128
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The self-bias in working memory: the favorability of self-referential stimuli in resource allocation

ORCID Icon & ORCID Icon
Received 01 Jun 2023, Accepted 02 Apr 2024, Published online: 15 Apr 2024

References

  • Alexopoulos, T., Muller, D., Ric, F., & Marendaz, C. (2012). I, me, mine: Automatic attentional capture by self-related stimuli. European Journal of Social Psychology, 42(6), 770–779. https://doi.org/10.1002/ejsp.1882
  • Allen, R. J., & Ueno, T. (2018). Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference. Attention, Perception, & Psychophysics, 80(7), 1731–1743. https://doi.org/10.3758/s13414-018-1543-6
  • Atkinson, A. L., Oberauer, K., Allen, R. J., & Souza, A. S. (2022). Why does the probe value effect emerge in working memory? Examining the biased attentional refreshing account. Psychonomic Bulletin & Review, 29(3), 891–900. https://doi.org/10.3758/s13423-022-02056-6
  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. https://doi.org/10.1038/nrn1201
  • Bays, P. M. (2015). Spikes not slots: Noise in neural populations limits working memory. Trends in Cognitive Sciences, 19(8), 431–438. https://doi.org/10.1016/j.tics.2015.06.004
  • Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7. https://doi.org/10.1167/9.10.7
  • Bays, P. M., Gorgoraptis, N., Wee, N., Marshall, L., & Husain, M. (2011). Temporal dynamics of encoding, storage, and reallocation of visual working memory. Journal of Vision, 11(10), 6. https://doi.org/10.1167/11.10.6
  • Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851–854. https://doi.org/10.1126/science.1158023
  • Bays, P. M., & Taylor, R. (2018). A neural model of retrospective attention in visual working memory. Cognitive Psychology, 100, 43–52. https://doi.org/10.1016/j.cogpsych.2017.12.001
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357
  • Constable, M. D., Rajsic, J., Welsh, T. N., & Pratt, J. (2019). It is not in the details: Self-related shapes are rapidly classified but their features are not better remembered. Memory & Cognition, 47(6), 1145–1157. https://doi.org/10.3758/s13421-019-00924-6
  • D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1), 115–142. https://doi.org/10.1146/annurev-psych-010814-015031
  • Fallon, S. J., Zokaei, N., & Husain, M. (2016). Causes and consequences of limitations in visual working memory. Annals of the New York Academy of Sciences, 1369(1), 40–54. https://doi.org/10.1111/nyas.12992
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
  • Golubickis, M., & Macrae, C. N. (2022). Self-prioritization reconsidered: Scrutinizing three claims. Perspectives on Psychological Science, 18(4), 876–886. https://doi.org/10.1177/17456916221131273
  • Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. Journal of Neuroscience, 31(23), 8502–8511. https://doi.org/10.1523/JNEUROSCI.0208-11.2011
  • Gözenman, F., Tanoue, R. T., Metoyer, T., & Berryhill, M. E. (2014). Invalid retro-cues can eliminate the retro-cue benefit: Evidence for a hybridized account. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1748–1754. https://doi.org/10.1037/a0037474
  • Gunseli, E., van Moorselaar, D., Meeter, M., & Olivers, C. N. L. (2015). The reliability of retro-cues determines the fate of noncued visual working memory representations. Psychonomic Bulletin & Review, 22(5), 1334–1341. https://doi.org/10.3758/s13423-014-0796-x
  • Hitch, G. J., Allen, R. J., & Baddeley, A. D. (2020). Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage. Attention, Perception, & Psychophysics, 82(1), 280–293. https://doi.org/10.3758/s13414-019-01837-x
  • Hitch, G. J., Hu, Y., Allen, R. J., & Baddeley, A. D. (2018). Competition for the focus of attention in visual working memory: Perceptual recency versus executive control. Annals of the New York Academy of Sciences, 1424(1), 64–75. https://doi.org/10.1111/nyas.13631
  • Hu, Y., Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2016). Executive control of stimulus-driven and goal-directed attention in visual working memory. Attention, Perception, & Psychophysics, 78(7), 2164–2175. https://doi.org/10.3758/s13414-016-1106-7
  • Hu, Y., Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2023). Visual working memory phenomena based on categorical tasks replicate using a continuous measure: A simple interpretation and some methodological considerations. Attention, Perception, & Psychophysics, 85(5), 1733–1745. https://doi.org/10.3758/s13414-023-02656-x
  • Hu, Y., Hitch, G. J., Baddeley, A. D., Zhang, M., & Allen, R. J. (2014). Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1665–1678. https://doi.org/10.1037/a0037163
  • Humphreys, G. W., & Sui, J. (2016). Attentional control and the self: The self-attention network (SAN). Cognitive Neuroscience, 7(1-4), 5–17. https://doi.org/10.1080/17588928.2015.1044427
  • Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2007). The mind and brain of short-term memory. Annual Review of Psychology, 59(1), 193–224. https://doi.org/10.1146/annurev.psych.59.103006.093615
