103
Views
0
CrossRef citations to date
0
Altmetric
Review article

A review of the occurrence of naturally occurring radioactive materials and radiological risk assessment in South African soils

ORCID Icon & ORCID Icon
Received 25 Jul 2023, Accepted 02 Nov 2023, Published online: 15 Nov 2023

references

  • Abera G, Wolde-Meskel E. 2013. Soil properties, and soil organic carbon stocks of tropical andosol under different land uses. Open J Of Soil Sci. 3(3):153–162. doi: 10.4236/ojss.2013.33018.
  • Abrahams PH. 2002. Soils: their implications to human health. Sci Total Environ. 291(1–3):1–32. doi: 10.1016/s0048-9697(01)01102-0.
  • Ahmad A, Al-Ghouti MA, Alsadig I, Abu-Dieyeh MH. 2019. Vertical distribution and radiological risk assessment of 137Cs and natural radionuclides in soil samples. Sci Rep. 9(1). doi: 10.1038/s41598-019-48500-x.
  • Ahmed R. 2022. The concentration of radioactive materials in Iraqi soils, water and plants: a review. J Radiat Res Appl Sci. 15(1):245–256. doi: 10.1016/j.jrras.2022.03.012.
  • Ajanaku O, Ilori AO, Ibitola GA, Faturoti OI. 2018. Assessment of natural radioactivity and associated dose rates in surface soils around oluwa glass industry environments, igbokoda, Ondo state, southwestern Nigeria. Phys Sci Inter J. 20(3):1–13. doi: 10.9734/psij/2018/42372.
  • Al-Hamarneh IF, Alkhomashi N, Almasoud FI. 2016. Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 234U and 238U radionuclides in irrigated farms from the northwestern Saudi Arabia. J Environ Radioact. 160:1–7. doi: 10.1016/j.jenvrad.2016.04.012.
  • Alhous SF, Kadhim SA, Alkufi AA, Muhmood AA, Zgair IA 2020. Calculation of radioactivity levels for various soil samples of Karbala - Najaf road (ya- Hussein) Iraq. IOP Conference Series, 928: 072076. 10.1088/1757-899x/928/7/072076
  • Alshahri F, El-Taher A. 2018. Investigation of natural radioactivity levels and evaluation of radiation hazards in Residential-Area soil near a Ras Tanura Refinery, Saudi Arabia. Pol J Environ Stud. 28(1):25–34. doi: 10.15244/pjoes/83611.
  • Ashraf M, Maah MJ, Yusoff I. 2014. Soil contamination, risk assessment and remediation. InTech eBooks. doi: 10.5772/57287.
  • Azzam EI, Colangelo N, Domogauer JD, Sharma N, De Toledo SM. 2016. Is ionizing radiation harmful at any exposure? an echo that continues to vibrate. Health Phys. 110(3):249–251. doi: 10.1097/hp.0000000000000450.
  • Babatunde BB, Sikoki F, Avwiri GO, Chad-Umoreh Y. 2019. Review of the status of radioactivity profile in the oil and gas producing areas of the Niger delta region of Nigeria. J Environ Radioact. 202:66–73. doi: 10.1016/j.jenvrad.2019.01.015.
  • Badhan K, Mehra R. 2012. Primordial radioactivity (238U, 232Th and 40K) measurements for soils of Ludhiana district of Punjab, India. Radiat Prot Dosimetry. 152(1–3):29–32. doi: 10.1093/rpd/ncs144.
  • Balaram V. 2019. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front. 10(4):1285–1303. doi: 10.1016/j.gsf.2018.12.005.
  • Beer JH, McCracken K, Von Steiger R. 2011. The cosmic radiation near earth. In: Physics of earth and space environments. Springer Nature; pp. 19–78. doi:10.1007/978-3-642-14651-0_5.
  • Beer JH, McCracken K, Von Steiger R 2012. Cosmogenic radionuclides: theory and applications in the terrestrial and space environments. http://ci.nii.ac.jp/ncid/BB08954978
  • Bekelesi W, Darko EO, Andam AB. 2017. Activity concentrations and dose assessment of 226Ra, 228Ra, 232Th, 40K, 222Rn and 220Rn in soil samples from newmont-akyem gold mine using gamma-ray spectrometry. Afr J Environ Sci Technol. 11(5):237–247. doi: 10.5897/ajest2016.2141.
