plume J, Gregory L, Shepard JN, Spiers-Fitzgerald KL, Mani R, Lewis RM, et al. Maternal obesity during pregnancy alters daily activity and feeding cycles, and hypothalamic clock gene expression in adult male mouse offspring. Int J Mol Sci. 2019;20(21):5408. doi: 10.3390/ijms20215408.
  • Dalbram E, Basse AL, Zierath JR, Treebak JT. 2019. Voluntary wheel running in the late dark phase ameliorates diet-induced obesity in mice without altering insulin action. J Appl Physiol. 126(4):993–1005. doi: 10.1152/japplphysiol.00737.2018.
  • Davis JA, Paul JR, McMeekin LJ, Nason SR, Antipenko JP, Yates SD, Cowell RM, Habegger KM, Gamble KL. 2020. High‐fat and high‐sucrose diets impair time‐of‐day differences in spatial working memory of male mice. Obesity. 28(12):2347–2356. doi: 10.1002/oby.22983.
  • Davis JA, Paul JR, Yates SD, Cutts EJ, McMahon LL, Pollock JS, Pollock DM, Bailey SM, Gamble KL. 2021. Time-restricted feeding rescues high-fat-diet-induced hippocampal impairment. IScience. 24(6):102532. doi: 10.1016/j.isci.2021.102532.
  • Deota S, Panda S. 2021. New horizons: circadian control of metabolism offers novel insight into the cause and treatment of metabolic diseases. J Clin Endocr Metab. 106(3):e1488–e1493. doi: 10.1210/clinem/dgaa691.
  • Dong TA, Sandesara PB, Dhindsa DS, Mehta A, Arneson LC, Dollar AL, Taub PR, Sperling LS. 2020. Intermittent fasting: a heart healthy dietary pattern? Am J Med. 133(8):901–907. doi: 10.1016/j.amjmed.2020.03.030.
  • Douma LG, Costello HM, Crislip GR, Cheng K-Y, Lynch IJ, Juffre A, Barral D, Masten S, Roig E, Beguiristain K, et al. 2022. Kidney-specific KO of the circadian clock protein PER1 alters renal Na+ handling, aldosterone levels, and kidney/adrenal gene expression. Am J Physiol Renal Physiol. 322(4):F449–F459. doi: 10.1152/ajprenal.00385.2021.
  • Douma LG, Holzworth MR, Solocinski K, Masten SH, Miller AH, Cheng K-Y, Lynch IJ, Cain BD, Wingo CS, Gumz ML. 2018. Renal Na-handling defect associated with PER1-dependent nondipping hypertension in male mice. Am J Physiol-Renal. 314(6):F1138–F1144. doi: 10.1152/ajprenal.00546.2017.
  • Douma LG, Solocinski K, Holzworth MR, Crislip GR, Masten SH, Miller AH, Cheng K-Y, Lynch IJ, Cain BD, Wingo CS, et al. 2019. Female C57BL/6J mice lacking the circadian clock protein PER1 are protected from nondipping hypertension. Am J Physiol Reg Int Comp Physiol. 316(1):R50–R58. doi: 10.1152/ajpregu.00381.2017.
  • Duregon E, Pomatto-Watson LCDD, Bernier M, Price NL, de Cabo R. 2021. Intermittent fasting: from calories to time restriction. GeroScience. 43(3):1083–1092. doi: 10.1007/s11357-021-00335-z.
  • Du X, Yu L, Ling S, Xie J, Chen W. 2021. High-salt diet impairs the neurons plasticity and the neurotransmitters-related biological processes. Nutrients. 13(11):4123. doi: 10.3390/nu13114123.
  • Dyar KA, Lutter D, Artati A, Ceglia NJ, Liu Y, Armenta D, Jastroch M, Schneider S, de Mateo S, Cervantes M, et al. 2018. Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell. 174(6):1571–1585.e11. doi: 10.1016/j.cell.2018.08.042.
  • Eggink HM, Oosterman JE, de Goede P, de Vries EM, Foppen E, Koehorst M, Groen AK, Boelen A, Romijn JA, la Fleur SE, et al. Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats. Chronobiol Int. 2017;34(10):1339–1353. doi: 10.1080/07420528.2017.1363226.
