701
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Prediction of in-hospital mortality in patients with exertional heatstroke: a 13-year retrospective study

ORCID Icon, , , , , , , , , & ORCID Icon show all
Pages 2451-2462 | Received 01 Feb 2023, Accepted 26 Aug 2023, Published online: 11 Sep 2023

References

  • Bouchama A, Abuyassin B, Lehe C, Laitano O, Jay O, O’Connor FG, Leon LR. 2022. Classic and exertional heatstroke. Nat Rev Dis Primers. 8(1):8. eng. doi: 10.1038/s41572-021-00334-6.
  • Bouchama A, Al-Mohanna F, Assad L, Baturcam E, Eldali A, Owaidah T, Dehbi M. 2012. Tissue factor/factor VIIa pathway mediates coagulation activation in induced-heat stroke in the baboon. Crit Care Med. 40(4):1229–1236. eng. doi: 10.1097/CCM.0b013e3182387bef.
  • Bouchama A, Dehbi M, Chaves-Carballo E. 2007. Cooling and hemodynamic management in heatstroke: practical recommendations. Crit Care. 11(3):R54. eng. doi: 10.1186/cc5910.
  • Cabral BMI, Edding SN, Portocarrero JP, Lerma EV. 2020. Rhabdomyolysis. Dis Mon. 66(8):101015. eng. doi: 10.1016/j.disamonth.2020.101015.
  • Chen L, Xu S, Yang X, Zhao J, Zhang Y, Feng X. 2023. Association between cooling temperature and outcomes of patients with heat stroke. Intern Emerg Med Eng. doi: 10.1007/s11739-023-03291-y.
  • Chun JK, Choi S, Kim HH, Yang HW, Kim CS. 2019. Predictors of poor prognosis in patients with heat stroke. Clin Exp Emerg Med. 6(4):345–350. eng. doi: 10.15441/ceem.18.081.
  • Deng Q, Zhao J, Liu W, Li Y. 2018. Heatstroke at home: prediction by thermoregulation modeling. Build Environ. 137:147–156. doi: 10.1016/j.buildenv.2018.04.017.
  • Diehl KA, Crawford E, Shinko PD, Tallman RD Jr., Oglesbee MJ. 2000. Alterations in hemostasis associated with hyperthermia in a canine model. Am J Hematol. 64(4):262–270. eng. doi: 10.1002/1096-8652(200008)64:4<262:AID-AJH5>3.0.CO;2-D.
  • Epstein Y, Yanovich R, Longo DL. 2019. Heatstroke. N Engl J Med. 380(25):2449–2459. eng. doi: 10.1056/NEJMra1810762.
  • Ginter K, Schwab F, Behnke M, Wolkewitz M, Gastmeier P, Geffers C, Maechler F. 2023. SAPS2, APACHE2, SOFA, and core-10-TISS upon admission as risk indicators for ICU-acquired infections: a retrospective cohort study. Infection. 51(4):993–1001. eng. doi: 10.1007/s15010-022-01972-y.
  • Hajat S, Vardoulakis S, Heaviside C, Eggen B. 2014. Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J Epidemiol Comm Health. 68(7):641–648. eng. doi: 10.1136/jech-2013-202449.
  • Helms J, Severac F, Merdji H, Clere-Jehl R, François B, Mercier E, Quenot JP, Meziani F. 2020. Performances of disseminated intravascular coagulation scoring systems in septic shock patients. Ann Intensive Care. 10(1):92. eng. doi: 10.1186/s13613-020-00704-5.
  • Hifumi T, Kondo Y, Shimazaki J, Oda Y, Shiraishi S, Wakasugi M, Kanda J, Moriya T, Yagi M, Ono M. et al. 2018. Prognostic significance of disseminated intravascular coagulation in patients with heat stroke in a nationwide registry. J Crit Care. 44:306–311. eng. doi: 10.1016/j.jcrc.2017.12.003.
  • Hsu SF, Niu KC, Lin CL, Lin MT. 2006. Brain cooling causes attenuation of cerebral oxidative stress, systemic inflammation, activated coagulation, and tissue ischemia/injury during heatstroke. Shock. 26(2):210–220. eng. doi: 10.1097/01.shk.0000223124.49265.10.
