48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation on creep behaviours of centrifugal casting 27Cr44Ni5W3Al+MA alloy used as ethylene pyrolysis furnace tube at 1050°C

ORCID Icon, , , , &
Received 17 Jan 2024, Accepted 08 Apr 2024, Published online: 15 Apr 2024

References

  • Zheng XW. Status of using of ethylene pyrolysis furnace tubes in China. Pressure Vessel Technol. 2013;30(5):45–52.
  • Chen T, Chen XD, Lv YR, et al. Status of sampling testing of ethylene pyrolysis furnace tubes in China. Pressure Vessel Technol. 2014;31(3):45–55.
  • Awancy HMT. Degradation of mechanical strength of pyrolysis furnace tubes by high-temperature carburization in a petrochemical plant. Eng Fail Anal. 2009;16(7):2171–2178. doi: 10.1016/j.engfailanal.2009.02.009
  • Chen T, Chen XD, Ye J. Sulfur effects on high-temperature creep and fracture behavior of 25Cr35Ni–nb alloys. J Pres Ves Technol. 2014;136(4):041407–1–7. doi: 10.1115/1.4026597
  • Sustaita-Torres A, Haro-Rodriguea S, Guerrero-Mata MP, et al. Aging of a cast 35Cr–45Ni heat resistant alloy. Mater Chem Phys. 2012;133(2–3):1018–1023. doi: 10.1016/j.matchemphys.2012.02.010
  • Wang HX. Progress in inhibiting coking in ethylene pyrolysis furnace and transfer line exchanger. Petrol Tech. 2012;41(7):844–852.
  • Zhang Y. Development of olefin technology. Beijing: Sinopec Press; 2008. p. 29.
  • Jakobi D, Karduck P, Richthofen AF. The high-temperature corrosion resistance of spun-cast materials for steam-cracker furnaces - a comparative study of alumina- and chromia-forming alloys. NACE 2013 Corrosion Conference & Expo, March 17-21, 2013, Orlando, Florida, USA, 2013, No. 2287: 1–20.
  • Jakobi D, Karduck P. Behavior of high-temperature tube materials in sulfur-containing steam-pyrolysis conditions. NACE 2018 Corrosion Conference & Expo, April 15–19, 2018, Phoenix, Arizona, USA, 2018, No. 11191: 1–17.
  • Wu ZG, Chen T, Liu CJ, et al. Study on simulated carburizing behavior of domestic new type of ethylene cracking furnace tube at 1150°C. Pressure Vessel Technol. 2023;40(1):10–20.
  • Peterson A, Baker I. Microstructural evolution of Fe-20Cr-30Ni-2Nb-5Al AFA steel during creep at 760 ℃. Mater Sci Eng A. 2021;140602:1–12. doi: 10.1016/j.msea.2020.140602
  • Reed RC, Cox DC, Rae CMF. Kinetics of rafting in a single crystal superalloy: effects of residual micro segregation. Mater Sci Technol. 2007;23(8):893–902. doi: 10.1179/174328407X192723
  • Staroselsky A, Cassenti B. Mechanisms for tertiary creep of single crystal superalloy. Mech Time-Dependent Mater. 2008;12(4):275–298. doi: 10.1007/s11043-008-9065-6
  • Zhou HJ, Li LF, Antonov S. Sub/micro-structural evolution of a Co-Al-W-Ta-Ti single crystal superalloy during creep at 900 ℃ and 420 MPa. Mater Sci Eng A. 2020;772:138791. doi: 10.1016/j.msea.2019.138791
  • Xue F, Zhou HJ, Shi QY. Creep behavior in a γ' strengthened Co-Al-W-Ta-Ti single-crystal alloy at 1000 ℃. Scr Mater. 2015;97:37–40. doi: 10.1016/j.scriptamat.2014.10.015
  • Chen T, Chen XD, Lian XM, et al. Effect of Ti additions on microstructure and mechanical properties of centrifugally cast 25Cr-35Ni-Nb alloy. Proceedings of the ASME 2016 Pressure Vessels & Piping Division Conference, July 17–21, 2016, Vancouver, BC, Canada.
  • Chen T, Chen XD, Liu CJ, et al. Failure analyses of centrifugal casting ethylene pyrolysis furnace tubes from microporosity defects. Eng Fail Anal. 2019;102:318–326. doi: 10.1016/j.engfailanal.2019.04.059
  • Chen T, Chen XD, Liu CJ, et al. Classification of primary carbides in ethylene pyrolysis furnace tubes and the effects on high temperature rupture performance. J Mech Eng. 2018;54(8):109–116. doi: 10.3901/JME.2018.08.109