  • Flanagan A, Bechtold DA, Pot GK, Johnston JD. 2021. Chrono‐nutrition: from molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J Neurochem. 157(1):53–72. doi: 10.1111/jnc.15246.
  • Froy O. 2018. Circadian rhythms, nutrition and implications for longevity in urban environments. Proc Nutr Soc. 77(3):216–222. doi: 10.1017/S0029665117003962.
  • Gangitano E, Gnessi L, Lenzi A, Ray D. 2021. Chronobiology and metabolism: is ketogenic diet able to influence circadian rhythm? Front Neurosci. 15:756970. doi: 10.3389/fnins.2021.756970.
  • Gnocchi D, Bruscalupi G. 2017. Circadian rhythms and hormonal homeostasis: pathophysiological implications. Biology. 6(4):10. doi: 10.3390/biology6010010.
  • Guan D, Lazar MA. 2021. Interconnections between circadian clocks and metabolism. J Clin Invest. 131(15):e148278. doi: 10.1172/JCI148278.
  • Guo Y, Zhu X, Zeng S, He M, Xing X, Wang C. 2020. MiRNA-10a-5p alleviates insulin resistance and maintains diurnal patterns of triglycerides and gut microbiota in high-fat diet-fed mice. Mediators Inflamm. 2020:1–8. doi: 10.1155/2020/8192187.
  • Halabi D, Richter HG, Mendez N, Kähne T, Spichiger C, Salazar E, Torres F, Vergara K, Seron-Ferre M, Torres-Farfan C. 2021. Maternal chronodisruption throughout pregnancy impairs glucose homeostasis and adipose tissue physiology in the male rat offspring. Front Endocrinol. 12:678468. doi: 10.3389/fendo.2021.678468.
  • Haraguchi A, Sato S, Kusano S, Ito K, Yamazaki T, Ryan C, Sekiguchi M, Shibata S. 2022. 4’-demethylnobiletin-rich fermented citrus reticulata (ponkan) attenuated the disturbance in clock gene expression and locomotor activity rhythms caused by high-fat diet feeding. Biol Rhythm Res. 53(10):1509–1522. doi: 10.1080/09291016.2021.1968609.
  • Haupt S, Eckstein ML, Wolf A, Zimmer RT, Wachsmuth NB, Moser O. 2021. Eat, train, sleep—retreat? Hormonal interactions of intermittent fasting. Exercise Circadian Rhythm Biomol. 11(4):516. doi: 10.3390/biom11040516.
  • Hawley JA, Sassone-Corsi P, Zierath JR. 2020. Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: from mice to men. Diabetologia. 63(11):2253–2259. doi: 10.1007/s00125-020-05238-w.
  • He J, Jiao X, Sun X, Huang Y, Xu P, Xue Y, Fu T, Liu J, Li Z. 2021. Short-term high fructose intake impairs diurnal oscillations in the murine cornea. Invest Ophthalmol Vis Sci. 62(10):22. doi: 10.1167/iovs.62.10.22.
  • Hunter AL, Pelekanou CE, Barron NJ, Northeast RC, Grudzien M, Adamson AD, Downton P, Cornfield T, Cunningham PS, Billaud J-N, et al. 2021. Adipocyte NR1D1 dictates adipose tissue expansion during obesity. ELife. 10:e63324. doi: 10.7554/eLife.63324.
  • Hu D, Xie Z, Ye Y, Bahijri S, Chen M. 2020. The beneficial effects of intermittent fasting: an update on mechanism, and the role of circadian rhythm and gut microbiota. Hepatobiliary Surg Nutr. 9(5):597–602. doi: 10.21037/hbsn-20-317.
  • Iv THR, Soriano RA, Obadi OA, Murkland S, Possidente B. 2017. Long term rebaudioside a treatment does not alter circadian activity rhythms, adiposity, or insulin action in male mice. PloS One. 12(5):e0177138. doi: 10.1371/journal.pone.0177138.
  • Jamshed H, Beyl R, Della Manna D, Yang E, Ravussin E, Peterson C. 2019. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients. 11(6):1234. doi: 10.3390/nu11061234.
