39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterisation of the creep cavitation process on grain boundaries in a polycrystalline nickel-base alloy 247

, , , &
Pages 322-333 | Received 09 Mar 2023, Accepted 14 Apr 2024, Published online: 23 Apr 2024

References

  • Maier HJ, Niendorf T, Bürgel R. Handbuch Hochtemperatur-Werkstofftechnik. Wiesbaden: Springer Vieweg; 2019. doi:10.1007/978-3-658-25314-1
  • Boismier DA, Sehitoglu H. Thermo-mechanical fatigue of mar-M247: part 1—experiments. J Eng Mater Technol. 1990;112(1):68–79. doi: 10.1115/1.2903189
  • Rösler J, Bäker M, Harders H. Mechanisches Verhalten der Werkstoffe. Wiesbaden: Springer Vieweg; 2019. doi:10.1007/978-3-8348-2241-3
  • Reed RC. The superalloys: fundamentals and applications. Cambridge: Cambridge University Press; 2006. doi:10.1017/CBO9780511541285
  • Sajjadi SA, Nategh S. A high temperature deformation mechanism map for the high-performance Ni-base superalloy GTD-111. Mater Sci Eng A. 2001;307(1):158–164. doi: 10.1016/S0921-5093(00)01822-0
  • Frost HJ, Ashby MF. Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Oxford/New York: Pergamon Press; 1982.
  • Carey JA, Sargent PM, Jones DRH. A deformation mechanism map for IN738LC superalloy. J Mater Sci Lett. 1990;9(5):572–575. doi: 10.1007/BF00725881
  • Jordan O, Beck T. Short-time creep deformation of the coarse-grained nickel-base alloy 247 and its implications on the high-cycle fatigue behavior. J Eng Gas Turbine Power. 2023 May;145(5). doi: 10.1115/1.4056309
  • Thomas B, Kirtan P, Gordon AP, et al. “Life prediction modeling of combined high-cycle fatigue and creep.” ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Vol. 10B: Structures and Dynamics. London, England, 2020. ASME. V10BT27A008.
  • Šmíd M, Horník V, Kunz L, et al. High cycle fatigue data transferability of MAR-M 247 superalloy from separately cast specimens to real gas turbine blade. Metals. 2020;10(11):1460. doi: 10.3390/met10111460
  • Kassner ME, Hayes TA. Creep cavitation in metals. Progress Lipid Res. 2003;42(5):423–438. doi: 10.1016/s0163-7827(03)00025-0
  • Vöse M, Fedelich B, Owen J. A simplified model for creep induced grain boundary cavitation validated by multiple cavity growth simulations. Comput Mater Sci. 2012;58:201–213. doi: 10.1016/j.commatsci.2012.01.033
  • Hull D, Rimmer DE. The growth of grain-boundary voids under stress. Philos Mag. 1959;4(42):673–687. doi: 10.1080/14786435908243264
  • Rice JR. Constraints on the diffusive cavitation of isolated grain boundary facets in creeping polycrystals. Acta Metall. 1981;29(4):675–681. doi: 10.1016/0001-6160(81)90150-4
  • van der Giessen E, Tvergaard V. Micromechanics of intergranular creep failure under cyclic loading. Acta Materialia. 1996;44(7):2697–2710. doi: 10.1016/1359-6454(95)00399-1
  • Onck P, van der Giessen Erik. Microstructurally-based modelling of intergranular creep fracture using grain elements. Mech Mater. 1997;26(2):109–126. doi: 10.1016/S0167-6636(97)00020-3
  • Ahmadi MR, Sonderegger B, Yadav SD, et al. Modelling and simulation of diffusion driven pore formation in martensitic steels during creep. Mater Sci Eng A. 2018;712:466–477. doi: 10.1016/j.msea.2017.12.010
  • Ogata T, Sakai T, Yaguchi M. Modelling of creep damage in high temperature component life assessment.“Materials at high temperatures. Mater High Temp. 2011;28(2):147–154. doi: 10.3184/096034011X13068649551657
  • Westwood C, Pan J, Crocombe AD. Nucleation, growth and coalescence of multiple cavities at a grain-boundary. Eur J Mech A Solids. 2004;23(4):579–597. doi: 10.1016/j.euromechsol.2004.02.001
  • Fedelich B, Owen J. Creep damage by multiple cavity growth controlled by grain boundary diffusion. Proceedings of the 12th International Conference on Fracture (ICF12). Ottawa, Canada. 2009.
  • Dyson BF. Continuous cavity nucleation and creep Fracture. Scr Metall. 1983;17(1):31–37. doi: 10.1016/0036-9748(83)90065-0
  • Needham NG, Gladman T. Nucleation and growth of creep cavities in a type 347 steel. Metal Sci. 1980;14(2):64–72. doi: 10.1179/030634580790426300
  • Riedel H. Fracture at high temperature. Berlin, Heidelberg: Springer-Verlag; 1987.
  • Chen T-F, Tiwari PT, Iijima Y, et al. Volume and grain boundary diffusion of chromium in Ni-base Ni-cr-fe alloys. Materials Transactions - MATER TRANS. 2003;44(1):40–46. doi: 10.2320/matertrans.44.40
  • Zulina NP, Bolberova EV, Razumovskii IM. Nickel self-diffusion along grain boundaries in Ni3Al- base intermetallic alloys. Defect Diffus Forum. 1997;143:1453–1456. doi: 10.4028/www.scientific.net/DDF.143-147.1453
  • Pelleg J. Diffusion in the iron group L12 and B2 intermetallic compounds. Cham: Springer International Publishing; 2017.
  • MacEwan JR, MacEwan JU, Yaffe L. Diffusion of Ni63 in iron, cobalt, nickel and two iron–nickel alloys. Can J Chem. 1959;37(10):1629–1636. doi: 10.1139/v59-237
  • Nguyen TD, Mäde L, Kulawinski D. “Simulation and validation of creep damage on grain boundary of polycrystalline Alloy 247.” Proceedings of the ASME Turbo Expo 2022 Rotterdam, The Netherlands, 2022. American Society of Mechanical Engineers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.