292
Views
0
CrossRef citations to date
0
Altmetric
Stable Isotope Tracer & Methodology

67Zn and 111Cd labelled green manure to determine the fate and dynamics of zinc and cadmium in soil–fertilizer–crop systems

, , , , , & show all
Received 20 Jun 2023, Accepted 22 Feb 2024, Published online: 15 Mar 2024

References

  • Wessells KR, Brown KH. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One. 2012;7:e50568. doi:10.1371/journal.pone.0050568
  • Alloway BJ. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health. 2009;31:537–548. doi:10.1007/s10653-009-9255-4
  • Gregory PJ, Wahbi A, Adu-Gyamfi J, et al. Approaches to reduce zinc and iron deficits in food systems. Glob Food Sec. 2017;15:1–10. doi:10.1016/j.gfs.2017.03.003
  • Dobermann A, Bruulsema T, Cakmak I, et al. Responsible plant nutrition: A new paradigm to support food system transformation. Glob Food Sec. 2022;33:100636. doi:10.1016/j.gfs.2022.100636
  • Cakmak I, Kutman UB. Agronomic biofortification of cereals with zinc: a review: agronomic zinc biofortification. Eur J Soil Sci. 2018;69:172–180. doi:10.1111/ejss.12437
  • McLaughlin MJ, Smolders E, Zhao FJ, et al. Managing cadmium in agricultural systems. Adv Agron. 2021; 166:1–129.
  • Fransson MN, Barregard L, Sallsten G, et al. Physiologically-based toxicokinetic model for cadmium using Markov-chain Monte Carlo analysis of concentrations in blood, urine, and kidney cortex from living kidney donors. Toxicol Sci. 2014;141:365–376. doi:10.1093/toxsci/kfu129
  • Mertens J, Smolders E. Zinc. In: Alloway BJ, editor. Heavy metals in soils. Dordrecht: Springer Netherlands; 2013. p. 465–493.
  • Smolders E, Mertens J. Cadmium. In: Alloway BJ, editor. Heavy metals in soils. Dordrecht: Springer Netherlands; 2013. p. 283–311.
  • Ren Z, Sivry Y, Dai J, et al. Exploring Cd, Cu, Pb, and Zn dynamic speciation in mining and smelting-contaminated soils with stable isotopic exchange kinetics. Appl Geochem. 2016;64:157–163. doi:10.1016/j.apgeochem.2015.09.007
  • Amer F, Rezk AI, Khalid HM. Fertilizer zinc efficiency in flooded calcareous soils. Soil Sci Soc Am J. 1980;44:1025-1030. doi:10.2136/sssaj1980.03615995004400050031x
  • Aghili F, Gamper HA, Eikenberg J, et al. Green manure addition to soil increases grain zinc concentration in bread wheat. PLoS One. 2014;9:e101487. doi:10.1371/journal.pone.0101487
  • Habiby H, Afyuni M, Khoshgoftarmanesh AH, et al. Effect of preceding crops and their residues on availability of zinc in a calcareous Zn-deficient soil. Biol Fertil Soils. 2014;50:1061–1067. doi:10.1007/s00374-014-0926-7
  • Soltani S, Khoshgoftarmanesh AH, Afyuni M, et al. The effect of preceding crop on wheat grain zinc concentration and its relationship to total amino acids and dissolved organic carbon in rhizosphere soil solution. Biol Fertil Soils. 2014;50:239–247. doi:10.1007/s00374-013-0851-1
  • Grüter R, Meister A, Schulin R, et al. Green manure effects on zinc and cadmium accumulation in wheat grains (Triticum aestivum L.) on high and low zinc soils. Plant Soil. 2018;422:437–453. doi:10.1007/s11104-017-3486-4
  • Cherr CM, Scholberg JMS, McSorley R Green manure approaches to crop production: A synthesis. Agron J. 2006;98:302–319. doi:10.2134/agronj2005.0035
  • Chalk PM, Inácio CT, Chen D. Tracing S dynamics in agro-ecosystems using 34S. Soil Biol Biochem. 2017;114:295–308. doi:10.1016/j.soilbio.2017.07.001
  • Smith CJ, Chalk PM. The residual value of fertiliser N in crop sequences: An appraisal of 60 years of research using 15N tracer. Field Crops Res. 2018;217:66–74. doi:10.1016/j.fcr.2017.12.006
  • Frossard E, Achat DL, Bernasconi SM, et al. The use of tracers to investigate phosphate cycling in soil–plant systems. In: Bünemann E, Oberson A, Frossard E, editor. Phosphorus in action. Berlin, Heidelberg: Springer; 2011. p. 59–91.