  • Kelly KP, Ellacott KLJ, Chen H, McGuinness OP, Johnson CH. 2021. Time-optimized feeding is beneficial without enforced fasting. Open Biol. 11(10):210183. doi: 10.1098/rsob.210183.
  • Kentish SJ, Hatzinikolas G, Li H, Frisby CL, Wittert GA, Page AJ. 2018. Time-restricted feeding prevents ablation of diurnal rhythms in gastric vagal afferent mechanosensitivity observed in high-fat diet-induced obese mice. J Neurosci. 38(22):5088–5095. doi: 10.1523/JNEUROSCI.0052-18.2018.
  • Kim K, Boo K, Yu YS, Oh SK, Kim H, Jeon Y, Bhin J, Hwang D, Kim KI, Lee J-S, et al. 2017. RORα controls hepatic lipid homeostasis via negative regulation of PPARγ transcriptional network. Nat Commun. 8(1):162. doi: 10.1038/s41467-017-00215-1.
  • Kim BH, Joo Y, Kim M-S, Choe HK, Tong Q, Kwon O. 2021. Effects of intermittent fasting on the circulating levels and circadian rhythms of hormones. Endocrinol Metab. 36(4):745–756. doi: 10.3803/EnM.2021.405.
  • Kim S-M, Neuendorff N, Alaniz RC, Sun Y, Chapkin RS, Earnest DJ. 2018. Shift work cycle‐induced alterations of circadian rhythms potentiate the effects of high‐fat diet on inflammation and metabolism. FASEB J. 32(6):3085–3095. doi: 10.1096/fj.201700784R.
  • Kim S-M, Neuendorff N, Earnest DJ. 2019. Role of proinflammatory cytokines in feedback modulation of circadian clock gene rhythms by saturated fatty acids. Sci Rep. 9(1):8909. doi: 10.1038/s41598-019-45322-9.
  • Lin Y-J, Tsai C-C, Huang L-T, Sheen J-M, Tiao M-M, Yu H-R, Chen C-C, Tain Y-L. 2017. Detrimental effect of maternal and post-weaning high-fat diet on the reproductive function in the adult female offspring rat: roles of insulin-like growth factor 2 and the ovarian circadian clock. J Assist Reprod Genet. 34(6):817–826. doi: 10.1007/s10815-017-0915-5.
  • Longo R, Peri C, Cricrì D, Coppi L, Caruso D, Mitro N, De Fabiani E, Crestani M. 2019. Ketogenic diet: a new light shining on old but gold biochemistry. Nutrients. 11(10):2497. doi: 10.3390/nu11102497.
  • Luo S, Zhang Y, Ezrokhi M, Li Y, Tsai T-H, Cincotta AH. 2018. Circadian peak dopaminergic activity response at the biological clock pacemaker (suprachiasmatic nucleus) area mediates the metabolic responsiveness to a high-fat diet. J Neuroendocrinol. 30(1):e12563. doi: 10.1111/jne.12563.
  • Manoogian ENC, Chaix A, Panda S. 2019. When to eat: the importance of eating patterns in health and disease. J Biol Rhythms. 34(6):579–581. doi: 10.1177/0748730419892105.
  • Manoogian ENC, Chow LS, Taub PR, Laferrère B, Panda S. 2022. Time-restricted eating for the prevention and management of metabolic diseases. Endocr Rev. 43(2):405–436. doi: 10.1210/endrev/bnab027.
  • Maroni MJ, Capri KM, Arruda NL, Gelineau RR, Deane HV, Concepcion HA, DeCourcey H, Monteiro De Pina IK, Cushman AV, Chasse MH, et al. Substrain specific behavioral responses in male C57BL/6N and C57BL/6J mice to a shortened 21-hour day and high-fat diet. Chronobiol Int. 2020;37(6):809–823. doi: 10.1080/07420528.2020.1756840.
  • Martchenko A, Biancolin AD, Martchenko SE, Brubaker PL. 2022. Nobiletin ameliorates high fat-induced disruptions in rhythmic glucagon-like peptide-1 secretion. Sci Rep. 12(1):7271. doi: 10.1038/s41598-022-11223-7.
  • Maury E. 2019. Off the clock: from circadian disruption to metabolic disease. Int J Mol Sci. 20(7):1597. doi: 10.3390/ijms20071597.
