140
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The influence of high-speed train’s transient pressure change on the fetal growth of SD rats

, , , , , , , , , , , & show all
Pages 2407-2417 | Received 03 Apr 2023, Accepted 24 Aug 2023, Published online: 05 Sep 2023

References

  • Akutagawa O, Nishi H, Isaka K. 2007. Spontaneous delivery is related to barometric pressure. Arch Gynecol Obstet. 275(4):249–254. doi: 10.1007/s00404-006-0259-3.
  • Collier RJ, Baumgard LH, Zimbelman RB, Xiao Y. 2019. Heat stress: physiology of acclimation and adaptation. Anim Front. 9(1):12–19. doi: 10.1093/af/vfy031.
  • Currie J, Rossin-Slater M. 2013. Weathering the storm: hurricanes and birth outcomes. J Health Econ. 32(3):487–503. doi: 10.1016/j.jhealeco.2013.01.004.
  • Du J, Fang Q, Wang J, Wang G. 2021. Influences of high-speed train speed on tunnel aerodynamic pressures. Appl Sci. 12(1):303. doi: 10.3390/app12010303.
  • Francois HMA, Vantrappen L, Van Rompaey V, Godderis L. 2015. Ear and vestibular symptoms in train operators after sudden air pressure changes in trains. BMJ Case Rep. bcr2015212936. doi: 10.1136/bcr-2015-212936.
  • Knackstedt MK, Hamelmann E, Arck PC. 2005. Mothers in stress: consequences for the offspring: STRESS and FETAL PROGRAMMING. Am J Reprod Immunol. 54(2):63–69. doi: 10.1111/j.1600-0897.2005.00288.x.
  • Ku Y-C, Rho J-H, Yun S-H, Kwak M-H, Kim K-H, Kwon H-B, Lee D-H. 2010. Optimal cross-sectional area distribution of a high-speed train nose to minimize the tunnel micro-pressure wave. Struct Multidiscip Optim. 42(6):965–976. doi: 10.1007/s00158-010-0550-6.
  • Liu T, Chen M, Chen X, Geng S, Jiang Z, Krajnović S. 2019. Field test measurement of the dynamic tightness performance of high-speed trains and study on its influencing factors. Measurement. 138:602–613. doi: 10.1016/j.measurement.2019.02.051.
  • Liu T-H, Chen X-D, Li W, Xie T-Z, Chen Z-W. 2017. Field study on the interior pressure variations in high-speed trains passing through tunnels of different lengths. J Wind Eng Ind Aerodyn. 169:54–66. doi:10.1016/j.jweia.2017.07.004.
  • Lu Y, Wang T, Yang M, Qian B. 2020. The influence of reduced cross-section on pressure transients from high-speed trains intersecting in a tunnel. J Wind Eng Ind Aerodyn. 201:104161. doi:10.1016/j.jweia.2020.104161.
  • Lu Y, Wang T, Zhao C, Zhu Y, Jia X, Zhang L, Shi F, Jiang C. 2023. An efficient design method of indoor ventilation parameters for high-speed trains using improved proper orthogonal decomposition reconstruction. J Build Eng. 71:106600. doi:10.1016/j.jobe.2023.106600.
  • Mayvaneh F, Entezari A, Sadeghifar F, Baaghideh M, Guo Y, Atabati A, Zhao Q, Zhang Y. 2020. Exposure to suboptimal ambient temperature during specific gestational periods and adverse outcomes in mice. Environ Sci Pollut Res. 27(36):45487–45498. doi: 10.1007/s11356-020-10416-9.
  • Migault L, Piel C, Carles C, Delva F, Lacourt A, Cardis E, Zaros C, de Seze R, Baldi I, Bouvier G. 2018. Maternal cumulative exposure to extremely low frequency electromagnetic fields and pregnancy outcomes in the Elfe cohort. Environ Int. 112:165–173. doi:10.1016/j.envint.2017.12.025.
  • O’Rahilly R, Müller F. 2010. Developmental Stages in human embryos: revised and new measurements. Cells Tissues Organs. 192(2):73–84. doi: 10.1159/000289817.
  • Poulsen AH, Raaschou-Nielsen O, Peña A, Hahmann AN, Nordsborg RB, Ketzel M, Brandt J, Sørensen M. 2018. Pregnancy exposure to wind turbine noise and adverse birth outcomes: a nationwide cohort study. Environ Res. 167:770–775. doi:10.1016/j.envres.2018.09.011.
