57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microwave hydrodistillation of Pelargonium graveolens L’Her leaves: Essential oil profile, phytochemical composition of wastewater, histo-anatomical structure

, , , , , , , , , & show all
Pages 659-677 | Received 14 Jul 2023, Accepted 19 Feb 2024, Published online: 25 Mar 2024

References

  • List, P. (2013). The Plant List. Version 1.1. Published on the Internet.
  • Davis, P.H. (1967). Materials for a flora of Turkey: XVI. Geraniaceae, Linaceae. Notes Royal Bot. Garden Edinburgh. 28: 35-38.
  • Miller, D.M. (2002). The taxonomy of Pelargonium species and cultivars, their origins and growth in the wild. Geranium and Pelargonium. Taylor & Francis Group, New York, NY. 49-79.
  • Başaran, A. (2009). Doğal aromaterapötik bitkiler ve uçucu yağlar. Turkiye Klinikleri J Med Sci. 29(5): 86-94.
  • Ćavar, S. and Maksimović, M. (2012). Antioxidant activity of essential oil and aqueous extract of Pelargonium graveolens L’Her. Food Control. 23(1): 263-267. doi: 10.1016/j.foodcont.2011.07.031
  • Ashokkumar, K., Simal-Gandara, J., Murugan, M., Dhanya, M.K. and Pandian, A. (2022). Nutmeg (Myristica fragrans Houtt.) essential oil: A review on its composition, biological, and pharmacological activities. Phytother Res. 36(7): 2839-2851. doi: 10.1002/ptr.7491
  • Salem, M.A., Manaa, E.G., Osama, N., Aborehab, N.M., Ragab, M.F., Haggag, Y.A., Ibrahim, M.T. and Hamdan, D.I. (2022). Coriander (Coriandrum sativum L.) essential oil and oil-loaded nano-formulations as an anti-aging potentiality via TGFβ/SMAD pathway. Sci. Rep. 12(1): 6578. doi: 10.1038/s41598-022-10494-4
  • Politeo, O., Popović, M., Veršić Bratinčević, M., Kovačević, K., Urlić, B. and Generalić Mekinić, I. (2023). Chemical profiling of sea fennel (Crithmum maritimum L., Apiaceae) essential oils and their isolation residual waste-waters. Plants. 12(1): 214.
  • Drinić, Z., Pljevljakušić, D., Janković, T., Zdunić, G., Bigović, D. and Šavikin, K. (2021). Hydro-distillation and microwaveassisted distillation of Sideritis raeseri: Comparison of the composition of the essential oil, hydrolat and residual water extract. Sustain. Chem. Pharm. 24: 100538. doi: 10.1016/j.scp.2021.100538
  • de Elguea-Culebras, G.O., Bravo, E.M. and Sánchez-Vioque, R. (2022). Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of Mediterranean aromatic plants. An approach to the valuation of by-products of the essential oil market-A review. Ind. Crops Prod. 175: 114261. doi: 10.1016/j.indcrop.2021.114261
  • Maatallah, S., Dabbou, S., Castagna, A., Guizani, M., Hajlaoui, H., Ranieri, A.M., and Flamini, G. (2020). Prunus persica by-products: A source of minerals, phenols and volatile compounds. Sci. Hortic. 261: 109016. doi: 10.1016/j.scienta.2019.109016
  • Jaradat, N., Hawash, M., Qadi, M., Abualhasan, M., Odetallah, A., Qasim, G., Awayssa, R., Akkawi, A., Abdullah, I. and Al-Maharik, N. (2022). Chemical markers and pharmacological characters of Pelargonium graveolens essential oil from Palestine. Molecules. 27(17): 5721 doi: 10.3390/molecules27175721
  • Al-Mijalli, S.H., Mrabti, H.N., Assaggaf, H., Attar, A.A., Hamed, M., Baaboua, A.E., El Omari, N., El Menniy, N., Hazzoumi, Z., Sheikh, R.A., Zengin, G., Sut, S., Dall’Acqua, S. and Bouyahya, A. (2022). Chemical profiling and biological activities of Pelargonium graveolens essential oils at three different pheno-logical stages. Plants. 11(17): 2226. doi: 10.3390/plants11172226
  • Fan, S., Chang, J., Zong, Y., Hu, G. and Jia, J. (2018). GC-MS analysis of the composition of the essential oil from Dendranthema indicum var. aromaticum using three extraction methods and two columns. Molecules. 23(3): 576-587. doi: 10.3390/molecules23030576
  • dos Santos, M.K., Kreutz, T., Danielli, L.J., De Marchi, J.G.B., Pippi, B., Koester, L.S., Fuentefria, A.M. and Limberger, R.P. (2020). A chitosan hydrogel-thickened nanoemulsion containing Pelargonium graveolens essential oil for treatment of vaginal candidiasis. J. Drug Deliv. Sci. Technol. 56: 101527. doi: 10.1016/j.jddst.2020.101527
  • Ecem Bayram, N., Cebi, N., Celik, S., Gercek, Y.C., Bayram, S., Tanuğur Samancı, A.E., Sağdıç, O. and Özkök, A. (2021). Turkish royal jelly: amino acid, physicochemical, antioxidant, multi-elemental, antibacterial and fingerprint profiles by analytical techniques combined with chemometrics. J. Apic. Res. 60(5): 751-764. doi: 10.1080/00218839.2021.1889222
  • Ecem Bayram, N., Canli, D., Gercek, Y.C., Bayram, S., Celik, S., Güzel, F., Morgil, H. and Oz, G.C. (2020). Macronutrient and micronutrient levels and phenolic compound characteristics of monofloral honey samples. J. Food Nutr. Res. 59(4): 311-322.
