Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 11
246
Views
0
CrossRef citations to date
0
Altmetric
Review

Bioactive role of vitamins as a key modulator of oxidative stress, cellular damage and comorbidities associated with spinal cord injury (SCI)

, , , , & ORCID Icon

References

  • Biering-Sørensen F, Bickenbach JE, El Masry WS, Officer A, von Groote PM. ISCos–WHO collaboration. international perspectives of spinal cord injury (IPSCI) report. Spinal Cord. 2011;49:679–83.
  • Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34:535–46. doi:10.1179/204577211X13207446293695.
  • Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44:523–9. doi:10.1038/sj.sc.3101893.
  • World Health Organization. Spinal cord injury [Internet]. WHO. 2013 [cited 2021 Dec 13]. Available from: https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury.
  • Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;22:282. doi:10.3389/fneur.2019.00282.
  • Oyinbo CA. Secondary injury mechanisms in traumatic spinal injury: a nugget of this multiply cascade. Acta Neurobiol Exp. 2011;71:281–99.
  • World Health Organization. Malnutrition [Internet]. WHO. 2021 [cited 2022 Jan 13]. Available from: https://www.who.int/news-room/fact-sheets/detail/malnutrition.
  • Kocina P. Body composition of spinal cord injured adults. Sports Med. 1997;23:48–60. doi:10.2165/00007256-199723010-00005.
  • Dionyssiotis Y, MMavrogenis A, Trovas G, Skarantavos G, Papathanasiou J, Papagelopoulos P. Bone and soft tissue changes In patients with spinal cord injury and multiple sclerosis. Folia Med (Plovdiv). 2014;56:237–44. doi:10.1515/folmed-2015-0002.
  • Bauman WA, Spungen AM, Adkins RH, Kemp BJ. Metabolic and endocrine changes in persons aging with spinal cord injury. Assist Technol. 1999;11:88–96. doi:10.1080/10400435.1999.10131993.
  • Galea MP. Spinal cord injury and physical activity: preservation of the body. Spinal Cord. 2012;50:344–51. doi:10.1038/sc.2011.149.
  • Maggioni M, Bertoli S, Margonato V, Merati G, Veicsteinas A, Testolin G. Body composition assessment in spinal cord injury subjects. Acta Diabetol. 2003;40:S183–6. doi:10.1007/s00592-003-0061-7.
  • Powell D, Affuso O, Chen Y. Weight change after spinal cord injury. J Spinal Cord Med. 2017;40:130–7. doi:10.1179/2045772314Y.0000000264.
  • Tanaka M, Momosaki R, Wakabayashi H, Kikura T, Maeda K. Relationship between nutritional status and improved ADL in individuals with cervical spinal cord injury in a convalescent rehabilitation ward. Spinal Cord. 2019;57:501–8. doi:10.1038/s41393-019-0245-9.
  • Wong S, Derry F, Jamous A, Hirani SP, Grimble G, Forbes A. The prevalence of malnutrition in spinal cord injuries patients: a UK multicentre study. B J Nutr. 2012;108:918–23. doi:10.1017/S0007114511006234.
  • Price M. Energy expenditure and metabolism during exercise in persons with a spinal cord injury. Sports Med. 2010;40:681–96. doi:10.2165/11531960-000000000-00000.
  • Groah SL, Nash MS, Ljungberg IH, Libin A, Hamm LF, Ward E, et al. Nutrient intake and body habitus after spinal cord injury: an analysis by sex and level of injury. J Spinal Cord Med. 2009;32:25–33. doi:10.1080/10790268.2009.11760749.
  • Barboriak JJ, Rooney CB, el Ghatit AZ, Spuda K, Anderson AJ. Nutrition in spinal cord injury patients. J Am Paraplegia Soc. 1983;6:32–6. doi:10.1080/01952307.1983.11735976.
  • Thibault-Halman G, Casha S, Singer S, Christie S. Acute management of nutritional demands after spinal cord injury. J Neurotrauma. 2011;28:1497–507. doi:10.1089/neu.2009.1155.