  • Bezuidenhout J. 2019. The mapping and investigation of radionuclide pollution in the processing plant of a spent phosphate mine by using GIS techniques. South African Jof Geom. 7(3):345. doi: 10.4314/sajg.v7i3.11.
  • Bezuidenhout J. 2023. Investigating naturally occurring radionuclides in sediment by characterizing the catchment basin geology of rivers in South Africa. J Appl Geophys. 213:105037. doi: 10.1016/j.jappgeo.2023.105037.
  • Burnett L, Hughes RT, Rejeski AF, Moffatt LT, Shupp JW, Christy RJ, Winkfield KM. 2021. Review of the terminology describing ionizing radiation-induced skin injury: a case for standardization. Technol Cancer Res Treat. 20:153303382110396. doi: 10.1177/15330338211039681.
  • Carini F. 2012. Radionuclides. Elsevier eBooks. 757–783. doi: 10.1016/b978-0-12-384862-8.00023-6.
  • Chu E, Karr JR. 2017. Environmental Impact: concept, consequences, measurement ☆. Elsevier eBooks. doi: 10.1016/b978-0-12-809633-8.02380-3.
  • Curtis D, Fabryka-Martin J, Paul D, Cramer J. 1999. Nature’s uncommon elements: plutonium and technetium. Geochim Cosmochim Acta. 63(2):275–285. doi: 10.1016/S0016-7037(98)00282-8.
  • Dallou GB, Ngoa EL, Ndjana NJE, Saïdou TS, Bongue D, Kwato NMG. 2017. NORM measurements and radiological hazard assessment in the gold mining areas of Eastern Cameroon. Radiat Environ and Med. 6(1):22–28. doi: 10.51083/radiatenvironmed.6.1_22.
  • Der Merwe CR V. 1944. Soil groups and sub-groups of South Africa. Soil Sci. 57(5):398. doi: 10.1097/00010694-194405000-00012.
  • Diahou RRCM, Bounouira H, Dallou GB, Moursli RCE, Biona CB 2022. Environmental radioactivity measurement in soils of an abandoned potash deposit at holle, republic of Congo. E3S Web of Conferences, 336: 00030. 10.1051/e3sconf/202233600030
  • Dina NT, Das S, Kabir MJ, Rasul MG, Deeba F, Rajib M, Islam MS, Hayder MA, Ali MI. 2022. Natural radioactivity and its radiological implications from soils and rocks in Jaintiapur area, North-east Bangladesh. J Radioanal Nucl Chem. 331(11):4457–4468. doi: 10.1007/s10967-022-08562-0.
  • Edwards RL, Cutler KB, Cheng HC, Gallup CD. 2003. Geochemical evidence for quaternary sea-level changes. Elsevier eBooks. 343–364. doi: 10.1016/b0-08-043751-6/06116-8.
  • Ershov BG. 2022. Natural radioactivity and chemical evolution on the early earth: prebiotic chemistry and oxygenation. Molecules. 27(23):8584. doi: 10.3390/molecules27238584.
  • European Commission Radiation Protection on Radiation Protection, ECRP. 1999. Report on the radiological protection principles concerning the natural radioactivity of building materials. ECRP. 112:1–16.
  • Faw RE, Shultis JK. 2016. Radiation sources. Springer eBooks. 1–32. doi: 10.1007/978-1-4939-2493-6_15-3.
  • Ferronsky VI. 2015. Cosmogenic radioisotopes for study of the genesis and dynamics of water. Springer eBooks. 323–425. doi: 10.1007/978-3-319-12451-3_10.
  • Gören E, Turhan Ş, Kurnaz A, Garad AMK, Duran C, Ugur FA, Yegingil Z. 2017. Environmental evaluation of natural radioactivity in soil near a lignite-burning power plant in Turkey. Appl Radiat Isot. 129:13–18. doi: 10.1016/j.apradiso.2017.07.059.
  • Guo W, Chen G, Li YH, Li Y, Zhang Y, Zhou J, Han W, Xu X, Ma Y, Dang H. 2021. Factors controlling the lower radioactivity and its relation with higher organic matter content for middle jurassic oil shale in yuqia depression, northern qaidam basin, China: evidence from organic and inorganic geochemistry. ACS Omega. 6(11):7360–7373. doi: 10.1021/acsomega.0c05618.
