53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Human epithelial lung cell toxicity assessment of collected graphite particles from an iron casting industry (in vitro study)

ORCID Icon, ORCID Icon & ORCID Icon
Received 22 Sep 2023, Accepted 18 Dec 2023, Published online: 26 Dec 2023

References

  • Azari MR, Mohammadian Y. 2020. Comparing in vitro cytotoxicity of graphite, short multi-walled carbon nanotubes, and long multi-walled carbon nanotubes. Environ Sci Pollut Res. 27:15401–15406.
  • Bellagamba I, Boccuni F, Ferrante R, Tombolini F, Marra F, Sarto MS, Iavicoli S. 2020. Workers’ exposure assessment during the production of graphene nanoplatelets in R&D laboratory. Nanomaterials. 10(8):1520. doi: 10.3390/nano10081520.
  • Brown JS, Gordon T, Price O, Asgharian B. 2013. Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol. 10(1):12. doi: 10.1186/1743-8977-10-12.
  • Burgis NE. 2016. A disease spectrum for ITPA variation: advances in biochemical and clinical research. J Biomed Sci. 23(1):73. doi: 10.1186/s12929-016-0291-y.
  • Database Name [Protocol]. USA: ATCC. https://www.atcc.org/products/all/CCL-185.aspx.
  • Figarol A, Pourchez J, Boudard D, Forest V, Akono C, Tulliani J-M, Lecompte J-P, Cottier M, Bernache-Assollant D, Grosseau P. 2015. In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization. Toxicol In Vitro. 30:476–485. doi: 10.1016/j.tiv.2015.09.014.
  • Fujikawa K, Kamiya H, Yakushiji H, Nakabeppu Y, Kasai H. 2001. Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res. 29(2):449–454. doi: 10.1093/nar/29.2.449.
  • Gene ITPA, Inosine Triphosphatase: genecards, human genome database. https://www.genecards.org/cgi-bin/carddisp.pl?gene=ITPA.
  • Honary S, Zahir F. 2013. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 2). Trop J Pharm Res. 12(2):265–273. doi: 10.4314/tjpr.v12i2.19.
  • IARC. 2012. Occupational exposures during iron and steel founding. In: chemical agents and related occupations-A review of human carcinogens. Lyon-france: iARC working group on the evaluation of carcinogenic risks to humans. Lyon, France: International Agency for Research on Cancer. p. 505.
  • Joseph E, Singhvi G. 2019. Multifunctional nanocrystals for cancer therapy: a potential nanocarrier. Nanomaterials for Drug Delivery and Therapy. Norwich, New York: William Andrew Publishing. 91–116.
  • Kumar P, Rao GN, Pal BB, Pal A. 2014. Hyperglycemia-induced oxidative stress induces apoptosis by inhibiting PI3-kinase/Akt and ERK1/2 MAPK mediated signaling pathway causing downregulation of 8-oxoG-DNA glycosylase levels in glial cells. Int J Biochem Cell Biol. 53:302–319. doi: 10.1016/j.biocel.2014.05.038.
  • Kumar P, Swain MM, Pal A. 2016. Hyperglycemia-induced inflammation caused down-regulation of 8-oxoG-DNA glycosylase levels in murine macrophages is mediated by oxidative-nitrosative stress-dependent pathways. Int J Biochem Cell Biol. 73:82–98. doi: 10.1016/j.biocel.2016.02.006.
  • Lindberg HK, Falck G-M, Suhonen S, Vippola M, Vanhala E, Catalán J, Savolainen K, Norppa H. 2009. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett. 186(3):166–173. doi: 10.1016/j.toxlet.2008.11.019.
  • Lu C-J, Jiang X-F, Junaid M, Ma Y-B, Jia P-P, Wang H-B, Pei D-S. 2017. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo. Chemosphere. 184:795–805. doi: 10.1016/j.chemosphere.2017.06.049.
  • Ma-Hock L, Strauss V, Treumann S, Küttler K, Wohlleben W, Hofmann T, Gröters S, Wiench K, van Ravenzwaay B, Landsiedel R. 2013. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol. 10(1):23. doi: 10.1186/1743-8977-10-23.
  • Mohammadian Y, Rezazadeh Azari M, Peirovi H, Khodagholi F, Pourahmad J, Omidi M, Mehrabi Y, Rafieepour A. 2019. Combined toxicity of multi-walled carbon nanotubes and benzo [a] pyrene in human epithelial lung cells. Toxin Rev. 38:212–222. doi: 10.1080/15569543.2018.1442348.
  • Nakauchi A, Wong JH, Mahasirimongkol S, Yanai H, Yuliwulandari R, Mabuchi A, Liu X, Mushiroda T, Wattanapokayakit S, Miyagawa T. 2016. Identification of ITPA on chromosome 20 as a susceptibility gene for young-onset tuberculosis. Hum Genome Var. 3(1):15067. doi: 10.1038/hgv.2015.67.
  • Nasirzadeh N, Azari MR, Rasoulzadeh Y, Mohammadian Y. 2019. An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicol Ind Health. 35(1):79–87. doi: 10.1177/0748233718817180.
  • Orłowicz W, Tupaj M, Mróz M, Guzik E. 2010. Evaluation of ductile iron casting material quality using ultrasonic testing. J Mater Process Technol. 210(210):1493–1500. doi: 10.1016/j.jmatprotec.2010.04.007.