  • Ricco P, Baron A, Molteni P. 2007. Nature of pressure waves induced by a high-speed train travelling through a tunnel. J Wind Eng Ind Aerodyn. 95(8):781–808. doi: 10.1016/j.jweia.2007.01.008.
  • Rossant J, Tam PPL. 2018. Exploring early human embryo development. Sci. 360(6393):1075–1076. doi: 10.1126/science.aas9302.
  • Schwanitz S, Wittkowski M, Rolny V, Basner M. 2013a. Pressure variations on a train – where is the threshold to railway passenger discomfort? Appl Ergon. 44(2):200–209. doi: 10.1016/j.apergo.2012.07.003.
  • Schwanitz S, Wittkowski M, Rolny V, Samel C, Basner M. 2013b. Continuous assessments of pressure comfort on a train – a field-laboratory comparison. Appl Ergon. 44(1):11–17. doi: 10.1016/j.apergo.2012.04.004.
  • Shi X, Wu J, Wan X, Chen Y. 2019. Discussion on clearance area of 400 km/h high-speed railway tunnel Based on rail vehicle internal transient pressure. Tunn Constr. 39(7):1118–1124. doi: 10.3973/j.issn.2096-4498.2019.07.007.
  • Simmons DG, Fortier AL, Cross JC. 2007. Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev Biol. 304(2):567–578. doi: 10.1016/j.ydbio.2007.01.009.
  • Thame M, Osmond C, Bennett F, Wilks R, Forrester T. 2004. Fetal growth is directly related to maternal anthropometry and placental volume. Eur J Clin Nutr. 58(6):894–900. doi: 10.1038/sj.ejcn.1601909.
  • Theiler K. 1989. The house mouse: atlas of embryonic development. New York: Springer-Verlag New York Inc.
  • Tian H. 2019. Review of research on high-speed railway aerodynamics in China. Transp Saf Environ. 1(1):1–21. doi: 10.1093/tse/tdz014.
  • Triche EW, Hossain N. 2007. Environmental factors implicated in the causation of adverse pregnancy outcome. Semin Perinatol. 31(4):240–242. doi: 10.1053/j.semperi.2007.07.013.
  • Wang T, Han X, Zhang L, Qian B, Sun Z, Liu H. 2021. Effect of non-circular tunnel linings on pressure transients induced by high-speed train passes through a tunnel based on moving model test. J Wind Eng Ind Aerodyn. 214:104649. doi:10.1016/j.jweia.2021.104649.
  • Wang J, Liu X, Dong M, Sun X, Xiao J, Zeng W, Hu J, Li X, Guo L, Rong Z, et al. 2020. Associations of maternal ambient temperature exposures during pregnancy with the placental weight, volume and PFR: a birth cohort study in Guangzhou, China. Environ Int. 139:105682. doi: 10.1016/j.envint.2020.105682.
  • Wang T, Zhu Y, Tian X, Shi F, Zhang L, Lu Y. 2022. Design method of the variable cross-section tunnel focused on improving passenger pressure comfort of trains intersecting in the tunnel. Build Environ. 221:109336. doi:10.1016/j.buildenv.2022.109336.
  • Wheeler ML, Oyen ML. 2020. Premature rupture of membranes and severe weather systems. Front Physiol. 11:524. doi:10.3389/fphys.2020.00524.
  • Xiang X, Xue L, Wang B, Zou W. 2018. Mechanism and capability of ventilation openings for alleviating micro-pressure waves emitted from high-speed railway tunnels. Build Environ. 132:245–254. doi:10.1016/j.buildenv.2018.01.045.
  • Xie P, Peng Y, Hu J, Peng A, Yi S. 2020a. Assessment methodology for pressure-related aural discomfort in high-speed trains using airtightness experiments and mathematical models. Proc Inst Mech Eng Part F J Rail Rapid Transit. 234(6):655–665. doi: 10.1177/0954409719851441.
  • Xie P, Peng Y, Wang T, Wu Z, Yao S, Yang M, Yi S. 2020b. Aural comfort prediction method for high-speed trains under complex tunnel environments. Transp Res Part Transp Environ. 81:102284. doi:10.1016/j.trd.2020.102284.
  • Zhang Y, Yu C, Wang L. 2017. Temperature exposure during pregnancy and birth outcomes: an updated systematic review of epidemiological evidence. Environ Pollut. 225:700–712. doi:10.1016/j.envpol.2017.02.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.