52
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

New insights into culvert scour depth calculation by soft computing models using multi-model ensemble approach and uncertainty analysis

, , &
Pages 349-366 | Received 19 Jun 2023, Accepted 08 Mar 2024, Published online: 22 Mar 2024

References

  • Abdel Aal, G., Elsaiad, A., Elnikhely, E., and Zaki, E. (2019). “Minimizing of scour downstream the outlets of the box culvert.” Int. J. Civ. Eng. Technol., 10(3), 3172–3188.
  • Abdollahpour, M., Dalir, A.H., Farsadizadeh, D., and Shiri, J. (2019). “Assessing heuristic models through k-fold testing approach for estimating scour characteristics in environmental friendly structures.” ISH J. Hydraul. Eng., 25(3), 239–247. https://doi.org/10.1080/09715010.2017.1408041
  • Abida, H., and Townsend, R. (1991). “Local scour downstream of box-culvert outlets.” J. Irrig. Drain. Eng., 117(3), 425–440. https://doi.org/10.1061/(ASCE)0733-9437(1991)117:3(425)
  • Abt, S.R., Kloberdanz Randy, L., and Mendoza, C. (1984). “Unified culvert scour determination.” J. Hydraul. Eng., 110(10), 1475–1479. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1475)
  • Abt, S.R., Ruff, J.F., and Doehring, F.K. (1985). “Culvert slope effects on outlet scour.” J. Hydraul. Eng., 111(10), 1363–1367. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:10(1363)
  • Abt, S., Ruff, J., Doehring, F., and Donnell, C. (1987). “Influence of culvert shape on outlet scour.” J. Hydraul. Eng., 113(3), 393–400. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:3(393)
  • Ajami, N.K., Duan, Q., and Sorooshian, S. (2007). “An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction.” Water Resour. Res., 43(1). https://doi.org/10.1029/2005WR004745
  • Arsenault, R., Gatien, P., Renaud, B., Brissette, F., and Martel, J.L. (2015). “A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation.” J. Hydrol., 529(3), 754–767. https://doi.org/10.1016/j.jhydrol.2015.09.001
  • Asadollah, S., Sharafati, A., and Shahid, S. (2022). “Application of ensemble machine learning model in downscaling and projecting climate variables over different climate regions in Iran.” Environ. Sci. Pollut. Res. Int, 29(12), 17260–17279. https://doi.org/10.1007/s11356-021-16964-y
  • Azamathulla, H.M., and Ghani, A.A. (2010). “Genetic programming to predict river pipeline scour.” J. Pipeline Syst. Eng. Pract., 1(3), 127–132. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000060
  • Azamathulla, H.M., Guven, A., and Demir, Y.K. (2011). “Linear genetic programming to scour below submerged pipeline.” Ocean Eng., 38(8–9), 995–1000. https://doi.org/10.1016/j.oceaneng.2011.03.005
  • Azamathulla, H.M., and Haque, A. (2012). “Prediction of scour depth at culvert outlets using gene-expression programming.” Int. J. Innovative Comput. Inf. Control, 8(7B), 5045–5054.
  • Baharvand, S., Jozaghi, A., Fatahi-Alkouhi, R., Karimzadeh, S., Nasiri, R., and Lashkar-Ara, B. (2020). “Comparative study on the machine learning and regression-based approaches to predict the hydraulic jump sequent depth ratio.” Iran. J. Sci. Technol. Trans. Civ. Eng., 45(4), 2719–2732. https://doi.org/10.1007/s40996-020-00526-2
  • Bodana, D., Tiwari, N., Ranjan, S., and Ghanekar, U. (2020). “Estimation of the depth of penetration in a plunging hollow jet using artificial intelligence techniques.” Arch. Mater. Sci. Eng, 2(103), 49–61. https://doi.org/10.5604/01.3001.0014.3354
  • Bohan, J.P. (1970). “Erosion and riprap requirements at culvert and storm-drain outlets. Army engineer waterways experiment station Vicksburg miss.”