  • Panjali Z, Abdolmaleki P, Hajipour-Verdom B, Hahad O, Zendehdel RJX. 2022. Lung cell toxicity of co-exposure to airborne particulate matter and extremely low-frequency magnetic field. Xenobiotica. 52(4):370–379. doi: 10.1080/00498254.2022.2082342.
  • Panjali Z, Hahad O, Rajabi F, Maddah S, Zendehdel R. 2021. Occupational exposure to metal-rich particulate matter modifies the expression of repair genes in foundry workers. Toxicol Ind Health. 37(8):504–512. doi: 10.1177/07482337211021202.
  • Panjali Z, Jafari-Tehrani B, Maghsoudi N, Abdolmaleki P, Zendehdel R. 2020. Genotoxic stress of particulate matter in the electric furnace of an iron casting industry on human lung epithelial cells; an in vitro study. Toxin Rev. 40(4):1–7. doi: 10.1080/15569543.2020.1783318.
  • Pan L, Zhu B, Hao W, Zeng X, Vlahopoulos SA, Hazra TK, Hegde ML, Radak Z, Bacsi A, Brasier AR. 2016. Oxidized guanine base lesions function in 8-oxoguanine DNA glycosylase-1-mediated epigenetic regulation of nuclear factor κB-driven gene expression. J Biol Chem. 291(291):25553–25566. doi: 10.1074/jbc.M116.751453.
  • Rafieepour A, Azari MR, Khodagholi F, Jaktaji JP, Mehrabi Y, Peirovi H. 2019. The effect of single and combined exposures to magnetite and polymorphous silicon dioxide nanoparticles on the human a 549 cell line: in vitro study. Environ Sci Pollut Res. 26(26):31752–31762. doi: 10.1007/s11356-019-06229-0.
  • Riaz MA, Tabinda Akhtar AB, Riaz A, Mujtaba G, Ali M, Ijaz B. 2017. Heavy metals identification and exposure at workplace environment its extent of accumulation in blood of iron and steel recycling foundry workers of Lahore, Pakistan. Pak J Pharm Sci. 30(4):1233–1238.
  • Roberts JR, Mercer RR, Stefaniak AB, Seehra MS, Geddam UK, Chaudhuri IS, Kyrlidis A, Kodali VK, Sager T, Kenyon A. 2015a. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family. Part Fibre Toxicol. 13(1):34. doi: 10.1186/s12989-016-0145-5.
  • Roberts JR, Mercer RR, Stefaniak AB, Seehra MS, Geddam UK, Chaudhuri IS, Kyrlidis A, Kodali VK, Sager T, Kenyon A. 2015b. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family. Part Fibre Toxicol. 13(1):1–22. doi: 10.1186/s12989-016-0145-5.
  • Salmaninejad A, Kangari P, Shakoori A. 2017. Oxidative stress: development and progression of breast cancer. Tehran Univ Med J TUMS Publ. 75(1):1–9.
  • Samimi S, Maghsoudnia N, Baradaran-Eftekhari R, Dorkoosh F. 2019 Lipid-Based Nanoparticles for Drug Delivery Systems. In: Mohapatra, Shyam S, Ranjan, S, Dasgupta, N, Mishra, R, Thomas, S, editors. Characterization and Biology of Nanomaterials for Drug Delivery. 1st ed. Tehran, Iran: Elsevier. pp. 47–76. doi:10.1016/B978-0-12-814031-4.00003-9.
  • Shakeri Manesh S, Sangsuwan T, Pour Khavari A, Fotouhi A, Emami SN, Haghdoost S. 2017. MTH1, an 8-oxo-2′-deoxyguanosine triphosphatase, and MYH, a DNA glycosylase, cooperate to inhibit mutations induced by chronic exposure to oxidative stress of ionising radiation. Mutagenesis. 32(3):389–396. doi: 10.1093/mutage/gex003.
  • Simone PD, Pavlov YI, Borgstahl GE. 2013. ITPA (inosine triphosphate pyrophosphatase): from surveillance of nucleotide pools to human disease and pharmacogenetics. Mutat Res Rev Mutat Res 753. 753(2):131–146. doi: 10.1016/j.mrrev.2013.08.001.
  • Vaidya FU, Chhipa AS, Sagar N, Pathak C. 2020. Oxidative stress and inflammation can fuel cancer. In: Maurya, Pawan K, and Dua, Kamal, editors. Role of oxidative stress in pathophysiology of diseases. 1st ed. Singapore: Springer; pp. 229–258. doi:10.1007/978-981-15-1568-2_14.
  • Vallabani N, Mittal S, Shukla RK, Pandey AK, Dhakate SR, Pasricha R, Dhawan A. 2011. Toxicity of graphene in normal human lung cells (BEAS-2B). J Biomed Nanotechnol. 7(1):106–107. doi: 10.1166/jbn.2011.1224.
  • Wang R, Hao W, Pan L, Boldogh I, Ba X. 2018. The roles of base excision repair enzyme OGG1 in gene expression. Cell Mol Life Sci. 75(20):3741–3750. doi: 10.1007/s00018-018-2887-8.
  • Xu P, Xu J, Liu S, Ren G, Yang Z. 2012. In vitro toxicity of nanosized copper particles in PC12 cells induced by oxidative stress. J Nanopart Res 14. 14(6):906. doi: 10.1007/s11051-012-0906-5.
  • Zarei F, Rezazadeh AM, Salehpour S, Khodakarim S, Omidi L, Tavakol E. 2017. Respiratory effects of simultaneous exposure to respirable crystalline silica dust, formaldehyde, and triethylamine of a group of foundry workers. J Res Health Sci. 17(1):e00371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.