50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure evolution of Incoloy 800H in industrial environment and correlation with creep mechanisms from literature

ORCID Icon, , , , , , , & show all
Pages 311-321 | Received 27 Mar 2023, Accepted 07 Apr 2024, Published online: 29 Apr 2024

References

  • Spindler M. ECCC data sheet Steel. 1998; X8NiCrAlTi 32-21 (1.4959, Alloy 800H), 95–97.
  • Hammond JP, Ratcliff LT, Brinkman CR, et al. Dynamic and static measurements of elastic constants with data on 2 1/4 Cr-1 Mo steel, types 304 and 316 stainless steels, and alloy 800H. Oak Ridge, Tennessee, U.S: Oak Ridge Laboratory; 1979.
  • Abd El-Azim ME. Correlation between tensile and creep data in alloy 800H at 850°C. J Nucl Mater. 1996;231(1–2):146–150. doi: 10.1016/0022-3115(96)00352-2
  • Wilson DJ, Freeman JW, Clarence SA. Creep-rupture properties of sandvik sanicro 31 tubing. Michigan, U.S: The University of Michigan, Ann Arbor; 1968.
  • Booker MK. An analytical representation of the creep and creep-rupture behavior of alloy 800H. Oak Ridge, Tennessee, U.S: Oak Ridge Laboratory; 1978.
  • Booker MK, Sikka VK. A study of tertiary creep instability in several elevated-temperature structural materials. Oak Ridge, Tennessee, U.S: Oak Ridge Laboratory; 1978.
  • Penkalla H-J, Nickel H, Schubert F. Multiaxial creep of tubes from incoloy 800 H and inconel 617 under static and cyclic loading conditions. Nucl Eng Des. 1989;112:279–289. doi: 10.1016/0029-5493(89)90163-5
  • Mu Z, Bothe K, Gerold V. Damage mechanisms in alloy 800H under creep-fatigue conditions. Fat Frac Eng Mat Struct. 1994;17(5):523–537. doi: 10.1111/j.1460-2695.1994.tb00252.x
  • Soo P, Sabatini RL, Epel LG, et al. Hare, high cycle fatigue behavior of Incoloy 800H in a simulated high-temperature gas-cooled reactor helium environment. 1980; doi: 10.2172/5043389.
  • Page RA, Hack JE, Brown RD. Behavior of Fe-Ni-Cr alloys in a complex multioxidant environment under conditions of dynamic straining. MTA. 1984;15(1):11–22. doi: 10.1007/BF02644382
  • Swindeman RW, Swindeman MJ, Ren W. Can coverage of alloy 800h in asme section III subsection NH be extended to 850°C? In: Volume 6: materials and Fabrication. ASMEDC, Vancouver, BC, Canada: 2006 pp. 521–528. doi: 10.1115/PVP2006-ICPVT-11-93333
  • Swindeman RW, Swindeman MJ, Roberts BW, et al. Verification of Allowable Stresses in ASME Section III Subsection NH for Alloy 800 H, Part 2: Creep. LLC, New York: ASME Standards Technology; 2008. STP-NU-020.
  • Ren W, Swindeman R. Status of alloy 800 H in considerations for the Gen IV nuclear energy systems. J Pressure Vessel Technol. 2014;136:054001. doi: 10.1115/1.4025093
  • Kolluri M, ten Pierick P, Bakker T. Characterization of high temperature tensile and creep–fatigue properties of alloy 800H for intermediate heat exchanger components of (V)HTRs. Nucl Eng Des. 2015;284:38–49. doi: 10.1016/j.nucengdes.2014.12.017
  • Gardiner B, High temperature creep performance of alloy 800H, PhD. thesis, University of Canterbury, 2014.
  • Monteiro SN. High-temperature failure by perforation of incoloy 800h pigtails in reformer furnaces. In: Esaklul KA, editor. Handbook of case histories in failure analysis, ASM International; 1992. p. 0. doi: 10.31399/asm.fach.v01.c9001108
  • Dehmolaei R, Shamanian M, Kermanpur A. Microstructural changes and mechanical properties of Incoloy 800 after 15 years service. Mater Charact. 2009;60:246–250. doi: 10.1016/j.matchar.2008.08.012
  • Spyrou LA, Sarafoglou PI, Aravas N, et al. Evaluation of creep damage of lc 800HT pigtails in a refinery steam reformer unit. Eng Fail Anal. 2014;45:456–469. doi: 10.1016/j.engfailanal.2014.07.017
  • Guttmann V, Bürgel R. Creep–structural relationship in steel Alloy 800H at 900–1000°C. Metal Sci. 1983;17:549–555. doi: 10.1179/030634583790420475
  • Tachibana K, Nishi H, Eto M, et al. Creep characteristics of Alloy 800H. Japan; 1998. http://inis.iaea.org/search/search.aspx?orig_q=RN:29043501
  • Degischer HP, Aigner H, Lahodny H, Spiradek K. Qualification of stationary creep of the carbide precipitating alloy 800H. In: High temperature alloys. Dordrecht: Springer; 1987. pp. 487–498.
