88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioassay-guided isolation, identification and activity evaluation of antifungal compounds from Cupressus sempervirens

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2593-2604 | Received 28 Jul 2023, Accepted 20 Sep 2023, Published online: 28 Sep 2023

References

  • Abdulhafiz F, Reduan MFH, Hisam AH, Mohammad I, Abdul Wahab IR, Abdul Hamid FF, Mohammed A, Nordin ML, Shaari R, Bakar LA. 2022. LC–TOF-MS/MS and GC-MS based phytochemical profiling and evaluation of wound healing activity of oroxylum indicum (L.) Kurz (Beka). Front Pharmacol. 13:1050453. doi:10.3389/fphar.2022.1050453.
  • Alizadeh SR, Ebrahimzadeh MA. 2022. O‐glycoside quercetin derivatives: biological activities, mechanisms of action, and structure–activity relationship for drug design, a review. Phytother Res. 36(2):778–807. doi: 10.1002/ptr.7352.
  • Bar-Nun N, Mayer AM. 1990. Cucurbitacins protect cucumber tissue against infection by Botrytis cinerea. Phytochemistry. 29(3):787–791. doi: 10.1016/0031-9422(90)80019-D.
  • Bika R, Baysal-Gurel F, Jennings C. 2021. Botrytis cinerea management in ornamental production: a continuous battle. Can J Plant Pathol. 43(3):345–365. doi: 10.1080/07060661.2020.1807409.
  • Cherkupally R, Kota SR, Amballa H, Reddy BN. 2017. In vitro antifungal potential of plant extracts against Fusarium oxysporum, rhizoctonia solani and Macrophomina phaseolina. Ann Plant Sci. 6(9):1676–1680. doi: 10.21746/aps.2017.9.2.
  • Choquer M, Fournier E, Kunz C, Levis C, Pradier J-M, Simon A, Viaud M. 2007. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett. 277(1):1–10. doi: 10.1111/j.1574-6968.2007.00930.x.
  • Choudhury S, Panda P, Sahoo L, Panda SK. 2013. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal. 8(4):e23681. doi: 10.4161/psb.23681.
  • De Bertoldi C, De Leo M, Braca A, Ercoli L. 2009. Bioassay-guided isolation of allelochemicals from Avena sativa L.: allelopathic potential of flavone C-glycosides. Chemoecology. 19(3):169–176. doi: 10.1007/s00049-009-0019-5.
  • Ghareeb M, Saad A, Ahmed W, Refahy L, Nasr S. 2018. HPLC-DAD-ESI-MS/MS characterization of bioactive secondary metabolites from Strelitzia nicolai leaf extracts and their antioxidant and anticancer activities in vitro. Pharmacognosy Res. 10(4):368–378. doi: 10.4103/pr.pr_89_18.
  • Gharibi S, Matkowski A, Sarfaraz D, Mirhendi H, Fakhim H, Szumny A, Rahimmalek M. 2023. Identification of polyphenolic compounds responsible for antioxidant, anti-Candida activities and nutritional properties in different pistachio (Pistacia vera L.) hull cultivars. Molecules. 28(12):4772. doi: 10.3390/molecules28124772.
  • Grati Affes T, Chenenaoui S, Zemni H, Hammami M, Bachkouel S, Aidi Wannes W, Nasraoui B, Saidani Tounsi M, Lasram S. 2022. Biological control of citrus brown spot pathogen, “Alternaria alternata” by different essential oils. Int J Environ Health Res. 33(8):1–14. doi: 10.1080/09603123.2022.2055748.
  • Guan H, Luo X, Chang X, Su M, Li Z, Li P, Wang X, Shi Y. 2019. Identification of the chemical constituents of an anti-arthritic Chinese medicine wen luo yin by liquid chromatography coupled with mass spectrometry. Molecules. 24(2):233. doi: 10.3390/molecules24020233.
  • Hua LY, Zhen Z, Xin SG, Cai MJ, Xia TR. 2002. A new antifungal flavonol glycoside from Hypericum perforatum. J Integr Plant Biol. 44(6):743.
  • Jin Y-S. 2019. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg Med Chem Lett. 29(19):126589. doi: 10.1016/j.bmcl.2019.07.048.
  • Khanzada B, Akhtar N, Okla MK, Alamri SA, Al-Hashimi A, Baig MW, Rubnawaz S, AbdElgawad H, Hirad AH, Haq I-U. 2021. Profiling of antifungal activities and in silico studies of natural polyphenols from some plants. Molecules. 26(23):7164. doi: 10.3390/molecules26237164.
  • Kursa W, Jamiołkowska A, Wyrostek J, Kowalski R. 2022. Antifungal effect of plant extracts on the growth of the cereal pathogen Fusarium spp.—an in vitro study. Agronomy. 12(12):3204. doi: 10.3390/agronomy12123204.
  • Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA. 2022. Biological control of plant pathogens: a global perspective. Microorganisms. 10(3):596. doi: 10.3390/microorganisms10030596.
  • Maung CEH, Lee HG, Cho J-Y, Kim KY. 2021. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea. World J Microbiol Biotechnol. 37(9):1–10. doi: 10.1007/s11274-021-03046-x.
  • Mir SA, Padhiary A, Ekka NJ, Baitharu I, Nayak B. 2023. Current Developments in Biotechnology and Bioengineering. Elsevier; p. 487–504. doi:10.1016/B978-0-323-91900-5.00012-6.