  • Quan Z, Zhang X, Fang Y, et al. Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages. Nat Food. 2021;2:241–245. doi:10.1038/s43016-021-00263-3
  • Yan B-F, Dürr-Auster T, Frossard E, et al. The use of stable zinc isotope soil labeling to assess the contribution of complex organic fertilizers to the zinc nutrition of ryegrass. Front Plant Sci. 2021;12:730679. doi:10.3389/fpls.2021.730679
  • Wiggenhauser M, Bigalke M, Imseng M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil–fertilizer–plant systems. Sci Total Environ. 2019;648:779–786. doi:10.1016/j.scitotenv.2018.08.127
  • Hippler FWR, Boaretto RM, Quaggio JA, et al. Uptake and distribution of soil applied zinc by citrus trees – addressing fertilizer use efficiency with 68Zn labeling. PLoS One. 2015;10:e0116903.
  • McBeath TM, McLaughlin MJ, Kirby JK, et al. A stable-isotope methodology for measurement of soil-applied zinc-fertilizer recovery in durum wheat (Triticum durum). J Plant Nutr Soil Sci. 2013;176:756–763. doi:10.1002/jpln.201200305
  • McBeath TM, McLaughlin MJ. Efficacy of zinc oxides as fertilisers. Plant Soil. 2014;374:843–855. doi:10.1007/s11104-013-1919-2
  • Mattiello EM, Cancellier EL, Silva D, et al. Efficiency of soil-applied 67Zn-enriched fertiliser across three consecutive crops. Pedosphere. 2021;31:531–537. doi:10.1016/S1002-0160(20)60044-3
  • Bracher C, Frossard E, Bigalke M, et al. Tracing the fate of phosphorus fertilizer derived cadmium in soil–fertilizer–wheat systems using enriched stable isotope labeling. Environ Pollut. 2021;287:117314. doi:10.1016/j.envpol.2021.117314
  • Jensen H, Mosbæk H. Relative availability of 200 years old cadmium from soil to lettuce. Chemosphere. 1990;20:693–702. doi:10.1016/0045-6535(90)90160-U
  • Dürr-Auster T, Wiggenhauser M, Zeder C, et al. The use of Q-ICPMS to apply enriched zinc stable isotope source tracing for organic fertilizers. Front Plant Sci. 2019;10:1382. doi:10.3389/fpls.2019.01382
  • Chaney RL. Cadmium and zinc. In: Hooda PS, editor. Trace elements in soils. Chichester: John Wiley & Sons, Ltd; 2010. p. 409–439.
  • Prohaska T, Irrgeher J, Zitek A, et al., editors. Sector field mass spectrometry for elemental and isotope analysis. Cambridge, UK: The Royal Society of Chemistry; 2014. (New Developments in Mass Spectrometry; No. 3)
  • Rehkämper M, Wombacher F, Horner TJ, et al. Natural and anthropogenic Cd isotope variations. In: Baskaran M, editor. Handbook of environmental isotope geochemistry. Berlin, Heidelberg: Springer; 2012. p. 125–154. (Advances in Isotope Geochemistry)
  • Yan B-F, Nguyen C, Pokrovsky OS, et al. Contribution of remobilization to the loading of cadmium in durum wheat grains: impact of post-anthesis nitrogen supply. Plant Soil. 2018;424:591–606. doi:10.1007/s11104-018-3560-6
  • Blume H-P, Brümmer GW, Fleige H, et al. Scheffer/Schachtschabel soil science. Berlin, Heidelberg: Springer; 2016.
  • Berglund M, Wieser ME. Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl Chem. 2011;83:397–410. doi:10.1351/PAC-REP-10-06-02
  • Aucour AM, Sarret G, Blommaert H, et al. Coupling metal stable isotope compositions and X-ray absorption spectroscopy to study metal pathways in soil–plant systems: a mini review. Metallomics. 2023;15:mfad016. doi:10.1093/mtomcs/mfad016
  • Wiggenhauser M, Moore RET, Wang P, et al. Stable isotope fractionation of metals and metalloids in plants: A review. Front Plant Sci. 2022;13:840941. doi:10.3389/fpls.2022.840941
  • Wiggenhauser M, Bigalke M, Imseng M, et al. Cadmium isotope fractionation in soil–wheat systems. Environ Sci Technol. 2016;50:9223–9231. doi:10.1021/acs.est.6b01568
  • Lindsay WL, Norvell WA. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 1978;42:421–428. doi:10.2136/sssaj1978.03615995004200030009x.