  • Spiradek K, Degischer HP, Lahodny H. Correlation between microstructure and the creep behaviour at high temperature of alloy 800 H. In: Materials science, international atomic energy agency (IAEA). Vienna, Austria: Specialists meeting on high-temperature metallic materials for gas-cooled reactors. 1989. pp. 54–65. https://inis.iaea.org/search/search.aspx?orig_q=RN:21068264
  • Young AM, Kral MV, Bishop CM. Effects of aging and nitridation on microstructure and mechanical properties of austenitic stainless steel. J Mater Sci. 2023;58:10716–10735. doi: 10.1007/s10853-023-08659-1
  • Klueh RL, Swindeman RW. Mechanical properties of a modified 2 1/4 Cr-1 Mo steel for pressure vessel applications. [V-Ti-B-modified]. US: Oak Ridge National Laboratory; 1983. doi: 10.2172/5560054
  • Sikka VK, McCoy HE, Booker MK, et al. Heat-to-heat variation in creep properties of types 304 and 316 stainless steels. J Pressure Vessel Technol. 1975;97(4):243–251. doi: 10.1115/1.3454303
  • Singh AK, Louat N, Sadananda K. Dislocation network formation and coherency loss around gamma- prime precipitates in a nickel- base superalloy. MTA. 1988;19(12):2965–2973. doi: 10.1007/BF02647723
  • Gabb TP, Draper SL, Hull DR, et al. The role of interfacial dislocation networks in high temperature creep of superalloys. Mater Sci Eng A. 1989;118:59–69. doi: 10.1016/0921-5093(89)90058-0
  • Zhang JX, Wang JC, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta Materialia. 2005;53:4623–4633. doi: 10.1016/j.actamat.2005.06.013
  • Carroll LJ, Feng Q, Pollock TM. Interfacial dislocation networks and creep in directional coarsened ru-containing nickel-base single-crystal superalloys. Metall Mat Trans A. 2008;39:1290–1307. doi: 10.1007/s11661-008-9520-7
  • Chen K, Dong J, Yao Z, et al. Creep performance and damage mechanism for allvac 718Plus superalloy. Mater Sci Eng A. 2018;738:308–322. doi: 10.1016/j.msea.2018.09.088
  • Benz JK, Carroll LJ, Wright JK, et al. Threshold stress creep behavior of alloy 617 at intermediate temperatures. Metall Mat Trans A. 2014;45(7):3010–3022. doi: 10.1007/s11661-014-2244-y
  • Bagui S, Mandal M, Sahoo BK, et al. Investigation of non-classical creep behavior of Inconel 617 alloy at 700 °C and 800 °C through interrupted tests and microstructural characterizations. Mater Sci Eng A 2022;832: 142474 doi: 10.1016/j.msea.2021.142474.
  • Wilshire B, Battenbough AJ. Creep and creep fracture of polycrystalline copper. Mater Sci Eng A. 2007;443:156–166. doi: 10.1016/j.msea.2006.08.094
  • Hayhurst DR, Dimmer PR, Chernuka MW. Estimates of the creep rupture lifetime of structures using the finite element method. J Mech Phys Solids. 1975;23:335–350. doi: 10.1016/0022-5096(75)90032-0
  • Fiala J, Kloc L, Čadek J. Creep in metals at intermediate temperatures and low stresses: a review. Mater Sci Eng A. 1991;137:163–172. doi: 10.1016/0921-5093(91)90331-G
  • Dubiez-Le Goff S, Comportement et endommagement d’un superalliage élaboré par compression isostatique à chaud, PhD. thesis, École Nationale Supérieure des Mines de Paris, 2003.
  • Röesler J, Harders H, Beaker M. Creep. In: Mechanical behaviour of engineering materials. Berlin, Heidelberg: Springer; 2007. doi: 10.1007/978-3-540-73448-2_11
  • Oikawa H, Iijiyima Y. Diffusion behaviour of creep-resistant steels. In: Abe F, Kern TU, Viswanathan R, editors. Creep-resistant steels, woodhead publishing limited. Cambridge, England: Woodhead Publishing Series in Metals and Surface Engineering: 2008. pp. 504–518.
  • Maruyama K. Fracture mechanism map and fundamental aspects of creep fracture. In: Abe F, Kern TU, Viswanathan R, editors. Creep-resistant steels, woodhead publishing limited. Cambridge, England: Woodhead Publishing Series in Metals and Surface Engineering: 2008. pp. 350–364.
