Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 27, 2024 - Issue 1
182
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Sodium chloride-induced changes in oxidative stress, inflammation, and dysbiosis in experimental multiple sclerosis

, ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all

References

  • Krementsov DN, Case LK, Hickey WF, Teuscher C. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. FASEB J. 2015;29:3446. doi:10.1096/FJ.15-272542.
  • Farez MF, Mascanfroni ID, Méndez-Huergo SP, et al. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell. 2015;162:1338–1352. doi:10.1016/j.cell.2015.08.025.
  • Long T, Yang Y, Peng L, Li Z. Neuroprotective effects of melatonin on experimental allergic encephalomyelitis mice via anti-oxidative stress activity. J Mol Neurosci. 2018;64:233–241. doi:10.1007/s12031-017-1022-x.
  • Soto-Brambila AP, Gabriel Ortiz G, Rivero-Moragrega P, et al. Relapsing remitting multiple sclerosis and its relationship with the immune system and oxidative stress. Curr Immunol Rev. 2017;14:15–23. doi:10.2174/1573395514666171226154300.
  • Gunata M, Parlakpinar H, Acet HA. Melatonin: a review of its potential functions and effects on neurological diseases. Rev Neurol (Paris). 2020;176:148–165. doi:10.1016/j.neurol.2019.07.025.
  • Chen D, Zhang T, Lee TH. Cellular mechanisms of melatonin: insight from neurodegenerative diseases. Biomolecules. 2020;10:1–26. doi:10.3390/biom10081158.
  • Zeydan B, Atkinson EJ, Weis DM, et al. Reproductive history and progressive multiple sclerosis risk in women. Brain Commun. 2020;2:fcaa185, doi:10.1093/braincomms/fcaa185.
  • Hucke S, Eschborn M, Liebmann M, et al. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity. J Autoimmun. 2016;67:90–101. doi:10.1016/J.JAUT.2015.11.001.
  • Hammer A, Schliep A, Jörg S, et al. Impact of combined sodium chloride and saturated long-chain fatty acid challenge on the differentiation of T helper cells in neuroinflammation. J Neuroinflammation. 2017;14:1–9. doi:10.1186/S12974-017-0954-Y/FIGURES/3.
  • Matveeva O, Bogie JFJ, Hendriks JJA, et al. Western lifestyle and immunopathology of multiple sclerosis. Ann N Y Acad Sci. 2018;1417:71–86. doi:10.1111/NYAS.13583.
  • Na SY, Janakiraman M, Leliavski A, Krishnamoorthy G. High-salt diet suppresses autoimmune demyelination by regulating the blood–brain barrier permeability. Proc Natl Acad Sci U S A. 2021;118:2025944118, doi:10.1073/PNAS.2025944118/-/DCSUPPLEMENTAL.
  • Matthias J, Heink S, Picard F, et al. Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J Clin Invest. 2020;130:4587–4600. doi:10.1172/JCI137786.
  • Heras-Garvin A, Refolo V, Reindl M, et al. High-salt diet does not boost neuroinflammation and neurodegeneration in a model of α-synucleinopathy. J Neuroinflammation. 2020;17; doi:10.1186/S12974-020-1714-Y.
  • Gallardo JM, de Carmen Prado-Uribe M, Amato D, Paniagua R. Inflammation and oxidative stress markers by pentoxifylline treatment in rats with chronic renal failure and high sodium intake. Arch Med Res. 2007;38:34–38. doi:10.1016/J.ARCMED.2006.08.010.
  • Hu L, Zhu S, Peng X, et al. High salt elicits brain inflammation and cognitive dysfunction, accompanied by alternations in the Gut microbiota and decreased SCFA production. J Alzheimers Dis. 2020;77:629–640. doi:10.3233/JAD-200035.
  • Ferguson JF, Aden LA, Barbaro NR, et al. High dietary salt–induced DC activation underlies microbial dysbiosis-associated hypertension. JCI Insight. 2019;4; doi:10.1172/JCI.INSIGHT.126241.