  • Liusuwan RA, Widman LM, Abresch RT, Styne DM, McDonald CM. Body composition and resting energy expenditure in patients aged 11 to 21 years with spinal cord dysfunction compared to controls: comparisons and relationships among the groups. J Spinal Cord Med. 2007;30:S105–11. doi:10.1080/10790268.2007.11754613.
  • Moussavi RM, Garza HM, Eisele SG, Rodriguez G, Rintala DH. Serum levels of vitamins A, C, and E in persons with chronic spinal cord injury living in the community. Arch Phys Med Rehabil. 2003;84:1061–7. doi:10.1016/s0003-9993(03)00033-9.
  • Sriram K, Lonchyna VA. Micronutrient supplementation in adult nutrition therapy: practical considerations. JPEN J Parenter Enteral Nutr. 2009;33:548–62. doi:10.1177/0148607108328470.
  • Polcz ME, Barbul A. The role of vitamin A in wound healing. Nutr Clin Pract. 2019;34:695–700. doi:10.1002/ncp.10376.
  • Conaway HH, Henning P, Lerner UH. Vitamin A metabolism, action, and role in skeletal homeostasis. Endocr Rev. 2013;34(6):766–97. doi:10.1210/er.2012-1071.
  • Dawson M. The importance of vitamin A in nutrition. Curr Pharm Des. 2000;6:311–25. doi:10.2174/1381612003401190.
  • Zhou Y, Zhang H, Zheng B, Ye L, Zhu S, Johnson NR, et al. Retinoic acid induced-autophagic flux inhibits ER-stress dependent apoptosis and prevents disruption of blood-spinal cord barrier after spinal cord injury. Int J Biol Sci. 2016;12:87–99. doi:10.7150/ijbs.13229.
  • Wong LF, Yip P, Battaglia A, Grist J, Corcoran J, Maden M, et al. Retinoic acid receptor β2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci. 2006;9(2):243–50. doi:10.1038/nn1622.
  • Corcoran J, So PL, Barber RD, Vincent KJ, Mazarakis ND, Mitrophanous KA, et al. Retinoic acid receptor beta2 and neurite outgrowth in the adult mouse spinal cord in vitro. J. Cell. Sci. 2002;115(Pt 19):3779–86. doi:10.1242/jcs.00046.
  • Corcoran J, So PL, Maden M. Absence of retinoids can induce motoneuron disease in the adult rat and a retinoid defect is present in motoneuron disease patients. J Cell Sci 2002;115(Pt 24):4735–41. doi:10.1242/jcs.00169.
  • Schrage K, Koopmans G, Joosten EAJ, Mey J. Macrophages and neurons are targets of retinoic acid signaling after spinal cord contusion injury. Eur J Neurosci. 2006;23(2):285–95. doi:10.1111/j.1460-9568.2005.04534.x.
  • Mey J, Morassutti JD, Brook G, Liu RH, Zhang YP, Koopmans G, et al. Retinoic acid synthesis by a population of NG2-positive cells in the injured spinal cord. Eur J Neurosci. 2005;21(6):1555–68. doi:10.1111/j.1460-9568.2005.03928.x.
  • Van Neerven S, Mey J, Joosten EA, van Kleef M, Marcus MAE, Deumens R. Systemic but not local administration of retinoic acid reduces early transcript levels of pro-inflammatory cytokines after experimental spinal cord injury. Neurosci Lett. 2010;485:21–5. doi:10.1016/j.neulet.2010.08.051.
  • Allison DJ, Beaudry KM, Thomas AM, Josse AR, Ditor DS. Changes in nutrient intake and inflammation following an anti-inflammatory diet in spinal cord injury. J Spinal Cord Med. 2019;42(6):768–77. doi:10.1080/10790268.2018.1519996.
  • Zhou L, Ouyang L, Lin S, Chen S, Liu Y, Zhou W, Wang X. Protective role of β-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int Immunopharmacol. 2018;61:92–99. doi:10.1016/j.intimp.2018.05.022.
  • Werner EA, Deluca HF. Retinoic acid is detected at relatively high levels in the CNS of adult rats. Am J Physiol Endocrinol Metab. 2002;282(3):E672–8. doi:10.1152/ajpendo.00280.2001.
  • Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81. doi:10.1056/NEJMra070553.
  • Navarrete-Opazo A, Cuitiño P, Salas I. Effectiveness of dietary supplements in spinal cord injury subjects. Disabil Health J. 2017;10:183–97. doi:10.1016/j.dhjo.2016.12.002.
  • Flueck JL, Perret C. Vitamin D deficiency in individuals with a spinal cord injury: a literature review. Spinal Cord. 2017;55:428–34. doi:10.1038/sc.2016.155.
  • Pellicane AJ, Wysocki NM, Schnitzer TJ. Prevalence of 25-hydroxyvitamin D deficiency in the outpatient rehabilitation population. Am J Phys Med Rehabil. 2010;89(11):899–904. doi:10.1097/PHM.0b013e3181f71112.
  • Amorim S, Teixeira VH, Corredeira R, Cunha M, Maia B, Margalho P, et al. Creatine or vitamin D supplementation in individuals with a spinal cord injury undergoing resistance training: a double-blinded, randomized pilot trial. J Spinal Cord Med. 2018;41(4):471–8. doi:10.1080/10790268.2017.1372058.
  • Bauman WA, Zhang RL, Morrison N, Spungen AM. Acute suppression of bone turnover with calcium infusion in persons with spinal cord injury. J Spinal Cord Med. 2009;32(4):398–403. doi:10.1080/10790268.2009.11754393.
  • Bauman WA, Emmons RR, Cirnigliaro CM, Kirshblum SC, Spungen AM. An effective oral vitamin D replacement therapy in persons with spinal cord injury. J Spinal Cord Med. 2011;34:455–60. doi:10.1179/2045772311Y.0000000032.
  • Flueck JL, Schlaepfer MW, Perret C. Effect of 12-week vitamin D supplementation on 25[OH]D status and performance in athletes with a spinal cord injury. Nutrients. 2016;8:586. doi:10.3390/nu8100586.
  • Pritchett K, Pritchett RC, Stark L, Broad E, LaCroix M. Effect of vitamin D supplementation on 25(OH)D status in elite athletes with spinal cord injury. Int J Sport Nutr Exerc Metab. 2019;29:18–23. doi:10.1123/ijsnem.2017-0233.
  • Bauman WA, Spungen AM, Morrison N, Zhang RL, Schwartz E. Effect of a vitamin D analog on leg bone mineral density in patients with chronic spinal cord injury. J Rehabil Res Dev. 2005;42(5):625–34. doi:10.1682/jrrd.2004.11.0145.
  • Aminmansour B, Asnaashari A, Rezvani M, Ghaffarpasand F, Amin Noorian SM, Saboori M, Abdollahzadeh P. Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J Spinal Cord Med. 2016;39(3):272–80. doi:10.1080/10790268.2015.1114224.
  • Lamarche J, Mailhot G. Vitamin D and spinal cord injury: should we care? Spinal Cord. 2016;54:1060–75. doi:10.1038/sc.2016.131.
  • Lee GY, Han SN. The role of vitamin E in immunity. Nutrients. 2018;10:1614. doi:10.3390/nu10111614.
  • Robert AA, Zamzami M, Sam AE, Al Jadid M, Al Mubarak S. The efficacy of antioxidants in functional recovery of spinal cord injured rats: an experimental study. Neurol Sci. 2012;33(4):785–91. doi:10.1007/s10072-011-0829-4.
  • Cordero K, Coronel GG, Serrano-Illán M, Cruz-Bracero J, Figueroa JD, De León M. Effects of dietary vitamin E supplementation in bladder function and spasticity during spinal cord injury. Brain Sci. 2018;8(3):38. doi:10.3390/brainsci8030038.
  • Hall ED. Antioxidant therapies for acute spinal cord injury. Neurotherapeutics. 2011;8(2):152–67. doi:10.1007/s13311-011-0026-4.
  • Lu R, Kallenborn-Gerhardt W, Geisslinger G, Schmidtko A. Additive antinociceptive effects of a combination of vitamin C and vitamin E after peripheral nerve injury. PloS one. 2011;6:e29240. doi:10.1371/journal.pone.0029240.