  • Facco A, Couvrat M, Magne D, et al. Microstructure influence on creep properties of heat-resistant austenitic alloys with high aluminum content. Mater Sci Eng A. 2020;783:139276. doi: 10.1016/j.msea.2020.139276
  • Armaki HG, Chen RP, Maruyama K, et al. Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 Pct Cr ferritic steels. Metall Mater Trans A. 2011;42(10):3084–3094. doi: 10.1007/s11661-011-0726-8
  • Prat O, Garcia J, Rojas D, et al. Investigations on coarsening of MX and M23C6 precipitates in 12% Cr creep resistant steels assisted by computational thermodynamics. Mater Sci Eng A. 2010;527(21–22):5976–5983. doi: 10.1016/j.msea.2010.05.084
  • Horiuchi MIT, Abe F. Improved utilization of added B in 9Cr heat-resistant steels containing W. ISIJ Inter. 2002;42(Suppl):67–71. doi: 10.2355/isijinternational.42.Suppl_S67
  • Blum W, Eisenlohr P, Breutinger F. Understanding creep - a review. Metall Mater Trans A. 2002;33(2):291–303. doi: 10.1007/s11661-002-0090-9
  • Abe F, Nakazawa S. The effect of tungsten on creep-behavior of tempered martensitic 9Cr steels. Metall Mater Trans A. 1992;23(11):3025–3034. doi: 10.1007/BF02646120
  • Asteman H, Hartnagel W, Jakobi D. The influence of Al content on the high temperature oxidation properties of state-of-the-art cast Ni-base alloys. Oxid Met. 2013;80(1–2):3–12. doi: 10.1007/s11085-013-9381-3
  • Geneva T, Hu B, Harder R, et al. Precipitation kinetics during aging of an alumina-forming austenitic stainless steel. Mater Sci Eng A. 2016;667:147–155. doi: 10.1016/j.msea.2016.04.081
  • Yamamoto Y, Brady MP, Santella ML, et al. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels. Metall Mater Trans A. 2011;42(A):922–931. doi: 10.1007/s11661-010-0295-2
  • Zhao B, Fan J, Chen Z, et al. Evolution of precipitates in a Cu-containing alumina-forming austenitic steel after short-term mechanical tests. Mater Charact. 2017;125:37–45. doi: 10.1016/j.matchar.2017.01.023
  • Yamamoto Y, Muralidharan G, Brady MP. Development of L12-ordered Ni3(Al,Ti)-strengthened alumina-forming austenitic stainless steel alloys. Scripta Materialia. 2023;69(11–12):816–819. doi: 10.1016/j.scriptamat.2013.09.005
  • Sudbrack CK, Ziebell TD, Noebe RD, et al. Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy. Acta Materialia. 2008;56(3):448–463. doi: 10.1016/j.actamat.2007.09.042
  • GB/T 2039. Metallic materials-Uniaxial creep testing method in tension. Beijing: Standards Press of China. S. 2012.
  • ISO 204. Metallic materials Uniaxial creep testing in tension method of test. Switzerland: International Standards Organization. S. 2009.
  • Zhang YH, Feng Q. Effects of W on creep behaviors of novel Nb-bearing austenitic heat-resistant cast steels at 1000 ℃. Acta Metall Sin. 2017;53(9):1025–1037.
  • Hua PT, Chen SB, Zhang WH, et al. Effect of γ′ precipitation on lamellar M23C6 carbide precipitation in GH 4145 alloy. Aeronaut Manuf Technol. 2020;63(3):92–96.
  • Lian XM, Chen XD, Lv YR, et al. Influence of high temperature aging on the carbides of 25Cr35Ni-Nb alloys. Pressure Vessel Technol. 2011;28(8):1–5.
  • Yuan C, Guo JT, Yang HC, et al. High temperature creep of a directionally solidified Ni-base superalloy. Acta Metall Sin. 1998;34(8):858–863.
  • Chen YX, Yan W, Hu P, et al. CDM modeling of creep behavior of T/P91 steel under high stresses. Acta Metall Sin. 2011;47(11):1372–1377.
  • Dimmler G, Weinert P, Cerjak H. Extrapolation of short-term creep ruptures data-The potential risk of over-estimation. Int J Pres Ves Pip. 2008;85(1):55–62. doi: 10.1016/j.ijpvp.2007.06.003
  • Liang S, Sun XJ, Liu ZX, et al. High temperature creep behavior and fracture characteristics of a 2 % Ru Nickel based single crystal superalloy. Foundry. 2019;68(9):971–976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.