  • Mubeen I, Mfarrej MFB, Razaq Z, Iqbal S, Naqvi SAH, Hakim F, Mosa WF, Moustafa M, Fang Y, Li B. 2023. Nanopesticides in comparison with agrochemicals: outlook and future prospects for sustainable agriculture. Plant Physiol Biochem. 198:107670. doi:10.1016/j.plaphy.2023.107670.
  • Poljuha D, Sladonja B, Šola I, Dudaš S, Bilić J, Rusak G, Motlhatlego KE, Eloff JN. 2017. Phenolic composition of leaf extracts of Ailanthus altissima (simaroubaceae) with antibacterial and antifungal activity equivalent to standard antibiotics. Nat Prod Commun. 12(10):1934578X1701201021. doi: 10.1177/1934578X1701201021.
  • Rguez S, Djébali N, Slimene IB, Abid G, Hammemi M, Chenenaoui S, Bachkouel S, Daami-Remadi M, Ksouri R, Hamrouni-Sellami I. 2018. Cupressus sempervirens essential oils and their major compounds successfully control postharvest grey mould disease of tomato. Ind Crops Prod. 123:135–141. doi:10.1016/j.indcrop.2018.06.060.
  • Rguez S, Essid R, Adele P, Msaada K, Hammami M, Mkadmini K, Fares N, Tabbene O, Elkahoui S, Portelli D. 2019. Towards the use of Cupressus sempervirens L. organic extracts as a source of antioxidant, antibacterial and antileishmanial biomolecules. Ind Crops Prod. 131:194–202. doi:10.1016/j.indcrop.2019.01.056.
  • Rguez S, Hammami MA, Wissem W, Hamrouni SI. 2022. Bioguided fractionation of procyanidin B2 as potent anti coxsackie virus B and herpes simplex from cypress (Cupressus sempervirens L.). Int J Environ Health Res. 20:1–10. doi: 10.1080/09603123.2022.2137475.
  • Rguez S, Papetti A, Bourguou S, Msaada K, Hammami M, Mkadmini Hammi K, Hamrouni Sellami I. 2022. Antifungal and antioxidant effects of phenolic acids and flavonol glycosides from Tetraclinis articulata. Arch Phytopathol Plant Prot. 55(3):1–19. doi: 10.1080/03235408.2021.2015888.
  • Rguez S, Slimene IB, Abid G, Hammemi M, Kefi A, Elkahoui S, Ksouri R, Sellami IH, Djébali N. 2020. Tetraclinis articulata essential oil reduces Botrytis cinerea infections on tomato. Sci Hortic (Amsterdam). 266:109291. doi:10.1016/j.scienta.2020.109291.
  • Roy M, Karhana S, Shamsuzzaman M, Khan MA. 2023. Recent drug development and treatments for fungal infections. Braz J Microbiol. 54(2):1–22. doi: 10.1007/s42770-023-00999-z.
  • Safa R, Walid Y, Majdi H, Ibtissem HS. 2023. Effect of extraction solvent on the phytochemical composition and the antioxidant activity of Cupressus sempervirens. Eur J Biotechnol Biosci. 11(1):6–10.
  • Singh A, Patel SK, Singh PK, Singh P. 2023. Management of tomato early blight [Alternaria solani (Ellis & Martin) Sorauer] through botanicals and fungicides under in-vitro and in-vivo conditions. Ecol Environ Conserv. 29(January Suppl. Issue):S398–S403. doi: 10.53550/EEC.2023.v29i01s.061.
  • Sudheeran PK, Ovadia R, Galsarker O, Maoz I, Sela N, Maurer D, Feygenberg O, Oren Shamir M, Alkan N. 2020. Glycosylated flavonoids: fruit’s concealed antifungal arsenal. New Phytol. 225(4):1788–1798. doi: 10.1111/nph.16251.
  • Susilawati S, Anwar C, Saleh I, Salni S. 2023. Flavonoid as anti-Candida agents. Indones J Fundam Appl Chem. 8(2):88–97. doi: 10.24845/ijfac.v8.i2.88.
  • Vardar-Ünlü G, Candan F, Sökmen A, Daferera D, Polissiou M, Sökmen M, Dönmez E, Tepe B. 2003. Antimicrobial and antioxidant activity of the essential oil and methanol extracts of thymus pectinatus Fisch. et Mey. Var. Pectinatus (Lamiaceae). J Agric Food Chem. 51(1):63–67. doi: 10.1021/jf025753e.
  • Wianowska D, Olszowy-Tomczyk M, Garbaczewska S. 2022. A central composite design in increasing the quercetin content in the aqueous onion waste isolates with antifungal and antioxidant properties. Eur Food Res Technol. 248(2):497–505. doi: 10.1007/s00217-021-03895-8.
  • Wiederhold NP. 2022. Pharmacodynamics, mechanisms of action and resistance, and spectrum of activity of new antifungal agents. J Fungi. 8(8):857. doi: 10.3390/jof8080857.
  • Yao H, Chen B, Zhang Y, Ou H, Li Y, Li S, Shi P, Lin X. 2017. Analysis of the total biflavonoids extract from Selaginella doederleinii by HPLC-QTOF-MS and its in vitro and in vivo anticancer effects. Molecules. 22(2):325. doi: 10.3390/molecules22020325.
  • Zar Kalai F, Dakhlaoui S, Hammami M, Mkadmini K, Ksouri R, Isoda H. 2022. Phenolic compounds and biological activities of different organs from aerial part of nitraria retusa (Forssk.) Asch.: effects of solvents. Int J Food Prop. 25(1):1524–1538. doi: 10.1080/10942912.2022.2087673.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.