  • Chen HC, Hsu PW, Tzaan WC, Lee AW. Effects of the combined administration of vitamins C and E on the oxidative stress status and programmed cell death pathways after experimental spinal cord injury. Spinal Cord. 2014;52:24–8. doi:10.1038/sc.2013.140.
  • Fouad K, Rank MM, Vavrek R, Murray KC, Sanelli L, Bennett DJ. Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors. J Neurophysiol. 2010;104:2975–84. doi:10.1152/jn.00499.2010.
  • Morsy MD, Mostafa OA, Hassan WN. A potential protective effect of alpha-tocopherol on vascular complication in spinal cord reperfusion injury in rats. J Biomed Sci. 2010;17:55. doi:10.1186/1423-0127-17-55.
  • Burri BJ, Dopler-Nelson M, Neidllinger TR. Measurements of the major isoforms of vitamins A and E and carotenoids in the blood of people with spinal-cord injuries. J Chromatogr A. 2003;987:359–66. doi:10.1016/s0021-9673(02)01908-8.
  • Roberts LJ 2nd, Oates JA, Linton MF, Fazio S, Meador BP, Gross MD, et al. The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radic Biol Med. 2007;43(10):1388–93. doi:10.1016/j.freeradbiomed.2007.06.019.
  • Mkrtchyan G, Aleshin V, Parkhomenko Y, Kaehne T, Di Salvo ML, Parroni A, et al. Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis. Sci Rep. 2015;5:12583. doi:10.1038/srep12583.
  • Pacei F, Tesone A, Laudi N, Laudi E, Cretti A, Pnini S, et al. The relevance of thiamine evaluation in a practical setting. Nutrients. 2020;12(9):1–17. doi:10.3390/nu12092810.
  • Boyko A, Tsepkova P, Aleshin V, Artiukhov A, Mkrtchyan G, Ksenofontov A, et al. Severe spinal cord injury in rats induces chronic changes in the spinal cord and cerebral cortex metabolism, adjusted by thiamine that improves locomotor performance. Front Mol Neurosci. 2021;14:620593. doi:10.3389/fnmol.2021.620593.
  • Boyko A, Ksenofontov A, Ryabov S, Baratova L, Graf A, Bunik V. Delayed influence of spinal cord injury on the amino acids of NO(•) metabolism in rat cerebral cortex is attenuated by thiamine. Front Med (Laussane). 2018;4:249. doi:10.3389/fmed.2017.00249.
  • Yu CZ, Liu YP, Liu S, Yan M, Hu SJ, Song XJ. Systematic administration of B vitamins attenuates neuropathic hyperalgesia and reduces spinal neuron injury following temporary spinal cord ischaemia in rats. Eur J Pain. 2014;18:76–85. doi:10.1002/j.1532-2149.2013.00390.x.
  • Torres S, Salgado-Ceballos H, Torres JL, Orozco-Suarez S, Díaz-Ruíz A, Martínez A, et al. Early metabolic reactivation versus antioxidant therapy after a traumatic spinal cord injury in adult rats. Neuropathology. 2010;30(1):36–43. doi:10.1111/j.1440-1789.2009.01037.x.
  • Dolci S, Mannino L, Bottani E, Campanelli A, Di Chio M, Zorzin S, et al. Therapeutic induction of energy metabolism reduces neural tissue damage and increases microglia activation in severe spinal cord injury. Pharmacol Res. 2022;178:106149. doi:10.1016/j.phrs.2022.106149.
  • Wong S, Graham A, Ng T, Forbes A, Grimble G. Micronutrients intake in overweight adults with chronic spinal cord injury – result from spinal clinic for obese outpatient project (SCOOP). Proc Nutr Soc. 2010;69(OCE6):E408. doi:10.1017/S0029665110002715.
  • Depeint F, Bruce WR, Shangari N, Mehta R, O’Brien PJ. Mitochondrial function and toxicity: role of B vitamins on the one-carbon transfer pathways. Chem Biol Interact. 2006;163:113–32. doi:10.1016/j.cbi.2006.05.010.
  • Plantone D, Pardini M, Rinaldi G. Riboflavin in neurological diseases: a narrative review. Clin Drug Investig. 2021;41:513–27. doi:10.1007/s40261-021-01038-1.
