48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Essential oil and its nanoemulsion of Eucalyptus cladocalyx: chemical characterization, antioxidant, anti-inflammatory and anticancer activities

ORCID Icon, , , , , & ORCID Icon show all
Received 04 Oct 2023, Accepted 01 Nov 2023, Published online: 16 Nov 2023

References

  • Adak T, Barik N, Patil NB, Govindharaj GPP, Gadratagi BG, Annamalai M, Mukherjee AK, Rath PC. 2020. Nanoemulsion of eucalyptus oil: an alternative to synthetic pesticides against two major storage insects (sitophilus oryzae (L.) and tribolium castaneum (Herbst)) of rice. Ind Crops Prod. 143(October):111849. doi: 10.1016/j.indcrop.2019.111849.
  • Alam A, Ansari MJA, Alqarni MH, Salkini MA, Raish M. 2023. Antioxidant, Antibacterial, and Anticancer Activity of Ultrasonic Nanoemulsion of Cinnamomum Cassia L. J Essent Oil-Bear Plants. 12(834):1–15. doi: 10.3390/plants12040834.
  • Amri I, Khammassi M, Ben Ayed R, Khedhri S, Mansour MB, Kochti O, Pieracci Y, Flamini G, Mabrouk Y, Gargouri S. 2023. Essential oils and biological activities of Eucalyptus falcata, E. sideroxylon and E. citriodora growing in Tunisia. Plants. 12(4):816. doi: 10.3390/plants12040816.
  • Ayed A, Polito F, Mighri H, Souihi M, Caputo L, Hamrouni L, Amri I, Nazzaro F, De Feo V, Hirsch AM. 2023. Chemical composition of essential oils from eight Tunisian Eucalyptus species and their antifungal and herbicidal activities. Plants. 12(17):3068. doi: 10.3390/plants12173068.
  • Babchin AJ, Schramm LL. 2012. Osmotic repulsion force due to adsorbed surfactants. Colloids Surf B. 91(1):137–143. doi: 10.1016/j.colsurfb.2011.10.050.
  • Barbosa LCA, Filomeno CA, Teixeira RR. 2016. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules. 21(12):1–33. doi: 10.3390/molecules21121671.
  • Bashlouei SG, Karimi E, Zareian M, Oskoueian E, Shakeri M. 2022. Heracleum persicum essential oil nanoemulsion: a nanocarrier system for the delivery of promising anticancer and antioxidant bioactive agents. Antioxidants. 11(5):831. doi: 10.3390/antiox11050831.
  • Ben Hassine D, Ben Ismail H, Jribi C, Mohamed Larbi K, Abderrabba M. 2010. Chemical composition of some Tunisian Eucalyptus essential oils as obtained by hydrodistillation using Clevenger type apparatus. Biosci Biotechnol Res Asia. 7(2):647–656.
  • Borges RS, Keita H, Ortiz BLS, dos Santos Sampaio TI, Ferreira IM, Lima ES, de Jesus Amazonas da Silva M, Fernandes CP, de Faria Mota Oliveira AEM, da Conceição EC, et al. 2018. Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology. 26(4):1057–1080. doi: 10.1007/s10787-017-0438-9.
  • Bouchemal K, Briançon S, Perrier E, Fessi H. 2004. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 280(1–2):241–251. doi: 10.1016/j.ijpharm.2004.05.016.
  • Dakhlaoui S, Bourgou S, Bachkouel S, Ben MR, Ben JM, Jallouli S, Megdiche-Ksouri W, Hessini K, Msaada K. 2021. Essential oil composition and biological activities of Aleppo pine (pinus halepensis Miller) needles collected from different Tunisian regions. Int J Environ Health Res. (00):1–15. doi: 10.1080/09603123.2021.2005001.
  • De Godoi SN, Quatrin PMI, Sagrillo MR, Nascimento K, Wagner R, Klein B, Santos RCV, Ourique AF. 2017. Evaluation of stability and in vitro security of nanoemulsions containing Eucalyptus globulus oil. Biomed Res Int. 2017. doi: 10.1155/2017/2723418.
  • Dhakad AK, Pandey VV, Beg S, Rawat JM, Singh A. 2018. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review. J Sci Food Agric. 98(3):833–848. doi: 10.1002/jsfa.8600.
  • Elaissi A, Moumni S, Derbali Y, Khouja M, Abid N, Frederic L, Khouja LM. 2021. Chemical composition of essential oils of eight Tunisian Eucalyptus species and their antibacterial activity against strains responsible for otitis. BMC Complement Med Ther. 21(1):1–16. doi: 10.1186/s12906-021-03379-y.
  • Elaissi A, Salah KH, Mabrouk S, Larbi KM, Chemli R, Harzallah-Skhiri F. 2011. Antibacterial activity and chemical composition of 20 Eucalyptus species’ essential oils. Food Chem. 129(4):1427–1434. doi: 10.1016/j.foodchem.2011.05.100.
  • Fouad R, Bousta D, Lalami AEO, Chahdi FO, Amri I, Jamoussi B, Greche H. 2015. Chemical composition and herbicidal effects of essential oils of cymbopogon citratus (DC) Stapf, Eucalyptus cladocalyx, origanum vulgare L and artemisia absinthium L. cultivated in Morocco. J Essent Oil Bear Plants. 18(1):112–123. doi: 10.1080/0972060X.2014.901631.
  • Guerra-Rosas MI, Morales-Castro J, Ochoa-Martínez LA, Salvia-Trujillo L, Martín-Belloso O. 2016. Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocoll. 52:438–446. doi: 10.1016/j.foodhyd.2015.07.017.
  • Huang K, Liu R, Zhang Y, Guan X. 2021. Characteristics of two cedarwood essential oil emulsions and their antioxidant and antibacterial activities. Food Chem. 346(September 2020):128970. doi: 10.1016/j.foodchem.2020.128970.