  • Iba T, Levy JH, Warkentin TE, Thachil J, van der Poll T, Levi M. 2019. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 17(11):1989–1994. eng. doi: 10.1111/jth.14578.
  • Jacome T, Tatum D. 2018. Systemic inflammatory response syndrome (SIRS) score independently predicts poor outcome in isolated traumatic brain injury. Neurocrit Care. 28(1):110–116. eng. doi: 10.1007/s12028-017-0410-y.
  • Jennett B, Teasdale G, Braakman R, Minderhoud J, Heiden J, Kurze T. 1979. Prognosis of patients with severe head injury. Neurosurgery. 4(4):283–289. eng. doi: 10.1227/00006123-197904000-00001.
  • Kawasaki T, Okamoto K, Kawasaki C, Sata T. 2014. Thrombomodulin improved liver injury, coagulopathy, and mortality in an experimental heatstroke model in mice. Anesth Analg. 118(5):956–963. eng. doi: 10.1213/ANE.0000000000000170.
  • Knaus WA, Draper EA, Wagner DP, Zimmerman JE. 1985. APACHE II: a severity of disease classification system. Crit Care Med. 13(10):818–829. eng. doi: 10.1097/00003246-198510000-00009.
  • Laitano O, Leon LR, Roberts WO, Sawka MN. 2019. Controversies in exertional heat stroke diagnosis, prevention, and treatment. J Appl Physiol (1985). 127(5):1338–1348. eng. doi: 10.1152/japplphysiol.00452.2019.
  • Liu SY, Song JC, Mao HD, Zhao JB, Song Q. 2020. Expert consensus on the diagnosis and treatment of heat stroke in China. Mil Med Res. 7(1):1. eng. doi: 10.1186/s40779-019-0229-2.
  • Liu S, Xing L, Wang Q, Xin T, Mao H, Tao Y, Zhao J, Li X, Li C, Li Q. et al. 2021. Association between early stage-related factors and mortality in patients with exertional heat stroke: a retrospective study of 214 cases. Int J Gen Med. 14:4629–4638. eng. doi: 10.2147/IJGM.S322910.
  • Li P, Yang L, Liu R, Chen RL. 2021. The value of the exertional heat stroke score for the prognosis of patients with exertional heat stroke. Am J Emerg Med. 50:352–355. eng. doi: 10.1016/j.ajem.2021.08.036.
  • Matthews TK, Wilby RL, Murphy C. 2017. Communicating the deadly consequences of global warming for human heat stress. Proc Natl Acad Sci U S A. 114(15):3861–3866. eng. doi: 10.1073/pnas.1617526114.
  • Ohbe H, Isogai S, Jo T, Matsui H, Fushimi K, Yasunaga H. 2019. Treatment with antithrombin or thrombomodulin and mortality from heatstroke-induced disseminated intravascular coagulation: a nationwide observational study. Semin Thromb Hemost. 45(8):760–766. eng. doi: 10.1055/s-0039-1700520.
  • Ou Y, Wang F, Zhao J, Deng Q. 2023. Risk of heatstroke in healthy elderly during heatwaves: a thermoregulatory modeling study. Build Environ. 237:110324. doi:10.1016/j.buildenv.2023.110324.
  • Proctor EA, Dineen SM, Van Nostrand SC, Kuhn MK, Barrett CD, Brubaker DK, Yaffe MB, Lauffenburger DA, Leon LR. 2020. Coagulopathy signature precedes and predicts severity of end-organ heat stroke pathology in a mouse model. J Thromb Haemost. 18(8):1900–1910. eng. doi: 10.1111/jth.14875.
  • Qiu X, Lei YP, Zhou RX. 2023. SIRS, SOFA, qSOFA, and NEWS in the diagnosis of sepsis and prediction of adverse outcomes: a systematic review and meta-analysis. Expert Rev Anti Infect Ther. 21(8):891–900. eng. doi: 10.1080/14787210.2023.2237192.