  • Sakarcan S, Ersahin M, Eminoglu ME, Çevik Ö, Ak E, Ercan F, et al. Riboflavin treatment reduces apoptosis and oxidative DNA damage in a rat spinal cord injury model. Clin Exp Health Sci. 2017;7:55–63. doi:10.5152/clinexphealthsci.2017.218.
  • Ashoori M, Saedisomeolia A. Riboflavin (vitamin B₂) and oxidative stress: a review. Br J Nutr. 2014;111(11):1985–91. doi:10.1017/S0007114514000178.
  • Olfat N, Ashoori M, Saedisomeolia A. Riboflavin is an antioxidant: a review update. Br J Nutr. 2022;128(10):1887–1895. doi:10.1017/S0007114521005031.
  • Brewer KL, Hardin JS. Neuroprotective effects of nicotinamide after experimental spinal cord injury. Acad Emerg Med. 2004;11:125–30. doi:10.1111/j.1553-2712.2004.tb01421.x.
  • Isbir CS, Ak K, Kurtkaya O, Akgün S, Scheitauer BW, Sav A, et al. Ischemic preconditioning and nicotinamide in spinal cord protection in an experimental model of transient aortic occlusion. Eur J Cardiothorac Surg. 2003;23:1028–33. doi:10.1016/S1010-7940(03)00110-6.
  • Nash MS, Lewis JE, Dyson-Hudson TA, Szlachcic Y, Yee F, Mendez AJ, et al. Safety, tolerance, and efficacy of extended-release niacin monotherapy for treating dyslipidemia risks in persons with chronic tetraplegia: a randomized multicenter controlled trial. Arch Phys Med Rehabil. 2011;92:399–410. doi:10.1016/j.apmr.2010.06.029.
  • Yang R, He J, Wang Y. Activation of the niacin receptor HCA2 reduces demyelination and neurofilament loss, and promotes functional recovery after spinal cord injury in mice. Eur J Pharmacol. 2016;791:124–36. doi:10.1016/j.ejphar.2016.08.020.
  • Hosseini L, Vafaee MS, Mahmoudi J, Badalzadeh R. Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. Biogerontology. 2019;20(4):381–95. doi:10.1007/s10522-019-09805-6.
  • Mokudai T, Ayoub IA, Sakakibara Y, Lee EJ, Ogilvy CS, Maynard KI. Delayed treatment with nicotinamide (vitamin B(3)) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats. Stroke. 2000;31(7):1679–85. doi:10.1161/01.str.31.7.1679.
  • Park JH, Long A, Owens K, Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol Dis. 2016;95:102–10. doi:10.1016/j.nbd.2016.07.018.
  • Wang C, Zhang Y, Ding J, Zhao Z, Qian C, Luan Y, Teng GJ. Nicotinamide administration improves remyelination after stroke. Neural Plast. 2017;12. doi:10.1155/2017/7019803.
  • Iskandar BJ, Nelson A, Resnick D, Skene JHP, Gao P, Johnson C, et al. Folic acid supplementation enhances repair of the adult central nervous system. Ann Neurol. 2004;56:221–7. doi:10.1002/ana.20174.
  • Zhang C, Shen L. Folic acid in combination with adult neural stem cells for the treatment of spinal cord injury in rats. Int J Clin Exp Med. 2015;8:10471–80.
  • Miranpuri GS, Nguyen J, Moreno N, Yutuc NA, Kim J, Buttar S, et al. Folic acid modulates matrix metalloproteinase-9 expression following spinal cord injury. Ann Neurosci. 2019;26:60–5. doi:10.5214/ans.0972.7531.260205.
  • Miranpuri GS, Meethal SV, Sampene E, Chopra A, Buttar S, Nacht C, et al. Folic acid modulates matrix metalloproteinase-2 expression, alleviates neuropathic pain, and improves functional recovery in spinal cord-injured rats. Ann Neurosci. 2017;24:74–81. doi:10.1159/000475896.
  • Barber D, Foster D, Rogers S. The importance of nutrition in the care of persons with spinal cord injury. J Spinal Cord Med. 2003;26(2):122–3. doi:10.1080/10790268.2003.11753670.