  • Harmon RS. 2018. Atomic number, mass number, and isotopes. In: Encyclopedia of earth sciences. Springer Nature (Netherlands); pp. 83–85. doi:10.1007/978-3-319-39312-4_244.
  • Hassan NN, Khoo KS. 2014. Measurement of natural radioactivity and assessment of radiation hazard indices in soil samples at pengerang, Kota Tinggi. Johor Nucleation And Atmos Aerosols. doi: 10.1063/1.4866130.
  • Hattar BI, Taimeh AY, Ziadat FM. 2010. Variation in soil chemical properties along toposequences in an arid region of the levant. Catena. 83(1):34–45. doi: 10.1016/j.catena.2010.07.002.
  • Heinitz S, Kajan I, Schumann D. 2022. How accurate are half-life data of long-lived radionuclides? Radiochim Acta. 110(6–9):589–608. doi: 10.1515/ract-2021-1135.
  • Hu Q, Weng J, Wang J. 2010. Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact. 101(6):426–437. doi: 10.1016/j.jenvrad.2008.08.004.
  • Ilori AO, Chetty N. 2020. Soil-to-crop transfer of natural radionuclides in farm soil of South Africa. Environ Monit Assess. 192(12):775. doi: 10.1007/s10661-020-08756-7.
  • Ilori AO, Chetty N. 2021. Activity concentrations and radiological hazard assessments of 226Ra, 232Th, and 40K in soil samples of oil-producing areas of South Africa. Int J Environ Health Res. 32(12):2665–2677. doi: 10.1080/09603123.2021.1984399.
  • Ilori AO, Chetty N, Adeleye B. 2020. Activity concentration of natural radionuclides in sediments of Bree, Klein-Brak, bakens, and uMngeni rivers and their associated radiation hazard indices. T Roy Soc S Afr. 75(3):258–265. doi: 10.1080/0035919x.2020.1815894.
  • Jadiyappa S. 2018. Radioisotope: applications, effects, and occupational protection. InTech eBooks. doi: 10.5772/intechopen.79161.
  • Joseph SR, Lumbi LW, Ibrahim U, Yusuf SD, Mundi AA, Mustapha I, Nandutu M, Bello SL, Yartsakuwa DF, Oduh IO. 2022. Estimation of public radiological dose from mining activities in some selected cities in Nigeria. Dutse J Of Pure And Appl Sci. 8(1a):22–35. doi: 10.4314/dujopas.v8i1a.3.
  • Kamunda C, Mathuthu M, Madhuku M. 2016. An assessment of radiological hazards from gold mine tailings in the province of Gauteng in South Africa. Int J Env Res Pub He. 13(1):138. doi: 10.3390/ijerph13010138.
  • Kapanadze K, Magalashvili A, Imnadze P. 2019. Distribution of natural radionuclides in the soils and assessment of radiation hazards in the khrami late variscan crystal massif (georgia). Heliyon. 5(3):e01377. doi: 10.1016/j.heliyon.2019.e01377.
  • Kondev FG, Wang M, Huang WJ, Naimi S, Audi G. 2021. The NUBASE2020 evaluation of nuclear properties. Chin Phys C. 45(3):030001. doi: 10.1088/1674-1137/abddae.
  • L’Annunziata MF. 2003. Nuclear radiation, its interaction with matter and radioisotope decay. Elsevier eBooks. 1–121. doi: 10.1016/b978-012436603-9/50006-5.
  • Lide DR. 2005. CRC handbook of chemistry and physics. Internet version. Boca Raton: CRC press; p. 2208. http://www.hbcpnetbase.com.
  • Lin M, Thiemens MH. 2022. Cosmogenic radiosulfur tracking of solar activity and the strong and long-lasting El niño events. Proc Natl Acad Sci U S A. 119(19). doi: 10.1073/pnas.2121550119.
  • Liu X, Lin W. 2018. Natural radioactivity in the beach sand and soil along the coastline of guangxi province, China. Mar Pollut Bull. 135:446–450. doi: 10.1016/j.marpolbul.2018.07.057.