  • Milanova IV, Kalsbeek MJT, Wang X-L, Korpel NL, Stenvers DJ, Wolff SEC, de Goede P, Heijboer AC, Fliers E, la Fleur SE, et al. 2019. Diet-induced obesity disturbs microglial immunometabolism in a time-of-day manner. Front Endocrinol. 10:424. doi: 10.3389/fendo.2019.00424.
  • Mindikoglu AL, Abdulsada MM, Jain A, Choi JM, Jalal PK, Devaraj S, Mezzari MP, Petrosino JF, Opekun AR, Jung SY. 2020. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteomics. 217:103645. doi: 10.1016/j.jprot.2020.103645.
  • Moghadam AA, Moran TH, Dailey MJ. 2017. Alterations in circadian and meal-induced gut peptide levels in lean and obese rats. Exp Biol Med. 242(18):1786–1794. doi: 10.1177/1535370217732041.
  • Moholdt T, Parr EB, Devlin BL, Debik J, Giskeødegård G, Hawley JA. 2021. The effect of morning vs evening exercise training on glycaemic control and serum metabolites in overweight/obese men: a randomised trial. Diabetologia. 64(9):2061–2076. doi: 10.1007/s00125-021-05477-5.
  • Mohr AE, Reiss RA, Beaudet M, Sena J, Naik JS, Walker BR, Sweazea KL. 2021. Short-term high fat diet alters genes associated with metabolic and vascular dysfunction during adolescence in rats: a pilot study. Peer J. 9:e11714. doi: 10.7717/peerj.11714.
  • Moon S, Kang J, Kim SH, Chung HS, Kim YJ, Yu JM, Cho ST, Oh C-M, Kim T. 2020. Beneficial effects of time-restricted eating on metabolic diseases: a systemic review and meta-analysis. Nutrients. 12(5):1267. doi: 10.3390/nu12051267.
  • Nakao R, Shimba S, Oishi K. 2017. Ketogenic diet induces expression of the muscle circadian gene Slc25a25 via neural pathway that might be involved in muscle thermogenesis. Sci Rep. 7(1):2885. doi: 10.1038/s41598-017-03119-8.
  • Nohara K, Mallampalli V, Nemkov T, Wirianto M, Yang J, Ye Y, Sun Y, Han L, Esser KA, Mileykovskaya E, et al. Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat Commun. 2019;10(1):3923. doi: 10.1038/s41467-019-11926-y.
  • O’Hearn LA. 2021. The therapeutic properties of ketogenic diets, slow-wave sleep, and circadian synchrony. Curr Opin Endocrinol Diabetes Obes. 28(5):503. doi: 10.1097/MED.0000000000000660.
  • Oike H. 2017. Modulation of circadian clocks by nutrients and food factors. Biosci Biotechnol Biochem. 81(5):863–870. doi: 10.1080/09168451.2017.1281722.
  • Omotola O, Legan S, Slade E, Adekunle A, Pendergast JS. 2019. Estradiol regulates daily rhythms underlying diet-induced obesity in female mice. Am J Physiol-Endoc M. 317(6):E1172–E1181. doi: 10.1152/ajpendo.00365.2019.
  • Oneda S, Cao S, Haraguchi A, Sasaki H, Shibata S. 2022. Wheel-running facilitates phase advances in locomotor and peripheral circadian rhythm in social jet lag model mice. Front Physiol. 13:821199. doi: 10.3389/fphys.2022.821199.
  • Oosterman JE, Koekkoek LL, Foppen E, Unmehopa UA, Eggels L, Verheij J, Fliers E, Fleur SE, Kalsbeek A. 2020. Synergistic effect of feeding time and diet on hepatic steatosis and gene expression in male Wistar rats. Obesity. 28(S1). doi: 10.1002/oby.22832.
  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 372:n71. doi: 10.1136/bmj.n71.
  • Palmisano BT, Stafford JM, Pendergast JS. 2017. High-fat feeding does not disrupt daily rhythms in female mice because of protection by ovarian hormones. Front Endocrinol. 8. doi: 10.3389/fendo.2017.00044.
  • Pan X, Taylor MJ, Cohen E, Hanna N, Mota S. 2020. Circadian Clock, time-restricted feeding and reproduction. Int J Mol Sci. 21(3):831. doi: 10.3390/ijms21030831.