  • Petchkrua W, Burns SP, Stiens SA, James JJ, Little JW. Prevalence of vitamin B 12 deficiency in spinal cord injury. Arch Phys Med Rehabil. 2003;84:1675–9. doi:10.1053/S0003-9993(03)00318-6.
  • Smith AD, Warren MJ, Refsum H. Vitamin B12. Adv Food Nutr Res. 2018;83:215–79. doi:10.1016/bs.afnr.2017.11.005.
  • Bauman WA, Adkins RH, Spungen AM, Waters RL, Kemp B, Herbert V. Levels of plasma homocysteine in persons with spinal cord injury. J Spinal Cord Med. 2001;24(2):81–6. doi:10.1080/10790268.2001.11753559.
  • Harrington AL, Dixon TM, Ho CH. Vitamin B12 deficiency as a cause of delirium in a patient with spinal cord injury. Arch of Phys Med Rehabil. 2011;92:1917–20. doi:10.1016/j.apmr.2011.06.003.
  • Petchkrua W, Little JW, Burns SP, Stiens SA, James JJ. Vitamin B12 deficiency in spinal cord injury: a retrospective study. J Spinal Cord Med. 2003;26:116–21. doi:10.1080/10790268.2003.11753669.
  • Lussi C, Frotzler A, Jenny A, Schaefer DJ, Kressig RW, Scheel-Sailer A. Nutritional blood parameters and nutritional risk screening in patients with spinal cord injury and deep pressure ulcer – a retrospective chart analysis article. Spinal Cord. 2018;56:168–75. doi:10.1038/s41393-017-0016-4.
  • Xiao T, Wang Y, Wei H, Yu P, Jiang Y, Mao L. Electrochemical monitoring of propagative fluctuation of ascorbate in the live rat brain during spreading depolarization. Angew Chem Int Ed Engl. 2019;58:6616–9. doi:10.1002/anie.201901035.
  • Zhang Y, Hou G, Ji W, Rao F, Zhou R, Gao S, et al. Persistent oppression and simple decompression both exacerbate spinal cord ascorbate levels. Int J Med Sci. 2020;17:1167–76. doi:10.7150/ijms.41289.
  • Tsai PJ, Chen WY, Tzeng SF, Liang WM, Yang CS. Experimental spinal cord injury induced an increase of extracellular ascorbic acid concentration in anesthetized rats: a microdialysis study. Clin Chim Acta. 2005;362:94–100. doi:10.1016/j.cccn.2005.05.033.
  • Cristante AF, Barros Filho TEP, Oliveira RP, Marcon RM, Rocha ID, Hanania FR, et al. Antioxidative therapy in contusion spinal cord injury. Spinal Cord. 2009;47:458–63. doi:10.1038/sc.2008.155.
  • Wang WG, Xiu RJ, Xu ZW, Yin YX, Feng Y, Cao XC, et al. Protective effects of vitamin C against spinal cord injury-induced renal damage through suppression of NF-κB and proinflammatory cytokines. Neurol Sci. 2015;36:521–6. doi:10.1007/s10072-014-1965-4.
  • Hosseini M, Sarveazad A, Babahajian A, Baikpour M, Vaccaro AR, Chapman JR, et al. Effect of vitamins C and E on recovery of motor function after spinal cord injury: systematic review and meta-analysis of animal studies. Nutr Rev. 2020;78:465–73. doi:10.1093/nutrit/nuz076.
  • Lee JY, Choi HY, Yune TY. Fluoxetine and vitamin C synergistically inhibits blood-spinal cord barrier disruption and improves functional recovery after spinal cord injury. Neuropharmacology. 2016;109:78–87. doi:10.1016/j.neuropharm.2016.05.018.
  • Salem N, Salem MY, Elmaghrabi MM, Elawady MA, Elawady MA, Sabry D, et al. Does vitamin C have the ability to augment the therapeutic effect of bone marrow-derived mesenchymal stem cells on spinal cord injury? Neural Regen Res. 2017;12:2050–8. doi:10.4103/1673-5374.221163.
