785
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Association of antenatal and early childhood air pollution and greenspace exposures with respiratory pathogen upper airway acquisitions and respiratory health outcomes

, , , , , & show all
Received 10 Aug 2023, Accepted 20 Dec 2023, Published online: 21 Jan 2024

References

  • Aerts R, Honnay O, Van Nieuwenhuyse A. 2018. Biodiversity and human health: mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br Med Bull. 127(1):5–22. doi: 10.1093/bmb/ldy021.
  • Aguilera I, Pedersen M, Garcia-Esteban R, Ballester F, Basterrechea M, Esplugues A, Fernández-Somoano A, Lertxundi A, Tardón A, Sunyer J. 2013. Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study. Environ Health Perspect. 121(3):387–392. eng. doi:10.1289/ehp.1205281.
  • Bettiol A, Gelain E, Milanesio E, Asta F, Rusconi F. 2021. The first 1000 days of life: traffic-related air pollution and development of wheezing and asthma in childhood. A systematic review of birth cohort studies. Environ Health. 20(1):46. doi: 10.1186/s12940-021-00728-9.
  • Bowatte G, Lodge C, Lowe AJ, Erbas B, Perret J, Abramson MJ, Matheson M, Dharmage SC. 2015. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies [https: //doi.Org/10.1111/all.12561]. Allergy. 70(3):245–256. doi: 10.1111/all.12561.
  • Cavaleiro Rufo J, Paciência I, Hoffimann E, Moreira A, Barros H, Ribeiro AI. 2021. The neighbourhood natural environment is associated with asthma in children: a birth cohort study. Allergy. 76(1):348–358. eng. doi:10.1111/all.14493.
  • Conticini E, Frediani B, Caro D. 2020. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ Pollut. 261:114465. eng. doi: 10.1016/j.envpol.2020.114465.
  • Donovan GH, Landry SM, Gatziolis D. 2021. The natural environment, plant diversity, and adult asthma: a retrospective observational study using the CDC’s 500 cities project data. Health & Place. 67:102494. eng. doi: 10.1016/j.healthplace.2020.102494.
  • Gisler A, Korten I, de Hoogh K, Vienneau D, Frey U, Decrue F, Gorlanova O, Soti A, Hilty M, Latzin P. et al. 2021. Associations of air pollution and greenness with the nasal microbiota of healthy infants: a longitudinal study. Environ Res. eng. 202:111633. doi:10.1016/j.envres.2021.111633.
  • Granger CL, Embleton ND, Palmer JM, Lamb CA, Berrington JE, Stewart CJ. 2021. Maternal breastmilk, infant gut microbiome and the impact on preterm infant health. Acta Paediatr. 110(2):450–457. doi: 10.1111/apa.15534.
  • Hehua Z, Qing C, Shanyan G, Qijun W, Yuhong Z. 2017. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: a systematic review. Environ Res. 159:519–530. eng. doi: 10.1016/j.envres.2017.08.038.
  • Ito T, Okumura H, Tsukue N, Kobayashi T, Honda K, Sekizawa K. 2006. Effect of diesel exhaust particles on mRNA expression of viral and bacterial receptors in rat lung epithelial L2 cells. Toxicol Lett. 165(1):66–70. doi: 10.1016/j.toxlet.2006.01.015.
  • James P, Banay RF, Hart JE, Laden F. 2015. A review of the health benefits of greenness. Curr Epidemiol Rep. 2(2):131–142. doi: 10.1007/s40471-015-0043-7.
  • Jiang B, Yang Y, Chen L, Liu X, Wu X, Chen B, Webster C, Sullivan WC, Larsen L, Wang J, et al. 2022. Green spaces, especially nearby forest, may reduce the SARS-CoV-2 infection rate: a nationwide study in the United States. Landsc Urban Plan. 228:104583. doi: 10.1016/j.landurbplan.2022.104583.
  • Johannessen A, Xu S, Abbah AP, Janson C. 2023. Greenness exposure: beneficial but multidimensional. Breathe (Sheff). 19(2):220221. eng. doi:10.1183/20734735.0221-2022.
  • Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, et al. 2021. Air pollution and children’s health—a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med. 26(1):72. doi:10.1186/s12199-021-00995-5.
  • Klompmaker JO, Hart JE, Holland I, Sabath MB, Wu X, Laden F, Dominici F, James P. 2021. County-level exposures to greenness and associations with COVID-19 incidence and mortality in the United States. Environ Res. 199(111331):111331. eng. doi:10.1016/j.envres.2021.111331.
  • Knibbs LD, van Donkelaar A, Martin RV, Bechle MJ, Brauer M, Cohen DD, Cowie CT, Dirgawati M, Guo Y, Hanigan IC, et al. 2018. Satellite-based land-use regression for continental-scale long-term ambient PM(2.5) exposure assessment in Australia. Environ Sci Technol. 52(21):12445–12455. eng. doi: 10.1021/acs.est.8b02328.
  • Lambert KA, Bowatte G, Tham R, Lodge C, Prendergast L, Heinrich J, Abramson MJ, Dharmage SC, Erbas B. 2017. Residential greenness and allergic respiratory diseases in children and adolescents – a systematic review and meta-analysis. Environ Res. 159:212–221. doi: 10.1016/j.envres.2017.08.002.
  • Lambert SB, Ware RS, Cook AL, Maguire FA, Whiley DM, Bialasiewicz S, Mackay IM, Wang D, Sloots TP, Nissen MD, et al. 2012. Observational Research in childhood infectious diseases (ORChID): a dynamic birth cohort study: table 1. BMJ Open. 2(6):e002134. doi:10.1136/bmjopen-2012-002134.
  • Lu C, Peng W, Kuang J, Wu M, Wu H, Murithi RG, Johnson MB, Zheng X. 2021. Preconceptional and prenatal exposure to air pollution increases incidence of childhood pneumonia: a hypothesis of the (pre-)fetal origin of childhood pneumonia. Ecotoxicol Environ Saf. 210:111860. doi: 10.1016/j.ecoenv.2020.111860.
  • MacIntyre EA, Gehring U, Mölter A, Fuertes E, Klümper C, Krämer U, Quass U, Hoffmann B, Gascon M, Brunekreef B, et al. 2014. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE project. Environ Health Perspect. 122(1):107–113. doi:10.1289/ehp.1306755.
  • Madsen C, Haberg SE, Magnus MC, Aamodt G, Stigum H, London SJ, Nystad W, Nafstad P. 2017. Pregnancy exposure to air pollution and early childhood respiratory health in the Norwegian mother and child cohort study (MoBa). BMJ Open. 7(12):e015796. doi: 10.1136/bmjopen-2016-015796.
  • Meadow JF, Altrichter AE, Kembel SW, Kline J, Mhuireach G, Moriyama M, Northcutt D, O’Connor TK, Womack AM, Brown GZ, et al. 2014. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source [https: //doi.Org/10.1111/ina.12047]. Indoor Air. 24(1):41–48. doi:10.1111/ina.12047.
  • Nordeide Kuiper I, Svanes C, Markevych I, Accordini S, Bertelsen RJ, Bråbäck L, Heile Christensen J, Forsberg B, Halvorsen T, Heinrich J. et al. 2021. Lifelong exposure to air pollution and greenness in relation to asthma, rhinitis and lung function in adulthood. Environ Int. eng. 146:106219. doi:10.1016/j.envint.2020.106219.
  • Palmu AA, Ware RS, Lambert SB, Sarna M, Bialasiewicz S, Seib KL, Atack JM, Nissen MD, Grimwood K. 2019. Nasal swab bacteriology by PCR during the first 24-months of life: a prospective birth cohort study. Pediatr Pulmonol. 54(3):289–296. doi: 10.1002/ppul.24231.
  • Pan J, Bardhan R, Jin Y. 2021. Spatial distributive effects of public green space and COVID-19 infection in London. Urban For Urban Green. 62:127182. doi: 10.1016/j.ufug.2021.127182.