  • Madzunya D, Dudu VP, Mathuthu M, Manjoro M. 2020. Radiological health risk assessment of drinking water and soil dust from Gauteng and North West provinces, in South Africa. Heliyon. 6(2):e03392. doi: 10.1016/j.heliyon.2020.e03392.
  • Masok FB, Masiteng PL, Mavunda RD, Maleka PP, Winkler H. 2018. Measurement of radioactivity concentration in soil samples around phosphate rock storage facility in Richards Bay, South Africa. J Radiat Res Appl Sci. 11(1):29–36. doi: 10.1016/j.jrras.2017.10.006.
  • Modisane TJD, Newman RT, Mohanty AK, Joseph AD, Lindsay R, Maine PM. 2007. Correlations between natural radionuclide concentrations in soil and vine-growth potential. The Second All African IRPA Reg Radiat Prot Congr. 57–60. https://www.osti.gov/etdeweb/servlets/purl/21073067.
  • Moshupya P, Mohuba SC, Abiye T, Korir I, Nhleko S, Mkhosi M. 2022. In situ determination of radioactivity levels and radiological doses in and around the gold mine tailing dams, Gauteng province, South Africa. Minerals. 12(10):1295. doi: 10.3390/min12101295.
  • Mubarak F, Fayez-Hassan M, Mansour NA, Ahmed T, Ali AE. 2017. Radiological investigation of high background radiation areas. Sci Rep. 7(1). doi: 10.1038/s41598-017-15201-2.
  • Nabhani KA, Khan F, Yang M. 2016. Technologically enhanced naturally occurring radioactive materials in oil and gas production: a silent killer. Process Saf Environ. 99:237–247. doi: 10.1016/j.psep.2015.09.014.
  • Nadal M, Casacuberta N, Garcia-Orellana J, Ferré-Huguet N, Masqué P, Schuhmacher M, Domingo JL. 2010. Human health risk assessment of environmental and dietary exposure to natural radionuclides in the Catalan stretch of the ebro River, Spain. Environ Monit Assess. 175(1–4):455–468. doi: 10.1007/s10661-010-1543-z.
  • National Research Council NRC. 1999. Evaluation of guidelines for exposures to technologically enhanced naturally occurring radioactive materials. National Academies Press eBooks. doi: 10.17226/6360.
  • Njinga R, Tshivhase VM. 2016. Lifetime cancer risk due to gamma radioactivity in soils from tudor shaft mine environs, South Africa. J Radiat Res Appl Sci. 9(3):310–315. doi: 10.1016/j.jrras.2016.02.003.
  • Ohoro CR, Adeniji AO, Semerjian L, Okoh AI, Okoh OO. 2022. Occurrence and risk assessment of polybrominated diphenyl ethers in surface water and sediment of nahoon river estuary, South Africa. Molecules. 27(3):832. doi: 10.3390/molecules27030832.
  • Olagbaju P, Wojuola OB, Tshivhase VM 2021. Radionuclides contamination in soil: effects, sources and spatial distribution. Epj Web of Conferences, 253: 09006. 10.1051/epjconf/202125309006
  • Oluyide S, Tchokossa P, Fc A, Orosun MM. 2019. Assessment of radioactivity levels and transfer factor of natural radionuclides around iron and steel smelting company located in fashina village. Osun State, Nigeria: Ile-ife. Facta Universitatis, 241. 10.22190/fuwlep1803241o.
  • Orosun MM, Usikalu MR, Oyewumi KJ, Awolola GV, Ajibola O, Tibbett M. 2022. Soil-to-plant transfer of 40K, 238U and 232Th and radiological risk assessment of selected mining sites in Nigeria. Heliyon. 8(11):e11534. doi: 10.1016/j.heliyon.2022.e11534.
  • Paschoa A. 1997. Naturally occurring radioactive materials (NORM) and petroleum origin. Appl Radiat Isot. 48(10–12):1391–1396. doi: 10.1016/s0969-8043(97)00134-6.
  • Paschoa A, Steinhäusler F. 2010. Terrestrial, atmospheric, and aquatic natural radioactivity. In: Radioactivity in the environment. Elsevier BV; pp. 29–85. doi:10.1016/s1569-4860(09)01703-3.
  • Povinec PP, Hirose K, Aoyama M, Tateda Y. 2021. Introduction. Elsevier eBooks. 1–17. doi: 10.1016/b978-0-12-824496-8.00003-1.