  • Swinburne TD. Stochastic dynamics of crystal defects. Switzerland: Springer International Publishing; 2015.
  • Zhuang Z, Liu Z, Cui Y. Dislocation mechanism-based crystal plasticity. London, England: Elsevier; 2019.
  • Wright JK, Carroll LJ, Cabet C, et al. Characterization of elevated temperature properties of heat exchanger and steam generator alloys. Nucl Eng Des. 2012;251:252–260. doi: 10.1016/j.nucengdes.2011.10.034
  • Roy AK, Virupaksha V. Performance of alloy 800H for high-temperature heat exchanger applications. Mater Sci Eng. 2007;452-453:665–672. doi: 10.1016/j.msea.2006.11.082 A 452–453.
  • Bhanu Sankara Rao K, Schiffers H, Schuster H, et al. Temperature and strain-rate effects on low-cycle fatigue behavior of alloy 800H. MMTA. 1996;27(2):255–267. doi: 10.1007/BF02648404
  • Cao Y, Zhang C, Zhang C, et al. Influence of dynamic strain aging on the mechanical properties and microstructural evolution for Alloy 800H during hot deformation. Mater Sci Eng A. 2018;724:37–44. doi: 10.1016/j.msea.2018.03.074
  • Rao KBS, Schuster H, Halford GR. Mechanisms of high-temperature fatigue failure in alloy 800H. MMTA. 1996;27(4):851–861. doi: 10.1007/BF02649752
  • Huda Z. Creep behavior of materials. In: Mechanical behavior of materials. Cham: Springer International Publishing; 2022. pp. 253–265. doi: 10.1007/978-3-030-84927-6_14
  • Young AM, Kral MV, Bishop CM. Carbide formation accompanying internal nitridation of austenitic stainless steel. Mater Charact. 2022;184:111662. doi: 10.1016/j.matchar.2021.111662
  • Young AM, Kral MV, Bishop CM. Time–temperature–precipitation relations for nitrides and evaluation of internal oxidation theory for nitridation of austenitic stainless steel. Metall Mater Trans A. 2020;51:4456–4470. doi: 10.1007/s11661-020-05868-0
  • Beardsley AL, Bishop CM, Kral MV. A deformation mechanism map for incoloy 800h optimized using the genetic algorithm. Metall Mat Trans A. 2019;50:4098–4110. doi: 10.1007/s11661-019-05350-6
  • Rojas-Ulloa C, Morch H, Tuninetti V, et al. Implementation of a modified graham-walles viscosity function within a chaboche viscoplastic constitutive model. CAMWA. 2024;155:165–175. doi: 10.1016/j.camwa.2023.12.002
  • Drabble D, The effect of grain boundary engineering on the properties of incoloy 800H/HT, Thesis, University of Canterbury, 2010. http://hdl.handle.net/10092/6194.
  • Standard test methods for determining average grain size, ASTM international. E112-13, 2021.
  • Bsat S, Huang X. Corrosion behaviour of Alloy 800H in low density superheated steam. ISIJ Inter. 2016;56:1067–1075. doi: 10.2355/isijinternational.ISIJINT-2015-651
  • Krupp U, Christ H-J. Selective oxidation and internal nitridation during high-temperature exposure of single-crystalline nickel-base superalloys. Metall Mater Trans A. 2000;31:47–56. doi: 10.1007/s11661-000-0051-0
  • University of Liège, Lagamine finite element code. (n.d.). http://www.lagamine.uliege.be/dokuwiki/doku.php/start
  • Welker M, Rahmel A, Schütze M. Oxidation and nitridation of alloy 800H at a growing creep crack and for unstressed samples. Metall Trans A. 1989;20:1541–1551. doi: 10.1007/BF02665510
  • Sawada K, Hatakeyama T, Sekido K, et al. Microstructural changes and creep-strength degradation in 18Cr-9Ni-3Cu-Nb-N steel. Mater Charact. 2021;178:111286. doi: 10.1016/j.matchar.2021.111286
  • Hatakeyama T, Sawada K, Hara T, et al. Three-dimensional analysis of the precipitation behavior of 18Cr–9Ni–3Cu–Nb–N steel at 973 K. Scripta Materialia. 2021;200:113904. doi: 10.1016/j.scriptamat.2021.113904
  • Hatakeyama T, Sawada K, Sekido K, et al. Influence of dynamic microstructural changes on the complex creep deformation behavior of 25Cr–20Ni–Nb–N steel at 873 K. Mater Sci Eng A. 2021;814:141270. doi: 10.1016/j.msea.2021.141270
  • Hatakeyama T, Sawada K, Sekido K, et al. Microstructural factors of the complex creep rate change in 18Cr–9Ni–3Cu–Nb–N steel. Mater Sci Eng A 2022;831. 142225 doi: 10.1016/j.msea.2021.142225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.