  • Maftoun M, Rassooli F, Ali Nejad Z, et al. Cadmium sorption behavior in some highly calcareous soils of Iran. Commun Soil Sci Plant Anal. 2004;35:1271–1282. doi:10.1081/CSS-120037545
  • Wiggenhauser M, Bigalke M, Imseng M, et al. Zinc isotope fractionation during grain filling of wheat and a comparison of zinc and cadmium isotope ratios in identical soil–plant systems. New Phytol. 2018;219:195–205. doi:10.1111/nph.15146
  • Costerousse B, Quattrini J, Grüter R, et al. Green manure effect on the ability of native and inoculated soil bacteria to mobilize zinc for wheat uptake (Triticum aestivum L.). Plant Soil. 2021;467:287–309. doi:10.1007/s11104-021-05078-6
  • Broadley MR, White PJ, Hammond JP, et al. Zinc in plants. New Phytol. 2007;173:677–702. doi:10.1111/j.1469-8137.2007.01996.x
  • Hawkesford MJ, Cakmak I, Coskun D, et al. Functions of macronutrients. In: Rengel Z, Cakmak I, White PJ, editor. Marschner’s mineral nutrition of plants. 4th ed. London: Elsevier; 2023. p. 201–281.
  • Robertson GP, Groffman PM. Nitrogen transformations. In: Paul EA, editor. Soil microbiology, ecology and biochemistry. London: Elsevier; 2015. p. 421–446.
  • Colombo C, Palumbo G, He J-Z, et al. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soil Sediment. 2014;14:538–548. doi:10.1007/s11368-013-0814-z
  • Jarrell WM, Beverly RB. The dilution effect in plant nutrition studies. Adv Agron. 1981;34:197–224. doi:10.1016/S0065-2113(08)60887-1
  • Zou CQ, Zhang YQ, Rashid A, et al. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil. 2012;361:119–130. doi:10.1007/s11104-012-1369-2
  • Qaswar M, Hussain S, Rengel Z. Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar. Sci Total Environ. 2017;605–606:454–460.
  • Dong B, Rengel Z, Graham RD. Root morphology of wheat genotypes differing in zinc efficiency. JPlant Nutr. 1995;18:2761–2773. doi:10.1080/01904169509365098
  • Salt DE, Prince RC, Pickering IJ, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 1995;109:1427–1433. doi:10.1104/pp.109.4.1427
  • Van der Vliet L, Peterson C, Hale B. Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass. J Exp Bot. 2007;58:2939–2947. doi:10.1093/jxb/erm119
  • Tani FH, Barrington S. Zinc and copper uptake by plants under two transpiration rates. Part I. Wheat (Triticum aestivum L.). Environ Pollut. 2005;138:538–547.
  • Marschner P, Rengel Z. Nutrient availability in soils. In: Rengel Z, Cakmak I, White PJ, editor. Marschner's mineral nutrition of plants. 4th ed. London: Elsevier; 2023. p. 499–522.
  • Wiggenhauser M, Aucour A-M, Bureau S, et al. Cadmium transfer in contaminated soil–rice systems: insights from solid-state speciation analysis and stable isotope fractionation. Environ Pollut. 2021;269:115934. doi:10.1016/j.envpol.2020.115934
  • Quezada-Hinojosa R, Föllmi KB, Gillet F, et al. Cadmium accumulation in six common plant species associated with soils containing high geogenic cadmium concentrations at Le Gurnigel, Swiss Jura Mountains. Catena. 2015;124:85–96. doi:10.1016/j.catena.2014.09.007
  • Zhang S, Song J, Cheng Y, et al. Derivation of regional risk screening values and intervention values for cadmium-contaminated agricultural land in the Guizhou Plateau. Land Degrad Dev. 2018;29:2366–2377. doi:10.1002/ldr.3034
  • Aciksoz SB, Yazici A, Ozturk L, et al. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil. 2011;349:215–225. doi:10.1007/s11104-011-0863-2
  • Sheraz S, Wan Y, Venter E, et al. Subcellular dynamics studies of iron reveal how tissue-specific distribution patterns are established in developing wheat grains. New Phytol. 2021;231:1644–1657. doi:10.1111/nph.17440