  • Ecem Bayram, N., Gercek, Y.C., Çelik, S., Mayda, N., Kostić, A.Ž., Dramićanin, A.M., and Özkök, A. (2021). Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin-similarities and differences. Arab. J. Chem. 14(3): 103004.
  • Çelik, S., Gerçek, Y.C., Özkök, A. and Ecem Bayram, N. (2022). Organic acids and their derivatives: Minor components of bee pollen, bee bread, royal jelly and bee venom. Eur. Food Res. Technol. 248(12): 3037-3057. doi: 10.1007/s00217-022-04110-y
  • Magalhães, L.M., Santos, F., Segundo, M.A., Reis, S. and Lima, J.L. (2010). Rapid microplate high-throughput methodology for assessment of Folin-Ciocalteu reducing capacity. Talanta. 83(2): 441-447. doi: 10.1016/j.talanta.2010.09.042
  • Zhishen, J., Mengcheng, T. and Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64(4): 555-559. doi: 10.1016/S0308-8146(98)00102-2
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9-10): 1231-1237. doi: 10.1016/S0891-5849(98)00315-3
  • Apak, R., Güçlü, K., Özyürek, M. and Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52(26): 7970-7981. doi: 10.1021/jf048741x
  • Ozyurt, D., Demirata, B. and Apak, R. (2007). Determination of total antioxidant capacity by a new spectrophotometric method based on Ce (IV) reducing capacity measurement. Talanta. 71(3): 1155-1165. doi: 10.1016/j.talanta.2006.06.015
  • Bagherpour, S., Kahraman, A., Doğan, M., Celep, F., Başer, B. and Pehlivan, S. (2010). The anatomical and micromorphological characteristics of Salvia vermifolia (Section Aethiopis Bentham, Lamiaceae) from Central Anatolia, Turkey. Cent. Eur. J. Biol. 5(6): 872-879.
  • Dmitruk, M. and Weryszko-Chmielewska, E. (2010). Morphological differentiation and distribution of non-glandular and glandular trichomes on Dracocephalum moldavicum L. shoots. Acta Agrobot. 63 (1): 11-22.
  • Boukhris, M., Ahmed, C.B., Mezghani, I., Bouaziz, M. and Sayadi, S. (2013). Biological and anatomical characteristics of the Rose-scented Geranium (Pelargonium graveolens, L'hér.) grown in the south of Tunisia. Pak. J. Bot. 45(6): 1945-1954.
  • Romitelli, I. and Martins, M.B.G. (2013). Comparison of leaf morphology and anatomy among Malva sylvestris ("gerânio-aromático"), Pelargonium graveolens ("falsa-malva") and Pelargonium odoratissimum ("gerânio-de-cheiro"). Rev. Bras. Pl. Med. 15: 91-97. doi: 10.1590/S1516-05722013000100013
  • Marchiosi, R., dos Santos, W.D., Constantin, R.P., de Lima, R.B., Soares, A.R., Finger-Teixeira, A., Mota, T.R., de Oliveira, D.M., Foletto-Felipe, P., Abrahão, J. and Ferrarese-Filho, O. (2020). Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem. Rev. 19(4): 865-906. doi: 10.1007/s11101-020-09689-2
  • Santana-Méridas, O., González-Coloma, A. and Sánchez-Vioque, R. (2012). Agricultural residues as a source of bioactive natural products. Phytochem. Rev. 11: 447-466. doi: 10.1007/s11101-012-9266-0
  • Leouifoudi, I., Zyad, A., Amechrouq, A., Oukerrou, M. A., Mouse, H. A. and Mbarki, M. (2014). Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater. Food Sci. Technol. 34: 249-257. doi: 10.1590/fst.2014.0051
  • Silva, A., Silva, V., Igrejas, G., Aires, A., Falco, V., Valentão, P. and Poeta, P. (2023). Phenolic compounds classification and their distribution in winemaking by-products. Eur. Food Res. Technol. 249(2): 207-239. doi: 10.1007/s00217-022-04163-z
  • Dimitrova, M., Mihaylova, D., Popova, A., Alexieva, J., Sapundzhieva, T. and Fidan, H. (2015). Phenolic profile, antibacterial and antioxidant activity of Pelargonium graveolens leaves’ extracts. Scientific Bulletin. Series F. Biotech. 19:130-135.