  • Brandimarte, L., D’Odorico, P., and Montanari, A. (2012). “A probabilistic approach to the analysis of contraction scour.” J. Hydraul. Res., 44(5), 654–662. https://doi.org/10.1080/00221686.2006.9521714
  • Cheng, Q., Tezcan, J., and Cheng, J. (2014). “Confidence and prediction intervals for semiparametric mixed-effect least squares support vector machine.” Pattern Recognit. Lett., 40, 88–95. https://doi.org/10.1016/j.patrec.2013.12.010
  • Chiew, Y.-M., and Lim, S.-Y. (1996). “Local Scour by a Deeply Submerged Horizontal Circular Jet.” J. Hydraul. Eng., 122(9), 529–532. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:9(529)
  • Chou, J.S., and Pham, A.D. (2013). “Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength.” Constr. Build. Mater., 49, 554–563. https://doi.org/10.1016/j.conbuildmat.2013.08.078
  • Day, R., Liriano, S., and White, W. (2001). Effect of tailwater depth and model scale on scour at culvert outlets, Proceedings of the Institution of Civil Engineers-Water and Maritime Engineering. Thomas Telford Ltd, 189–198. https://doi.org/10.1680/wame.2001.148.3.189
  • De Menezes, L.M., Bunn, D.W., and Taylor, J.W. (2000). “Review of guidelines for the use of combined forecasts.” Eur. J. Oper. Res., 120(1), 190–204. https://doi.org/10.1016/S0377-2217(98)00380-4
  • Deng, L., and Cai, C. (2010). “Bridge scour: Prediction, modeling, monitoring, and countermeasures.” Pract. Period. Struct. Des. Constr, 15(2), 125–134. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000041
  • Diks, C.G.H., and Vrugt, J.A. (2010). “Comparison of point forecast accuracy of model averaging methods in hydrologic applications.” Stoch. Environ. Res. Risk. Assess., 24(6), 809–820. https://doi.org/10.1007/s00477-010-0378-z
  • Dobarco, M.R., Arrouays, D., Lagacherie, P., Ciampalini, R., and Saby, N.P.A. (2017). “Prediction of topsoil texture for region centre (France) applying model ensemble methods.” Geoderma, 298, 67–77. https://doi.org/10.1016/j.geoderma.2017.03.015
  • Duan, Q., Ajami, N.K., Gao, X., and Sorooshian, S. (2007). “Multi-model ensemble hydrologic prediction using Bayesian model averaging.” Adv. Water Resour., 30(5), 1371–1386. https://doi.org/10.1016/j.advwatres.2006.11.014
  • Elkiran, G., Nourani, V., and Abba, S.I. (2019). “Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach.” J. Hydrol., 577, 1–12. https://doi.org/10.1016/j.jhydrol.2019.123962
  • Emami, S., and Schleiss, A.J. (2010). “Prediction of localized scour hole on natural mobile bed at culvert outlets.” Scour. Erosion, 844–853. https://doi.org/10.1061/41147(392)84
  • Ferreira, C. (2006). Gene expression programming, Springer, Berlin Heidelberg.
  • Galán, Á., and González, J. (2020). “Effects of shape, inlet blockage and wing walls on local scour at the outlet of non-submerged culverts: Undermining of the embankment.” Environ. Earth Sci., 79(1), 1–16. https://doi.org/10.1007/s12665-019-8749-3
  • Gao, C., and Elzarka, H. (2021). “The use of decision tree based predictive models for improving the culvert inspection process.” Adv. Eng. Inf., 47, 101203. https://doi.org/10.1016/j.aei.2020.101203
  • Giacalone, M. (2022). “Optimal forecasting accuracy using Lp-norm combination.” Metron, 80(2), 187–230. https://doi.org/10.1007/s40300-021-00218-5
  • Granger, C.W.J., and Newbold, P. (1974). “Spurious regressions in econometrics.” J. Econom., 2(2), 111–120. https://doi.org/10.1016/0304-4076(74)90034-7
  • Günal, M., Günal, A., and Osman, K. (2019). “Simulation of blockage effects on scouring downstream of box culverts under unsteady flow conditions.” Int. J. Environ. Sci. Technol., 16(9), 5305–5310. https://doi.org/10.1007/s13762-019-02461-w