  • Hong JY, Davaa G, Yoo H, Hong K, Hyun JK. Ascorbic acid promotes functional restoration after spinal cord injury partly by epigenetic modulation. Cells. 2020;9:1310. doi:10.3390/cells9051310.
  • Mock DM. Biotin: from nutrition to therapeutics. J Nutr. 2017;147(8):1487–92. doi:10.3945/jn.116.238956.
  • Valbuena GN, Cantoni L, Tortarolo M, Bendotti C, Keun HC. Spinal cord metabolic signatures in models of fast- and slow-progressing SOD1G93A amyotrophic lateral sclerosis. Front Neurosci. 2019;13:1276. doi:10.3389/fnins.2019.01276.
  • Hachen HJ, Rossier AB, Bouvier CA, Ritschard J. Deficiency within the extrinsic prothrombin activator system in patients with acute spinal cord injury. Paraplegia. 1974;12(2):132–8. doi:10.1038/sc.1974.20.
  • Liu X, Liu M, Turner R, Iwaniec U, Kim H, Halloran B. Dried plum mitigates spinal cord injury-induced bone loss in mice. JOR Spine. 2020;3(4):e1113. doi:10.1002/jsp2.1113.
  • Liu D, Guo H, Griffin JH, Fernández JA, Zlokovic BV. Protein S confers neuronal protection during ischemic/hypoxic injury in mice. Circulation. 2003;107(13):1791–6. doi:10.1161/01.CIR.0000058460.34453.5A.
  • Alisi L, Cao R, De Angelis C, Cafolla A, Caramia F, Cartocci G, et al. The relationships between vitamin K and cognition: a review of current evidence. Front Neurol. 2019;10:239. doi:10.3389/fneur.2019.00239.
  • Parra M, Stahl S, Hellmann H. Vitamin B6 and its role in cell metabolism and physiology. Cells. 2018;7(7). doi:10.3390/cells7070084.
  • Yang TT, Wang SJ. Pyridoxine inhibits depolarization-evoked glutamate release in nerve terminals from rat cerebral cortex: a possible neuroprotective mechanism? J Pharmacol Exp Ther. 2009;331(1):244–54. doi:10.1124/jpet.109.155176.
  • Ollivier-Lanvin K, Keeler BE, Siegfried R, Houlé JD, Lemay MA. Proprioceptive neuropathy affects normalization of the H-reflex by exercise after spinal cord injury. Exp Neurol. 2010;221(1):198–205. doi:10.1016/j.expneurol.2009.10.023.
  • Hadtstein F, Vrolijk M. Vitamin B-6-induced neuropathy: exploring the mechanisms of pyridoxine toxicity. Adv Nutr. 2021;12(5):1911–29. doi:10.1093/advances/nmab033.
  • Yang H, Zhang P, Xie M, Luo J, Zhang J, Zhang G, et al. Parallel metabolomic profiling of cerebrospinal fluid, plasma, and spinal cord to identify biomarkers for spinal cord injury. J Mol Neurosci. 2022;72(1):126–35. doi:10.1007/s12031-021-01903-w.
  • Dhall SS, Hadley MN, Aarabi B, Gelb DE, Hurlbert RJ, Rozzelle CJ, et al. Nutritional support after spinal cord injury. Neurosurgery. 2013;72(SUPPL.2):255–9. doi:10.1097/00006123-200203001-00015.
  • Wong S, Graham A, Green D, Hirani SP, Forbes A. Nutritional supplement usage in patients admitted to a spinal cord injury center. J Spinal Cord Med. 2013;36(6):645–51. doi:10.1179/2045772313Y.0000000105.
  • Kang Y, Ding H, Zhou HX, Wei ZJ, Liu L, Pan DY, Feng SQ. Epidemiology of worldwide spinal cord injury: a literature review. J Neurorestoratology. 2018;6:1–9. doi:10.2147/JN.S143236.
  • Zhu Y, Minović I, Dekker LH, Eggersdorfer ML, van Zon SKR, Reijneveld SA, et al. Vitamin status and diet in elderly with low and high socioeconomic status: the lifelines-MINUTHE study. Nutrients. 2020;12(9):2659. doi:10.3390/nu12092659.