  • Prohaska T, Irrgeher J, Benefield J, et al. 2022. Standard atomic weights of the elements 2021 (IUPAC Technical Report). Pure and Applied Chemistry.
  • Radvanyi P, Villain J. 2017. The discovery of radioactivity. C R Physique. 18(9–10):544–550. doi: 10.1016/j.crhy.2017.10.008.
  • Raj P, Padiyath N, Semioshkina N, Addad Y, Foulon F, Francis D, Voigt G. 2022. Conceptualization of arid region radioecology strategies for agricultural ecosystems of the United Arab Emirates (UAE). Sci Total Environ. 832:154965. doi: 10.1016/j.scitotenv.2022.154965.
  • Ramachandran T. 2011. Background radiation, people and the environment. Iran J Of Radiat Res. 9(2):63–76. http://ijrr.com/files/site1/user_files_fad21f/admin-A-10-1-386-505f288.pdf.
  • Schloemann HL 1995. The geochemistry of some common Western Cape soils (South Africa) with emphasis on toxic and essential elements. https://open.uct.ac.za/handle/11427/26084
  • Schonken P. 1991. Health effects of exposure to low levels of ionizing radiation. Health Policy (New York). 18(3):269. doi: 10.1016/0168-8510(91)90028-v.
  • Shahbazi-Gahrouei D, Gholami M, Setayandeh SS. 2013. A review on natural background radiation. Adv Biomed Res. 2(1):65. doi: 10.4103/2277-9175.115821.
  • Singh VP, Seed TM. 2020. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother. 21(3):317–337. doi: 10.1080/14656566.2019.1702968.
  • Sowole O, Egunjobi KJ. 2019. Radioactivity assessment of 40K, 238U and 232th in surface soil samples of Igbokoda, southwest of Nigeria. Tanzania J Of Sci. 45(3):307–314. https://www.ajol.info/index.php/tjs/article/download/191170/180345.
  • Terzi L, Wotawa G, Schoeppner MA, Kalinowski M, Saey PR, Steinmann P, Luan L, Staten PW. 2020. Radioisotopes demonstrate changes in global atmospheric circulation possibly caused by global warming. Sci Rep. 10(1). doi: 10.1038/s41598-020-66541-5.
  • Thoennessen M. 2016. The discovery of isotopes: a complete compilation. Springerp. 19. 10.1007%2F978-3-319-31763-2.
  • United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR. 2000. Sources and Effects of Ionizing radiation 2000 Report, Volume I in Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations. https://doi.org/10.18356/49c437f9-en
  • United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR. 2008. Sources and Effects of ionizing radiation, 2008 report, volume I in report of the United Nations Scientific Committee on the Effects of Atomic radiation. United Nations. doi: 10.18356/cb7b6e26-en.
  • Van Zijl G, Turner D, Paterson DG, Koch J, Van Tol J, Barichievy K, Clarke C, Du Plessis M, Van Deventer P. 2020. The new soil classification system in South Africa, its history, important changes made and implications for users. The South African J Of Plant And Soil. 37(5):331–342. doi: 10.1080/02571862.2020.1815244.
  • Vardiman L, Austin SA, Baumgardner JR, Redondo C, Chaffin EF, DeYoung DB, Humphreys DR, Snelling AA 2003. Radioisotopes and the age of the earth. Proceedings of the International Conference on Creationism, 5 (1), 25. http://static.icr.org/i/pdf/research/RATE_ICC_Vardiman.pdf
  • Webber WR, Higbie PR, McCracken K. 2007. Production of the cosmogenic isotopes 3 H, 7 be, 10 be, and 36 Cl in the earth’s atmosphere by solar and galactic cosmic rays. J Geophys Res. 112(A10):A10106. doi: 10.1029/2007ja012499.
  • Whicker FW, Eisenbud M, Gesell T. 1997. Environmental radioactivity from natural, industrial, and military sources. Radiat Res. 148(4):402. doi: 10.2307/3579528.
  • White A, Ma L, Moravec BG, Chorover J, McIntosh J. 2021. U-series and sr isotopes as tracers of mineral weathering and water routing from the deep critical zone to streamflow in a high-elevation volcanic catchment. Chem Geol. 570:120156. doi: 10.1016/j.chemgeo.2021.120156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.