  • Helal, E.E.-D.Y.E.-A. (2014). “Minimizing scour downstream of hydraulic structures using single line of floor water jets.” Ain Shams Eng. J., 5(1), 17–28. https://doi.org/10.1016/j.asej.2013.06.001
  • Hoeting, J.A., Madigan, D., Raftery, A.E., and Volinsky, C.T. (1999). “Bayesian model averaging: A tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors.” Stat. Sci, 14(4), 382–401. https://doi.org/10.1214/ss/1009212519
  • Jiang, S., Ren, L., Xu, C.-Y., Liu, S., Yuan, F., and Yang, X. (2018). “Quantifying multi-source uncertainties in multi-model predictions using the Bayesian model averaging scheme.” Hydrol. Res., 49(3), 954–970. https://doi.org/10.2166/nh.2017.272
  • Johnson, P.A., and Ayyub, B.M. (1996). “Modeling uncertainty in prediction of pier scour.” J. Hydraul. Eng., 122(2), 66–72. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:2(66)
  • Jung, J.Y., Niemann, J.D., and Greimann, B.P. (2018). “Combining predictions and assessing uncertainty from sediment transport equations using multivariate Bayesian model averaging.” J. Hydraul. Eng., 144(4), 04018008–04018008. https://doi.org/10.1061/(asce)hy.1943-7900.0001436
  • Kisi, O., and Ozkan, C. (2017). “A new approach for modeling sediment-discharge relationship: Local weighted linear regression.” Water Resour. Manage., 31(1), 1–23. https://doi.org/10.1007/s11269-016-1481-9
  • Koza, J.R. (1994). “Genetic programming as a means for programming computers by natural selection.” Stat. Comput., 4(2), 87–112. https://doi.org/10.1007/BF00175355
  • Kumar, M., Tiwari, N.K., and Ranjan, S. (2021). “Oxygenation by plunging jet aerators: A review.” Iran. J. Sci. Technol. Trans. Civ. Eng., 45(3), 1329–1348. https://doi.org/10.1007/s40996-020-00554-y
  • Kumar, M., Tiwari, N.K., and Ranjan, S. (2022a). “Application of machine learning methods in estimating the oxygenation performance of various configurations of plunging hollow jet aerators.” J. Environ. Eng., 148(11), 04022070. https://doi.org/10.1061/(ASCE)EE.1943-7870.0002068
  • Kumar, M., Tiwari, N.K., and Ranjan, S. (2022b). “Soft computing based predictive modelling of oxygen transfer performance of plunging hollow jets.” ISH J. Hydraul. Eng., 28(sup1), 223–233. https://doi.org/10.1080/09715010.2020.1752831
  • Liao, K.-W., Chien, F.-S., and Ju, R.-J. (2019). “Safety evaluation of a water-immersed bridge against multiple hazards via machine learning.” Appl. Sci., 9(15), 3116. https://doi.org/10.3390/app9153116
  • Lichtendahl, K.C., and Winkler, R.L. (2020). “Why do some combinations perform better than others?” Int. J. Forecasting, 36(1), 142–149. https://doi.org/10.1016/j.ijforecast.2019.03.027
  • Lim, S. (1995). “Scour below unsubmerged full-flowing culvert outlets.” Proc. Inst. Civil Eng. Water, Maritime Energy, 112(2), 136–149. https://doi.org/10.1680/iwtme.1995.27659
  • Liriano, S.L., Day, R.A., and Rodney White, W. (2002). “Scour at culvert outlets as influenced by the turbulent flow structure.” J. Hydraul. Res., 40(3), 367–376. https://doi.org/10.1080/00221680209499951
  • Luxmi, K.M., Tiwari, N.K., and Ranjan, S. (2023 b). “Application of soft computing approaches to predict gabion weir oxygen aeration efficiency.” ISH J. Hydraul. Eng., 29(3), 244–258. https://doi.org/10.1080/09715010.2022.2050311
  • Luxmi, K.M., Tiwari, A., Tiwari, N.K., and Vajesnayee, S.R. (2022). “Development and evaluation of soft computing models for Montana flume aeration.” In Advances in chemical, bio and environmental engineering, J.K. Ratan, D. Sahu, N.N. Pandhare, and A. Bhavanam, eds., Springer International Publishing, Cham, pp. 167–180.
  • Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E., and Winkler, R. (1982). “The accuracy of extrapolation (time series) methods: Results of a forecasting competition.” J. Forecasting, 1(2), 111–153. https://doi.org/10.1002/for.3980010202
  • Mendoza, C., Abt, S.R., and Ruff, J.F. (1983). “Headwall influence on scour at culvert outlets.” J. Hydraul. Eng., 109(7), 1056–1060. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:7(1056)
  • Mustafa, S.M.T., Nossent, J., Ghysels, G., and Huysmans, M. (2020). “Integrated Bayesian Multi-model approach to quantify input, parameter and conceptual model structure uncertainty in groundwater modeling.” Environ. Modell. & Software, 126, 104654. https://doi.org/10.1016/j.envsoft.2020.104654
  • Najafi, M.R., Kavianpour, Z., Najafi, B., Kavianpour, M.R., and Moradkhani, H. (2012). “Air demand in gated tunnels – a Bayesian approach to merge various predictions.” J. Hydroinf., 14(1), 152–166. https://doi.org/10.2166/hydro.2011.108
  • Najafzadeh, M., and Kargar, A.R. (2019). “Gene-expression programming, evolutionary polynomial regression, and model tree to evaluate local scour depth at culvert outlets.” J. Pipeline Syst. Eng. Pract., 10(3), 04019013. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000376
  • Nourani, V., Elkiran, G., and Abdullahi, J. (2019). “Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements.” J. Hydrol., 577(June), 1–20. https://doi.org/10.1016/j.jhydrol.2019.123958
  • Nourani, V., Gokcekus, H., and Gelete, G. (2021). “Estimation of suspended sediment load using artificial intelligence-based ensemble model.” J. Complexity, 2021, 1–19. https://doi.org/10.1155/2021/6633760
  • Nourani, V., Uzelaltinbulat, S., Sadikoglu, F., and Behfar, N. (2019). “Artificial intelligence based ensemble modeling for multi-station prediction of precipitation.” Atmosphere, 10(2), 1–28. https://doi.org/10.3390/atmos10020080
  • Opie, T.R. (1967). “Scour at culvert outlets, Dept. of Civil Engineering.” M.Sc. thesis, Colorado State University.
  • Palm, F.C., and Zellner, A. (1992). “To combine or not to combine? issues of combining forecasts.” J. Forecasting, 11(8), 687–701. https://doi.org/10.1002/for.3980110806
  • Prayogo, D., and Susanto, Y.T.T. (2018). “Optimizing the prediction accuracy of friction capacity of driven piles in cohesive soil using a novel self-tuning least squares support vector machine.” Adv. Civ. Eng, 2018, 1–9. https://doi.org/10.1155/2018/6490169
  • Rajaratnam, N., and Berry, B. (1977). “Erosion By Circular Turbulent Wall Jets.” J. Hydraul. Res., 15(3), 277–289. https://doi.org/10.1080/00221687709499648
  • Raj Kiran, N., and Ravi, V. (2008). “Software reliability prediction by soft computing techniques.” J. Syst. Software, 81(4), 576–583. https://doi.org/10.1016/j.jss.2007.05.005
  • Rathod, P., and Manekar, V.L. (2022). “Gene expression programming to predict local scour using laboratory and field data.” ISH J. Hydraul. Eng., 28(2), 143–151. https://doi.org/10.1080/09715010.2020.1846144
  • Riahi-Madvar, H., Gholami, M., Gharabaghi, B., and Morteza Seyedian, S. (2021). “A predictive equation for residual strength using a hybrid of subset selection of maximum dissimilarity method with pareto optimal multi-gene genetic programming.” Geosci. Front., 12(5), 101222. https://doi.org/10.1016/j.gsf.2021.101222
  • Rings, J., Vrugt, J.A., Schoups, G., Huisman, J.A., and Vereecken, H. (2012). “Bayesian model averaging using particle filtering and Gaussian mixture modeling: Theory, concepts, and simulation experiments.” Water Resour. Res., 48(5), 1–12. https://doi.org/10.1029/2011WR011607
  • Roushangar, K., and Akhgar, S. (2020). “Particle swarm optimization-based LS-SVM for hydraulic performance of stepped spillway.” ISH J. Hydraul. Eng., 26(3), 273–282. https://doi.org/10.1080/09715010.2018.1481773
  • Ruff, J., Abt, S., Mendoza, C., Shaikh, A., and Kloberdanz, R. (1982). Scour at culvert outlets in mixed bed materials. United States. Federal Highway Administration, Colorado State University, Engineering Research Center: Office of Research and Development.