  • Krishnaiah, D., Sarbatly, R., Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 89(3): 217-233. doi: 10.1016/j.fbp.2010.04.008
  • Haminiuk, C.W., Maciel, G.M., Plata-Oviedo, M.S. and Peralta, R.M. (2012). Phenolic compounds in fruits-an overview. Int. J. Food Sci. Technol. 47(10): 2023-2044. doi: 10.1111/j.1365-2621.2012.03067.x
  • Di Petrillo, A., Orrù, G., Fais, A. and Fantini, M.C. (2022). Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. 36(1): 266-278. doi: 10.1002/ptr.7309
  • Anal, A.K. and Panesar, P.S. (Eds.). (2022). Valorization of Agro-Industrial By-products: Sustainable Approaches for Industrial Transformation. CRC Press.
  • Gerçek, Y.C., Bayram, S., Çelik, S., Canlı, D., Mavaldi, M.H., Boztas, K., Basturk, F., Kırkıncı, S., Yesil, Y., Kosesakal, T., Cevahir-Oz, G. and Bayram, N.E. (2022). Characterization of essential oil and wastewater from Thymus nummularius M. Bieb. And micromorphological examination of glandular trichomes. J. Essent. Oil-Bear. Plants. 25(3): 690-706. doi: 10.1080/0972060X.2022.2107403
  • Bangar, S.P., Suri, S., Trif, M. and Ozogul, F. (2022). Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 46: 101615. doi: 10.1016/j.fbio.2022.101615
  • Benchikha, N., Messaoudi, M., Larkem, I., Ouakouak, H., Rebiai, A., Boubekeur, S., Ferhat, M.A, Benarfa, A., Begaa, S., Benmohamed, M., Almasri, D.M., Hareeri, R.H. and Youssef, F.S. (2022). Evaluation of possible antioxidant, anti-hyperglycaemic, anti-alzheimer and anti-inflammatory effects of Teucrium polium aerial parts (Lamiaceae). Life. 12(10): 1579. doi: 10.3390/life12101579
  • Duque-Soto, C., Borrás-Linares, I., Quirantes-Piné, R., Falcó, I., Sánchez, G., Segura-Carretero, A. and Lozano-Sánchez, J. (2022). Potential antioxidant and antiviral activities of hydroethanolic extracts of selected Lamiaceae species. Foods. 11(13): 1862. doi: 10.3390/foods11131862
  • Scalzo, J., Politi, A., Pellegrini, N., Mezzetti, B. and Battino, M. (2005). Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition. 21(2): 207-213. doi: 10.1016/j.nut.2004.03.025
  • Ali, I.B.E., Tajini, F., Boulila, A., Jebri, M. A., Boussaid, M., Messaoud, C. and Sebaï, H. (2020). Bioactive compounds from Tunisian Pelargonium graveolens (L’Hér.) essential oils and extracts: α-amylase and acethylcholinesterase inhibitory and antioxidant, antibacterial and phytotoxic activities. Ind. Crops Prod. 158: 112951. doi: 10.1016/j.indcrop.2020.112951
  • Niculau, E.D.S., Alves, P.B., Nogueira, P.C.D.L., Romão, L.P.C., Cunha, G.D.C., Blank, A. F and Silva, A.D.C. (2020). Chemical profile and use of the peat as an adsorbent for extraction of volatile compounds from leaves of geranium (Pelargonium graveolens L’Herit). Molecules. 25(21): 4923. doi: 10.3390/molecules25214923
  • Santos, P.L., Matos, J.P.S., Picot, L., Almeida, J.R., Quintans, J.S. and Quintans-Júnior, L. J. (2019). Citronellol, a monoterpene alcohol with promising pharmacological activities-A systematic review. Food Chem Toxicol. 123: 459-469. doi: 10.1016/j.fct.2018.11.030
  • Rafiq, R., Hayek, S.A., Anyanwu, U., Hardy, B.I., Giddings, V.L., Ibrahim, S.A., Tahergorabi, R. and Kang, H.W. (2016). Antibacterial and antioxidant activities of essential oils from Artemisia herba-alba Asso., Pelargonium capitatum × radens and Laurus nobilis L. Foods. 5(2): 28. doi: 10.3390/foods5020028
  • Ko, K.N., Lee, K.W. and Lee, S.E. (2007). Development and ultrastructure of glandular trichomes in pelargonium x fragrans ‘mabel grey’(Geraniaceae). J. Plant Biol. 50(3): 362-368. doi: 10.1007/BF03030668
  • Gâlea, I.C., Ielciu, I., Crişan, G. and Tămaş, M. (2017). Histo-anatomical studies on the vegetative and reproductive organs of Pelargonium roseum Willd. (Geraniaceae). Hop Med. Plants. 25(1/2): 115-124.
  • Khetsha, Z.P., Sedibe, M.M., Pretorius, R.J. and van der Watt, E. (2021). Cytokinin, gibberellic acid and defoliation on density and morphology of trichome of Pelargonium graveolens l’hér for essential oil biosynthesis. Agrociencia. 55(4): 331-346. doi: 10.47163/agrociencia.v55i4.2481

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.