  • Patterson RE, Sears DD. 2017. Metabolic effects of intermittent fasting. Annu Rev Nutr. 37(1):371–393. doi: 10.1146/annurev-nutr-071816-064634.
  • Peng X, Fan R, Xie L, Shi X, Dong K, Zhang S, Tao J, Xu W, Ma D, Chen J, et al. A growing link between circadian rhythms, type 2 diabetes mellitus and alzheimer’s disease. Int J Mol Sci. 2022;23(1):504. doi: 10.3390/ijms23010504.
  • Pickel L, Sung H-K. 2020. Feeding rhythms and the circadian regulation of metabolism. Front Nutr. 7:39. doi: 10.3389/fnut.2020.00039.
  • Potter GDM, Wood TR. 2020. The future of shift work: circadian biology meets personalised medicine and behavioural science. Front Nutr. 7:116. doi: 10.3389/fnut.2020.00116.
  • Ravussin E, Beyl RA, Poggiogalle E, Hsia DS, Peterson CM. 2019. Early time‐restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity. 27(8):1244–1254. doi: 10.1002/oby.22518.
  • Ribas-Latre A, Fekry B, Kwok C, Baumgartner C, Shivshankar S, Sun K, Chen Z, Eckel-Mahan K. 2019. Rosiglitazone reverses high fat diet-induced changes in BMAL1 function in muscle, fat, and liver tissue in mice. Int J Obes. 43(3):567–580. doi: 10.1038/s41366-018-0090-5.
  • Sasaki T, Numano R, Yokota-Hashimoto H, Matsui S, Kimura N, Takeuchi H, Kitamura T. 2018. A central-acting connexin inhibitor, INI-0602, prevents high-fat diet-induced feeding pattern disturbances and obesity in mice. Mol Brain. 11(1):28. doi: 10.1186/s13041-018-0372-9.
  • Silva JP, van Booven D. 2018. Analysis of diet-induced differential methylation, expression, and interactions of lncRNA and protein-coding genes in mouse liver. Sci Rep. 8(1):11537. doi: 10.1038/s41598-018-29993-4.
  • Smith HA, Betts JA. 2022. Nutrient timing and metabolic regulation. Journal of Physiology. 600(6):1299–1312. doi: 10.1113/JP280756.
  • Solanas G, Peixoto FO, Perdiguero E, Jardí M, Ruiz-Bonilla V, Datta D, Symeonidi A, Castellanos A, Welz P-S, Caballero JM, et al. 2017. Aged stem cells reprogram their daily rhythmic functions to adapt to stress. Cell. 170(4):678–692.e20. doi: 10.1016/j.cell.2017.07.035.
  • Solocinski K, Holzworth M, Wen X, Cheng K-Y, Lynch IJ, Cain BD, Wingo CS, Gumz ML. 2017. Desoxycorticosterone pivalate-salt treatment leads to non-dipping hypertension in Per1 knockout mice. Acta Physiol. 220(1):72–82. doi: 10.1111/apha.12804.
  • Speed JS, Hyndman KA, Roth K, Heimlich JB, Kasztan M, Fox BM, Johnston JG, Becker BK, Jin C, Gamble KL, et al. 2018. High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am J Physiol-Renal. 314(1):F89–F98. doi: 10.1152/ajprenal.00028.2017.
  • Sufiun A, Rahman A, Rafiq K, Fujisawa Y, Nakano D, Kobara H, Masaki T, Nishiyama A. 2020. Association of a disrupted dipping pattern of blood pressure with progression of renal injury during the development of salt-dependent hypertension in rats. Int J Mol Sci. 21(6):2248. doi: 10.3390/ijms21062248.
  • Sundaram S, Johnson LK, Yan L. 2020. High-fat diet alters circadian rhythms in mammary glands of pubertal mice. Front Endocrinol. 11:349. doi: 10.3389/fendo.2020.00349.
  • Sun S, Hanzawa F, Kim D, Umeki M, Nakajima S, Sakai K, Ikeda S, Mochizuki S, Oda H. 2019. Circadian rhythm–dependent induction of hepatic lipogenic gene expression in rats fed a high-sucrose diet. J Biol Chem. 294(42):15206–15217. doi: 10.1074/jbc.RA119.010328.