  • Sabatine, S.M., Niemann, J.D., and Greimann, B.P. (2015). “Evaluation of parameter and model uncertainty in simple applications of a 1D sediment transport model.” J. Hydraul. Eng., 141(5), 1–13. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000992
  • Seyedian, S.M., Haghiabi, A., and Parsaie, A. (2023). “Reliable prediction of the discharge coefficient of triangular labyrinth weir based on soft computing techniques.” Flow Meas. Instrum., 92, 102403. https://doi.org/10.1016/j.flowmeasinst.2023.102403
  • Seyedian, S.M., Riahi-Madvar, H., Fatabadi, A., Farasati, M., and Ghaznavi, S. (2022). “Comparative uncertainty analysis of soft computing models predicting scour depth downstream of grade-control structures.” Arabian J. Geosci., 15(5), 418. https://doi.org/10.1007/s12517-022-09704-0
  • Seyedian, S.M., and Rouhani, H. (2015). “Assessing ANFIS accuracy in estimation of suspended sediments.” Građevinar, 67(12), 1165–1176. https://doi.org/10.14256/JCE.1210.2015
  • Siwek, K., Osowski, S., and Szupiluk, R. (2009). “Ensemble neural network approach for accurate load forecasting in a power system.” Int. J. Appl. Math. Comput. Sci., 19(2), 303–315. https://doi.org/10.2478/v10006-009-0026-2
  • Solati, S., Vaghefi, M., and Behroozi, A.M. (2021). “Effect of duration and pattern of hydrographs on scour around pier in sharp bend under incipient motion and live bed conditions.” Int. J. Civ. Eng., 19(1), 51–65. https://doi.org/10.1007/s40999-020-00558-9
  • Sorourian, S., Keshavarzi, A., Ball, J., and Samali, B. (2014). “Blockage effects on scouring downstream of box culverts under unsteady flow.” Australas. J. Water Resour., 18(2), 180–190. https://doi.org/10.1080/13241583.2014.11465449
  • Spiliotis, E., Petropoulos, F., Assimakopoulos, V., and Calcagnì, A. (2019). “Improving the forecasting performance of temporal hierarchies.” PloS. One., 14(10), 1–21. https://doi.org/10.1371/journal.pone.0223422
  • Srinivas, R., and Tiwari, N.K. (2022). “Oxygen aeration efficiency of gabion spillway by soft computing models.” Water Qual. Res. J., 57(3), 215–232. https://doi.org/10.2166/wqrj.2022.009
  • Taha, N., El-Feky, M.M., El-Saiad, A.A., Zelenakova, M., Vranay, F., and Fathy, I. (2020). “Study of scour characteristics downstream of partially-blocked circular culverts.” Water, 12(10), 2845. https://doi.org/10.3390/w12102845
  • Taravatrooy, N., Bahmanpouri, F., Nikoo, M.R., Gualtieri, C., and Izady, A. (2021). “Estimation of air-flow parameters and turbulent intensity in hydraulic jump on rough bed using Bayesian model averaging.” Appl. Soft Comput., 103, 107165–107165. https://doi.org/10.1016/J.ASOC.2021.107165
  • Timmermann, A. (2006) “Forecast combinations” Handb. Econ. Forecasting, 1, 135–196.
  • Tiwari, N.K., Luxmi, K.M., and Ranjan, S. (2023 b). “Predictive models for prediction of broad crested gabion weir aeration performance.” J. Soft Comput. Civ. Eng., 7(2), 43–73. https://doi.org/10.22115/scce.2023.357761.1516
  • Tiwari, A., Ojha, C.S.P., Tiwari, N.K., and Ranjan, S. (2023 a). “Montana Flume Aeration Performance Evaluation with machine learning models.” J. Inst. Eng. India Ser. A, 104(1), 175–186. https://doi.org/10.1007/s40030-022-00706-5
  • Wang, Y., Tang, H., Wen, T., and Ma, J. (2020). “Direct interval prediction of landslide displacements using least squares support vector machines.” J. Complexity, 2020, 1–15. https://doi.org/10.1155/2020/7082594
  • Yin, J., Tsai, F.T.-C., and Kao, S.-C. (2021). “Accounting for uncertainty in complex alluvial aquifer modeling by Bayesian multi-model approach.” J. Hydrol, 601, 1–13. https://doi.org/10.1016/J.JHYDROL.2021.126682
  • Yi, T., Zheng, H., Tian, Y., and Liu, J.-P. (2018). “Intelligent prediction of transmission line project cost based on least squares support vector machine optimized by particle swarm optimization.” Math. Probl. Eng., 2018, 1–11. https://doi.org/10.1155/2018/5458696
  • Zhang, P.G. (2003). “Time series forecasting using a hybrid ARIMA and neural network model.” Neurocomputing, 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0
  • Zhang, Z., Han, H., Cui, X., and Fan, Y. (2020). “Novel application of multi-model ensemble learning for fault diagnosis in refrigeration systems.” Appl. Therm. Eng., 164, 1–12. https://doi.org/10.1016/j.applthermaleng.2019.114516
  • Zhang, R., and Wu, P. (2021). “The investigation of shape factors in determining scour depth at culvert outlets.” ISH J. Hydraul. Eng., 27(sup1), 190–196. https://doi.org/10.1080/09715010.2019.1611492
  • Zounemat-Kermani, M., Batelaan, O., Fadaee, M., and Hinkelmann, R. (2021). “Ensemble machine learning paradigms in hydrology: A review.” J. Hydrol., 598, 126266. https://doi.org/10.1016/j.jhydrol.2021.126266

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.