  • Roberts GT, Ghebeh H, Chishti MA, Al-Mohanna F, El-Sayed R, Al-Mohanna F, Bouchama A. 2008. Microvascular injury, thrombosis, inflammation, and apoptosis in the pathogenesis of heatstroke: a study in baboon model. Arterioscler Thromb Vasc Biol. 28(6):1130–1136. eng. doi: 10.1161/ATVBAHA.107.158709.
  • Schlader ZJ, Davis MS, Bouchama A. 2022. Biomarkers of heatstroke-induced organ injury and repair. Exp Physiol. 107(10):1159–1171. eng. doi: 10.1113/EP090142.
  • Shao F, Shi X, Huo SH, Liu QY, Shi JX, Kang J, Gong P, Yan ST, Wang GX, Qin LJ, et al. 2022. Development and evaluation of a predictive nomogram for survival in heat stroke patients: a retrospective cohort study. World J Emerg Med. 13(5):355–360. eng. doi: 10.5847/wjem.j.1920-8642.2022.092.
  • Shimazaki J, Hifumi T, Shimizu K, Oda Y, Kanda J, Kondo Y, Shiraishi S, Takauji S, Hayashida K, Moriya T, et al. 2020. Clinical characteristics, prognostic factors, and outcomes of heat-related illness (heatstroke study 2017-2018). Acute Med Surg. 7(1):e516. eng. doi: 10.1002/ams2.516.
  • Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Jama. 315(8):801–810. eng. doi: 10.1001/jama.2016.0287.
  • Sithinamsuwan P, Piyavechviratana K, Kitthaweesin T, Chusri W, Orrawanhanothai P, Wongsa A, Wattanathum A, Chinvarun Y, Nidhinandana S, Satirapoj B, et al. 2009. Exertional heatstroke: early recognition and outcome with aggressive combined cooling–a 12-year experience. Mil Med. 174(5):496–502. eng. doi: 10.7205/MILMED-D-02-5908.
  • Taylor FB Jr., Toh CH, Hoots WK, Wada H, Levi M. 2001. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 86(5):1327–1330. eng. doi: 10.1055/s-0037-1616068.
  • Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG. 1996. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European society of intensive Care Medicine. Intensive Care Med. 22(7):707–710. eng. doi: 10.1007/BF01709751.
  • Wang Y, Xiao QM, Qi HN, Li W, Zhu BY, Liu YJ, Wang P, Wang WZ. 2019. Value of APACHE.II score and DIC score in predicting the death of patients with heat stroke. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 37(1):43–45. chi. doi: 10.3760/cma.j.issn.1001-9391.2019.01.009.
  • Wei D, Gu T, Yi C, Tang Y, Liu F. 2022. A NOMOGRAM for PREDICTING PATIENTS with SEVERE HEATSTROKE. Shock. 58(2):95–102. eng. doi: 10.1097/SHK.0000000000001962.
  • Yang MM, Wang L, Zhang Y, Yuan R, Zhao Y, Hu J, Zhou FH, Kang HJ. 2020. Establishment and effectiveness evaluation of a scoring system for exertional heat stroke by retrospective analysis. Mil Med Res. 7(1):40. eng. doi: 10.1186/s40779-020-00269-1.
  • Zeng Q, Zhong L, Zhang N, He L, Lin Q, Song J. 2023. Nomogram for predicting disseminated intravascular coagulation in heatstroke patients: a 10 years retrospective study. Front Med. 10:1150623. eng. doi: 10.3389/fmed.2023.1150623.
  • Zhao J, Wang H, Li Y, Xiao F, Deng Q. 2020. Heatstroke recovery at home as predicted by human thermoregulation modeling. Build Environ. 173:106752. doi: 10.1016/j.buildenv.2020.106752.
  • Zhong L, Wu M, Ji J, Liu Z. 2022. Usefulness of sequential organ failure assessment score on admission to predict the 90-day mortality in patients with exertional heatstroke: an over 10-year intensive care survey. Am J Emerg Med. 61:56–60. eng. doi: 10.1016/j.ajem.2022.08.042.