  • Sun S, Hanzawa F, Umeki M, Ikeda S, Mochizuki S, Oda H, Aguila MB. 2018. Time-restricted feeding suppresses excess sucrose-induced plasma and liver lipid accumulation in rats. PLoS One. 13(8):e0201261. doi: 10.1371/journal.pone.0201261.
  • Sun R, Huang J, Yang N, He J, Yu X, Feng S, Xie Y, Wang G, Ye H, Aa J. 2019. Purine catabolism shows a dampened circadian rhythmicity in a high-fat diet-induced mouse model of obesity. Molecules. 24(24):4524. doi: 10.3390/molecules24244524.
  • Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. 2018. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 27(6):1212–1221.e3. doi: 10.1016/j.cmet.2018.04.010.
  • Tain Y-L, Lin Y-J, Sheen J-M, Yu H-R, Tiao M-M, Chen C-C, Tsai C-C, Huang L-T, Hsu C-N. 2017. High fat diets sex-specifically affect the renal transcriptome and program obesity, kidney injury, and hypertension in the offspring. Nutrients. 9(4):357. doi: 10.3390/nu9040357.
  • Takeishi K, Kawaguchi H, Akioka K, Noguchi M, Arimura E, Abe M, Ushikai M, Okita S, Tanimoto A, Horiuchi M. 2018. Effects of dietary and lighting conditions on diurnal locomotor activity and body temperature in microminipigs. Vivo. 32(1):55–62. https://iv.iiarjournals.org/content/32/1/55.
  • Teeple K, Rajput P, Gonzalez M, Han-Hallett Y, Fernández-Juricic E, Casey T, Oster H. 2023. High fat diet induces obesity, alters eating pattern and disrupts corticosterone circadian rhythms in female ICR mice. PLoS One. 18(1):e0279209. doi: 10.1371/journal.pone.0279209.
  • Tognini P, Murakami M, Liu Y, Eckel-Mahan KL, Newman JC, Verdin E, Baldi P, Sassone-Corsi P. 2017. Distinct circadian signatures in liver and gut clocks revealed by Ketogenic Diet. Cell Metab. 26(3):523–538.e5. doi: 10.1016/j.cmet.2017.08.015.
  • Tognini P, Samad M, Kinouchi K, Liu Y, Helbling J-C, Moisan M-P, Eckel-Mahan KL, Baldi P, Sassone-Corsi P. 2020. Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proc Natl Acad Sci USA. 117(47):29904–29913. doi: 10.1073/pnas.2016589117.
  • Tse EK, Salehi A, Clemenzi MN, Belsham DD. 2018. Role of the saturated fatty acid palmitate in the interconnected hypothalamic control of energy homeostasis and biological rhythms. Am J Physiol-Endoc M. 315(2):E133–E140. doi: 10.1152/ajpendo.00433.2017.
  • Veldscholte K, Cramer ABG, Joosten KFM, Verbruggen SCAT. 2021. Intermittent fasting in paediatric critical illness: the properties and potential beneficial effects of an overnight fast in the PICU. Clin Nutr. 40(9):5122–5132. doi: 10.1016/j.clnu.2021.07.030.
  • Verde L, Barrea L, Docimo A, Savastano S, Colao A, Muscogiuri G. 2023. Chronotype as a predictor of weight loss and body composition improvements in women with overweight or obesity undergoing a very low-calorie ketogenic diet (vlckd). Cli Nut (Edinburgh, Scotland). 42(7):1106–1114. doi: 10.1016/j.clnu.2023.05.014.
  • Vieira E, Mirizio GG, Barin GR, de Andrade RV, Nimer NFS, La Sala L. 2020. Clock genes, inflammation and the immune system—implications for diabetes, obesity and neurodegenerative diseases. Int J Mol Sci. 21(24):9743. doi: 10.3390/ijms21249743.
  • Wada T, Ichihashi Y, Suzuki E, Kosuge Y, Ishige K, Uchiyama T, Makishima M, Nakao R, Oishi K, Shimba S. 2018. Deletion of Bmal1 prevents diet-induced ectopic fat accumulation by controlling oxidative capacity in the skeletal muscle. Int J Mol Sci. 19(9):2813. doi: 10.3390/ijms19092813.