  • Jafari SM, He Y, Bhandari B. 2007. Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng. 82(4):478–488. doi: 10.1016/j.jfoodeng.2007.03.007.
  • Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H. 2003. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med. 97(3):250–256. doi: 10.1053/rmed.2003.1432.
  • Kang JK, Kang HK, Hyun CG. 2022. Anti-inflammatory effects of spiramycin in LPS-Activated RAW 264.7 macrophages. Molecules. 27(10):3202. doi: 10.3390/molecules27103202.
  • Khatamian N, Soltani M, Shadan B, Neamati A, Tabrizi MH, Hormozi B. 2022. Pinus morrisonicola needles essential oil nanoemulsions as a novel strong antioxidant and anticancer agent. Inorg Nano-Metal Chem. 52(2):253–261. doi: 10.1080/24701556.2021.1892760.
  • Limam H, Ben Jemaa M, Tammar S, Ksibi N, Khammassi S, Jallouli S, Del Re G, Msaada K. 2020. Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Ind Crops Prod. 158(November):112964. doi: 10.1016/j.indcrop.2020.112964.
  • Lou Z, Chen J, Yu F, Wang H, Kou X, Ma C, Zhu S. 2017. The antioxidant, antibacterial, antibiofilm activity of essential oil from citrus medica L. var. sarcodactylis and its nanoemulsion. Lwt. 80:371–377. doi: 10.1016/j.lwt.2017.02.037.
  • McClements DJ. 2012. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 8(6):1719–1729. doi: 10.1039/c2sm06903b.
  • Nagaraju PGS, Priyadarshini PCG, Poornima Rao PJ. 2021. Nanoencapsulation of clove oil and study of physico-chemical properties, cytotoxic, haemolytic and antioxidant activities Pramod G Nagaraju. CSIR- Cent Food Technol Res Inst. 1(1):1–32.
  • Noori S, Zeynali F, Almasi H. 2018. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Elsevier B.V. doi: 10.1016/j.foodcont.2017.08.015.
  • Polito F, Fratianni F, Nazzaro F, Amri I, Kouki H, Khammassi M, Hamrouni L, Malaspina P, Cornara L, Khedhri S. 2023. Essential oil composition, antioxidant activity and leaf micromorphology of five Tunisian Eucalyptus species. Antioxidants. 12(4):867. doi: 10.3390/antiox12040867.
  • Quatrin PM, Verdi CM, de Souza ME, de Godoi SN, Klein B, Gundel A, Wagner R, de Almeida Vaucher R, Ourique AF, Santos RCV. 2017. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microb Pathog. 112:230–242. doi: 10.1016/j.micpath.2017.09.062.
  • Rambod A, Atabaki N, Sanusi R, Malik S, Ramin A, Safa P, Shukor NAA, Abdul-Hamid H. 2022. New insights into the biological properties of Eucalyptus-derived essential oil: a promising green anti-cancer drug. Food Rev Int. 38(S1):598–633. doi: 10.1080/87559129.2021.1877300.
  • Rehman A, Qunyi T, Sharif HR, Korma SA, Karim A, Manzoor MF, Mehmood A, Iqbal MW, Raza H, Ali A, et al. 2021. Biopolymer based nanoemulsion delivery system: an effective approach to boost the antioxidant potential of essential oil in food products. Carbohydr Polym Technol Appl. 2(April):100082. doi: 10.1016/j.carpta.2021.100082.
  • Salehi B, Sharifi-Rad J, Quispe C, Llaique H, Villalobos M, Smeriglio A, Trombetta D, Ezzat SM, Salem MA, Zayed A, et al. 2019. Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects. Trends Food Sci Technol. 91(June):609–624. doi:10.1016/j.tifs.2019.08.003.
  • Sharma A, Sharma L, Goyal R. 2020. GC/MS characterization, in-vitro antioxidant, anti-inflammatory and antimicrobial activity of essential oils from pinus plant species from Himachal Pradesh, India. J Essent Oil-Bearing Plants. 23(3):522–531. doi: 10.1080/0972060X.2020.1803147.
  • STATISTICA S. 1998. Windows (computer program electronic manual). Tulsa, OK: StatSoft Inc.
  • Subramanian B, Kuo F, Ada E, Kotyla T, Wilson T, Yoganathan S, Nicolosi R. 2008. Enhancement of anti-inflammatory property of aspirin in mice by a nano-emulsion preparation. Int Immunopharmacol. 8(11):1533–1539. doi: 10.1016/j.intimp.2008.06.009.
  • Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N. 2014. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res. 104(3):393–402. doi: 10.1017/S0007485313000710.
  • Tadros T, Izquierdo P, Esquena J, Solans C. 2004. Formation and stability of nano-emulsions. Adv Colloid Interface Sci. 108–109:303–318. doi: 10.1016/j.cis.2003.10.023.
  • Usman LA, Oguntoye SO, Ismaeel RO. 2022. Effect of collection time on the chemical composition, antioxidant and antidiabetic potentials of leaf essential oil of Eucalyptus globulus L. Growing in north-central, Nigeria. Chem Africa. 5(2):257–267. doi: 10.1007/s42250-022-00325-4.
  • Walker RM, Decker EA, McClements DJ. 2015. Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: effect of surfactant concentration and particle size. J Food Eng. 164:10–20. doi: 10.1016/j.jfoodeng.2015.04.028.
  • Ziani K, Chang Y, McLandsborough L, McClements DJ. 2011. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J Agric Food Chem. 59(11):6247–6255. doi: 10.1021/jf200450m.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.