  • Nutt D, Hayes A, Fonville L, Zafar R, Palmer EOC, Paterson L, et al. Alcohol and the brain. Nutrients. 2021;13(11):3938. doi:10.3390/nu13113938.
  • Ortega Anta RM, Jiménez Ortega AI, Martínez García RM, Lorenzo Mora AM, Lozano Estevan MDC. Problemática nutricional en fumadores y fumadores pasivos [Nutritional problems in smokers and passive smokers]. Nutr Hosp. 2021;38(Spec No2):31–34. doi:10.20960/nh.03794.
  • Sivaprasad M, Shalini T, Reddy PY, Seshacharyulu M, Madhavi G, Naveen Kumar B, et al. Prevalence of vitamin deficiencies in an apparently healthy urban adult population: assessed by subclinical status and dietary intakes. Nutrition. 2019;63-64:106–113. doi:10.1016/j.nut.2019.01.017.
  • Field MS, Kamynina E, Chon J, Stover PJ. Nuclear folate metabolism. Annu Rev Nutr. 2018;38:219–43. doi:10.1146/annurev-nutr-071714-034441.
  • Zinder R, Cooley R, Vlad LG, Molnar JA. Vitamin A and wound healing. Nutr Clin Pract. 2019;34(6):839–49. doi:10.1002/ncp.10420.
  • Farkas GJ, Pitot MA, Berg AS, Gater DR. Nutritional status in chronic spinal cord injury: a systematic review and meta-analysis. Spinal Cord. 2019;57(1):3–17. doi:10.1038/s41393-018-0218-4.
  • Guéant JL, Guéant-Rodriguez RM, Alpers DH. Chapter nine – vitamin B12 absorption and malabsorption. In: Litwack G, editor. Vitamins and hormones [Internet]. Academic Press; 2022. p. 241–74. Available from: https://www.sciencedirect.com/science/article/pii/S0083672922000164
  • Margulies SL, Kurian D, Elliott MS, Han Z. Vitamin D deficiency in patients with intestinal malabsorption syndromes–think in and outside the gut. J Dig Dis. 2015;16(11):617–33. doi:10.1111/1751-2980.12283.
  • Farkas GJ, Sneij A, Gater DR Jr. Dietetics after spinal cord injury: current evidence and future perspectives. Top Spinal Cord Inj Rehabil. 2021;27(1):100–8. doi:10.46292/sci20-00031.
  • Rautiainen S, Manson JE, Lichtenstein AH, Sesso HD. Dietary supplements and disease prevention – a global overview. Nat Rev Endocrinol. 2016;12(7):407–20. doi:10.1038/nrendo.2016.54.
  • Borel P, Desmarchelier C. Bioavailability of fat-soluble vitamins and phytochemicals in humans: effects of genetic variation. Annu Rev Nutr. 2018;38:69–96. doi:10.1146/annurev-nutr-082117-051628.
  • Gabardi S, Munz K, Ulbricht C. A review of dietary supplement-induced renal dysfunction. Clin J Am Soc Nephrol. 2007;2(4):757–65. doi:10.2215/CJN.00500107.
  • García-Cortés M, Robles-Díaz M, Ortega-Alonso A, Medina-Caliz I, Andrade RJ. Hepatotoxicity by dietary supplements: a tabular listing and clinical characteristics. Int J Mol Sci. 2016;17(4):537. doi:10.3390/ijms17040537.
  • Anselmo F, Driscoll MS. Deleterious side effects of nutritional supplements. Clin Dermatol. 2021;39(5):745–56. doi:10.1016/j.clindermatol.2021.05.002v.
  • Chen CY, Chuang TY, Tsai YA, Tai HC, Lu CL, Kang LJ, et al. Loss of sympathetic coordination appears to delay gastrointestinal transit in patients with spinal cord injury. Dig Dis Sci. 2004;49(5):738–43. doi:10.1023/b:ddas.0000030082.05773.c9.
  • Shepherd Center. Understanding Spinal Cord Injury Booklet [Internet]. Shepherd Center. 2011; [cited 2021 Dec 15]. Available from: https://www.spinalinjury101.org/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.