  • Wang H, Cai Y, Shao Y, Zhang X, Li N, Zhang H, Liu Z. 2018. Fish oil ameliorates high-fat diet induced male mouse reproductive dysfunction via modifying the rhythmic expression of testosterone synthesis related genes. Int J Mol Sci. 19(5):1325. doi: 10.3390/ijms19051325.
  • Wang X-L, Kooijman S, Gao Y, Tzeplaeff L, Cosquer B, Milanova I, Wolff SEC, Korpel N, Champy M-F, Petit-Demoulière B, et al. Microglia-specific knock-down of Bmal1 improves memory and protects mice from high fat diet-induced obesity. Mol Psychiatry. 2021;26(11):6336–6349. doi: 10.1038/s41380-021-01169-z.
  • Wang L, Ren B, Zhang Q, Chu C, Zhao Z, Wu J, Zhao W, Liu Z, Liu X. 2020. Methionine restriction alleviates high-fat diet-induced obesity: involvement of diurnal metabolism of lipids and bile acids. Biochim Biophys Acta Mol Basis Dis. 1866(11):165908. doi: 10.1016/j.bbadis.2020.165908.
  • Wang Q, Yin Y, Zhang W. 2018. Ghrelin restores the disruption of the circadian clock in steatotic liver. Int J Mol Sci. 19(10):3134. doi: 10.3390/ijms19103134.
  • Xie J, Wang D, Ling S, Yang G, Yang Y, Chen W. 2019. High-salt diet causes sleep fragmentation in young drosophila through circadian rhythm and dopaminergic systems. Front Neurosci. 13:1271. doi: 10.3389/fnins.2019.01271.
  • Xin H, Zhang J, Huang R, Li L, Lam SM, Shui G, Deng F, Zhang Z, Li M-D. 2022. Circadian signatures of adipose tissue in diet-induced obesity. Front Physiol. 13:953237. doi: 10.3389/fphys.2022.953237.
  • Ye Y, Xu H, Xie Z, Wang L, Sun Y, Yang H, Hu D, Mao Y. 2020. Time-restricted feeding reduces the detrimental effects of a high-fat diet, possibly by modulating the circadian rhythm of hepatic lipid metabolism and gut microbiota. Front Nutr. 7:596285. doi: 10.3389/fnut.2020.596285.
  • Yokoyama Y, Nakamura TJ, Yoshimoto K, Ijyuin H, Tachikawa N, Oda H, Shiraishi R, Shinohara K, Kumadaki K, Honda S, et al. 2020. A high-salt/high fat diet alters circadian locomotor activity and glucocorticoid synthesis in mice. PLoS One. 15(5):e0233386. doi: 10.1371/journal.pone.0233386.
  • Yu F, Wang Z, Zhang T, Chen X, Xu H, Wang F, Guo L, Chen M, Liu K, Wu B. 2021. Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding. Nat Commun. 12(1):5323. doi: 10.1038/s41467-021-25674-5.
  • Zhang D, Jin C, Obi IE, Rhoads MK, Soliman RH, Sedaka RS, Allan JM, Tao B, Speed JS, Pollock JS, et al. 2020. Loss of circadian gene Bmal1 in the collecting duct lowers blood pressure in male, but not female, mice. Am J Physiol-Renal. 318(3):F710–F719. doi: 10.1152/ajprenal.00364.2019.
  • Zhao L, Hutchison AT, Liu B, Wittert GA, Thompson CH, Nguyen L, Au J, Vincent A, Manoogian ENC, Le HD, et al. 2023. Time–restricted eating alters the 24‐hour profile of adipose tissue transcriptome in men with obesity. Obesity. 31(Suppl S1):63–74. (Silver Spring, Md.). doi: 10.1002/oby.23499.
  • Zhou L, Xiao X, Zhang Q, Zheng J, Li M, Yu M, Wang X, Deng M, Zhai X, Li R, et al. 2019. Dietary genistein could modulate hypothalamic circadian entrainment, reduce body weight, and improve glucose and lipid metabolism in female mice. Int J Endocrinol. 2019:1–10. doi: 10.1155/2019/2163838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.