  • Parmes E, Pesce G, Sabel CE, Baldacci S, Bono R, Brescianini S, D’Ippolito C, Hanke W, Horvat M, Liedes H, et al. 2020. Influence of residential land cover on childhood allergic and respiratory symptoms and diseases: evidence from 9 European cohorts. Environ Res. 183:108953. doi: 10.1016/j.envres.2019.108953.
  • Rice MB, Rifas-Shiman SL, Oken E, Gillman MW, Ljungman PL, Litonjua AA, Schwartz J, Coull BA, Zanobetti A, Koutrakis P, et al. 2015. Exposure to traffic and early life respiratory infection: a cohort study [https: //doi.Org/10.1002/ppul.23029]. Pediatr Pulmonol. 50(3):252–259. doi:10.1002/ppul.23029.
  • Rodrigues AF, Santos AM, Ferreira AM, Marino R, Barreira ME, Cabeda JM. 2019. Year-long rhinovirus infection is influenced by atmospheric conditions, outdoor air virus presence, and immune system-related genetic polymorphisms. Food Environ Virol. 11(4):340–349. eng. doi:10.1007/s12560-019-09397-x.
  • Salam Muhammad T, Li Y-F, Langholz B, Gilliland Frank D. 2004. Early-life environmental risk factors for asthma: findings from the Children’s health study. Environ Health Perspect. 112(6):760–765. doi: 10.1289/ehp.6662.
  • Sarna M, Ware RS, Lambert SB, Sloots TP, Nissen MD, Grimwood K. 2018. Timing of first respiratory virus detections in infants: a community-based birth cohort study. J Infect Dis. 217(3):418–427. doi: 10.1093/infdis/jix599.
  • Servadio JL, Lawal AS, Davis T, Bates J, Russell AG, Ramaswami A, Convertino M, Botchwey N. 2019. Demographic Inequities in Health Outcomes and air pollution exposure in the Atlanta Area and its relationship to urban infrastructure. J Urban Health. 96(2):219–234. eng. doi:10.1007/s11524-018-0318-7.
  • Sly PD, Cormier SA, Lomnicki S, Harding JN, Grimwood K. 2019. Environmentally persistent free radicals: linking air pollution and poor respiratory health? Am J Respir Crit Care Med. 200(8):1062–1063. doi: 10.1164/rccm.201903-0675LE.
  • Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, Holt BJ, Hales BJ, Walker ML, Hollams E, et al. 2015. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host & Microbe. 17(5):704–715. doi:10.1016/j.chom.2015.03.008.
  • Tischer C, Gascon M, Fernández-Somoano A, Tardón A, Lertxundi Materola A, Ibarluzea J, Ferrero A, Estarlich M, Cirach M, Vrijheid M, et al. 2017. Urban green and grey space in relation to respiratory health in children. Eur Respir J. 49(6):1502112. doi:10.1183/13993003.02112-2015.
  • Vanker A, Nduru PM, Barnett W, Dube FS, Sly PD, Gie RP, Nicol MP, Zar HJ. 2019. Indoor air pollution and tobacco smoke exposure: impact on nasopharyngeal bacterial carriage in mothers and infants in an African birth cohort study. ERJ Open Research. 5(1):00052–02018. doi: 10.1183/23120541.00052-2018.
  • Vempilly J, Abejie B, Diep V, Gushiken M, Rawat M, Tyner TR. 2013. The synergetic effect of ambient PM2.5 exposure and rhinovirus infection in airway dysfunction in asthma: a pilot observational study from the central valley of california. Exp Lung Res. 39(10):434–440. doi: 10.3109/01902148.2013.840693.
  • Wrotek A, Badyda A, Czechowski PO, Owczarek T, Dąbrowiecki P, Jackowska T. 2021. Air pollutants’ concentrations are associated with increased number of RSV hospitalizations in polish children. J Clin Med. 10(15):3224. eng. doi:10.3390/jcm10153224.
  • Zoch-Lesniak B, Ware RS, Grimwood K, Lambert SB. 2020. The respiratory specimen collection trial (ReSpect): a randomized controlled trial to compare quality and timeliness of respiratory sample collection in the home by parents and healthcare workers from children aged <2 years. J Pediatric Infect Dis Soc. 9(2):134–141. doi: 10.1093/jpids/piy136.