  • Kesebir, S., & Oishi, S. (2010). A spontaneous self-reference effect in memory: Why some birthdays are harder to remember than others. Psychological Science, 21(10), 1525–1531. https://doi.org/10.1177/0956797610383436
  • Keyes, H., & Brady, N. (2010). Self-face recognition is characterized by “bilateral gain” and by faster, more accurate performance which persists when faces are inverted. Quarterly Journal of Experimental Psychology, 63(5), 840–847. https://doi.org/10.1080/17470211003611264
  • Liu, M., He, X., Rotsthein, P., & Sui, J. (2016). Dynamically orienting your own face facilitates the automatic attraction of attention. Cognitive Neuroscience, 7(1-4), 37–44. https://doi.org/10.1080/17588928.2015.1044428
  • Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347–356. https://doi.org/10.1038/nn.3655
  • Myers, N. E., Chekroud, S. R., Stokes, M. G., & Nobre, A. C. (2018). Benefits of flexible prioritization in working memory can arise without costs. Journal of Experimental Psychology: Human Perception and Performance, 44(3), 398–411. https://doi.org/10.1037/xhp0000449
  • Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: Beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449–461. https://doi.org/10.1016/j.tics.2017.03.010
  • Northoff, G. (2016). Is the self a higher-order or fundamental function of the brain? The “basis model of self-specificity” and its encoding by the brain’s spontaneous activity. Cognitive Neuroscience, 7(1-4), 203–222. https://doi.org/10.1080/17588928.2015.1111868
  • Pertzov, Y., Bays, P. M., Joseph, S., & Husain, M. (2013). Rapid forgetting prevented by retrospective attention cues. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1224–1231. https://doi.org/10.1037/a0030947
  • Rathbone, C. J., Conway, M. A., & Moulin, C. J. A. (2011). Remembering and imagining: The role of the self. Consciousness and Cognition, 20(4), 1175–1182. https://doi.org/10.1016/j.concog.2011.02.013
  • Ravizza, S. M., & Conn, K. M. (2022). Gotcha: Working memory prioritization from automatic attentional biases. Psychonomic Bulletin & Review, 29(2), 415–429. https://doi.org/10.3758/s13423-021-01958-1
  • Rerko, L., & Oberauer, K. (2013). Focused, unfocused, and defocused information in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1075–1096. https://doi.org/10.1037/a0031172
  • Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception, & Psychophysics, 78(7), 1839–1860. https://doi.org/10.3758/s13414-016-1108-5
  • Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(3), 479–498. https://doi.org/10.1111/1467-9868.00346
  • Sui, J., & Gu, X. (2017). Self as object: Emerging trends in self research. Trends in Neurosciences, 40(11), 643–653. https://doi.org/10.1016/j.tins.2017.09.002
  • Sui, J., He, X., & Humphreys, G. W. (2012). Perceptual effects of social salience: Evidence from self-prioritization effects on perceptual matching. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1105–1117. https://doi.org/10.1037/a0029792
  • Sui, J., & Humphreys, G. W. (2015). The integrative self: How self-reference integrates perception and memory. Trends in Cognitive Sciences, 19(12), 719–728. https://doi.org/10.1016/j.tics.2015.08.015
  • Sui, J., & Humphreys, G. W. (2017). The ubiquitous self: What the properties of self-bias tell us about the self. Annals of the New York Academy of Sciences, 1396(1), 222–235. https://doi.org/10.1111/nyas.13197
  • Sui, J., Liu, M., Mevorach, C., & Humphreys, G. W. (2013). The salient self: The left intraparietal sulcus responds to social as well as perceptual-salience after self-association. Cerebral Cortex, 25(4), 1060–1068. https://doi.org/10.1093/cercor/bht302
  • Sui, J., Sun, Y., Peng, K., & Humphreys, G. W. (2014). The automatic and the expected self: Separating self- and familiarity biases effects by manipulating stimulus probability. Attention, Perception, & Psychophysics, 76(4), 1176–1184. https://doi.org/10.3758/s13414-014-0631-5
  • Yin, S., Bi, T., Chen, A., & Egner, T. (2021). Ventromedial prefrontal cortex drives the prioritization of self-associated stimuli in working memory. The Journal of Neuroscience, 41(9), 2012–2023. https://doi.org/10.1523/JNEUROSCI.1783-20.2020
  • Yin, S., Sui, J., Chiu, Y.-C., Chen, A., & Egner, T. (2019). Automatic prioritization of self-referential stimuli in working memory. Psychological Science, 30(3), 415–423. https://doi.org/10.1177/0956797618818483
  • Zhang, Z., & Lewis-Peacock, J. A. (2022). Prioritization sharpens working memories but does not protect them from distraction. Journal of Experimental Psychology: General, 152(4), 1158–1174. https://doi.org/10.1037/xge0001309
  • Zokaei, N., Gorgoraptis, N., Bahrami, B., Bays, P. M., & Husain, M. (2011). Precision of working memory for visual motion sequences and transparent motion surfaces. Journal of Vision, 11(14), 2. https://doi.org/10.1167/11.14.2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.