  • Smiljanec K, Lennon SL. Sodium, hypertension, and the gut: does the gut microbiota go salty? Am J Physiol Heart Circ Physiol. 2019;317:H1173–H1182. doi:10.1152/AJPHEART.00312.2019.
  • Janakiraman M, Krishnamoorthy G. Emerging role of diet and microbiota interactions in neuroinflammation. Front Immunol. 2018;9:2067, doi:10.3389/FIMMU.2018.02067.
  • Boziki MK, Kesidou E, Theotokis P, et al. Microbiome in multiple sclerosis: where are we, what we know and do not know. Brain Sci. 2020;10:234. doi:10.3390/BRAINSCI10040234.
  • Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011. doi:10.1038/nature10554.
  • Conde C, Escribano BM, Luque E, et al. Extra-virgin olive oil modifies the changes induced in non-nervous organs and tissues by experimental autoimmune encephalomyelitis models. Nutrients. 2019;11:2448, doi:10.3390/nu11102448.
  • Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4615–4622. doi:10.1073/PNAS.1000082107.
  • Miyauchi E, Kim SW, Suda W, et al. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature. 2020;585:102–106. doi:10.1038/s41586-020-2634-9.
  • Binger KJ, Gebhardt M, Heinig M, et al. High salt reduces the activation of IL-4– and IL-13–stimulated macrophages. J Clin Invest. 2015;125:4223, doi:10.1172/JCI80919.
  • Pérez-Nievas BG, García-Bueno B, Madrigal JLM, Leza JC. Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in dark agouti rats: mechanisms implicated. J Neuroinflammation. 2010;7:60, doi:10.1186/1742-2094-7-60.
  • Escribano BM, Medina-Fernández FJ, Aguilar-Luque M, et al. Lipopolysaccharide binding protein and oxidative stress in a multiple sclerosis model. Neurotherapeutics. 2017;14:199–211. doi:10.1007/s13311-016-0480-0.
  • Stosic-Grujicic S, Ramic Z, Bumbasirevic V, et al. Induction of experimental autoimmune encephalomyelitis in dark agouti rats without adjuvant. Clin Exp Immunol. 2004;136:49–55. doi:10.1111/j.1365-2249.2004.02418.x.
  • Escribano BM, Muñoz-Jurado A, Luque E, et al. Lactose and casein cause changes on biomarkers of oxidative damage and dysbiosis in an experimental model of multiple sclerosis. CNS Neurol Disord Drug Targets. 2021;21:680–692. doi:10.2174/1871527320666211207101113.
  • Escribano BM, Muñoz-Jurado A, Caballero-Villarraso J, et al. Protective effects of melatonin on changes occurring in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Mult Scler Relat Disord. 2022;58; doi:10.1016/J.MSARD.2022.103520.
  • Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–78. doi:10.1016/0076-6879(90)86141-H.
  • Ricart-Jané D, Llobera M, López-Tejero MD. Anticoagulants and other preanalytical factors interfere in plasma nitrate/nitrite quantification by the Griess method. Nitric Oxide - Biol Chem. 2002;6:178–185. doi:10.1006/niox.2001.0392.
  • Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–21. doi:10.1016/S0076-6879(84)05015-1.
  • Cortese M, Yuan C, Chitnis T, et al. No association between dietary sodium intake and the risk of multiple sclerosis. Neurology. 2017;89:1322, doi:10.1212/WNL.0000000000004417.
  • Faraco G, Hochrainer K, Segarra SG, et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature. 2019;574:686, doi:10.1038/S41586-019-1688-Z.
  • Fitzgerald KC, Munger KL, Hartung HP, et al. Sodium intake and multiple sclerosis activity and progression in BENEFIT. Ann Neurol. 2017;82:20, doi:10.1002/ANA.24965.
  • Nourbakhsh B, Graves J, Casper TC, et al. Dietary salt intake and time to relapse in paediatric multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87:1350–1353. doi:10.1136/JNNP-2016-313410.
  • Amara S, Ivy MT, Myles EL, Tiriveedhi V. Sodium channel γENaC mediates IL-17 synergized high salt induced inflammatory stress in breast cancer cells. Cell Immunol. 2016;302:1, doi:10.1016/J.CELLIMM.2015.12.007.
  • Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–589. doi:10.1038/nature24628.
  • Gilman TL, Mitchell NC, Daws LC, Toney GM. Neuroinflammation contributes to high salt intake-augmented neuronal activation and active coping responses to acute stress. Int J Neuropsychopharmacol. 2019;22:137, doi:10.1093/IJNP/PYY099.
  • Schweda F. Salt feedback on the renin-angiotensin-aldosterone system. Pflugers Arch. 2015;467:565–576. doi:10.1007/S00424-014-1668-Y.
  • Platten M, Youssef S, Eun MH, et al. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci U S A. 2009;106:14948–14953. doi:10.1073/PNAS.0903958106/SUPPL_FILE/0903958106SI.PDF.
  • Živković M, Kolaković A, Stojković L, et al. Renin-angiotensin system gene polymorphisms as risk factors for multiple sclerosis. J Neurol Sci. 2016;363:29–32. doi:10.1016/J.JNS.2016.02.026.
  • Stegbauer J, Lee DH, Seubert S, et al. Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proc Natl Acad Sci U S A. 2009;106:14942–14947. doi:10.1073/PNAS.0903602106.
  • Biancardi VC, Stranahan AM, Krause EG, et al. Cross talk between AT1 receptors and toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol. 2016;310:H404–H415. doi:10.1152/AJPHEART.00247.2015.
  • Guo X, Namekata K, Kimura A, et al. The renin-angiotensin system regulates neurodegeneration in a mouse model of optic neuritis. Am J Pathol. 2017;187:2876–2885. doi:10.1016/J.AJPATH.2017.08.012.
  • Wu J, Yang X, Zhang YF, et al. Angiotensin II upregulates Toll-like receptor 4 and enhances lipopolysaccharide-induced CD40 expression in rat peritoneal mesothelial cells. Inflamm Res. 2009;58:473–482. doi:10.1007/S00011-009-0012-Z/FIGURES/4.
  • Bondeva T, Roger T, Wolf G. Differential regulation of Toll-like receptor 4 gene expression in renal cells by angiotensin II: dependency on AP1 and PU.1 transcriptional sites. Am J Nephrol. 2007;27:308–314. doi:10.1159/000102551.
  • Wolf G, Bohlender J, Bondeva T, et al. Angiotensin II upregulates toll-like receptor 4 on mesangial cells. J Am Soc Nephrol. 2006;17:1585–1593. doi:10.1681/ASN.2005070699.
  • Ji Y, Liu J, Wang Z, Liu N. Angiotensin II induces inflammatory response partly via Toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells. Cell Physiol Biochem. 2009;23:265–276. doi:10.1159/000218173.
  • Saito Y, Berk BC. Transactivation: a novel signaling pathway from angiotensin II to tyrosine kinase receptors. J Mol Cell Cardiol. 2001;33:3–7. doi:10.1006/JMCC.2000.1272.
  • De S, Zhou H, DeSantis D, et al. Erlotinib protects against LPS-induced endotoxicity because TLR4 needs EGFR to signal. Proc Natl Acad Sci U S A. 2015;112:9680–9685. doi:10.1073/PNAS.1511794112.
  • Semba K, Namekata K, Guo X, et al. Renin-angiotensin system regulates neurodegeneration in a mouse model of Normal tension glaucoma. Cell Death Dis. 2014;5; doi:10.1038/CDDIS.2014.296.
  • Gelen V, Kükürt A, Şengül E. Role of the renin-angiotensin-aldosterone system in various disease processes: an overview. Renin-Angiotensin Aldosterone Syst. 2021;1; doi:10.5772/INTECHOPEN.97354.
  • Stone RE, Liu S, Levy AM, et al. Activation of the protective arm of the renin angiotensin system in demyelinating disease. J Neuroimmune Pharmacol. 2020;15:249–263. doi:10.1007/S11481-019-09894-7.
  • Tikellis C, Pickering RJ, Tsorotes D, et al. Activation of the renin-angiotensin system mediates the effects of dietary salt intake on atherogenesis in the apolipoprotein E knockout mouse. Hypertension. 2012;60:98–105. doi:10.1161/HYPERTENSIONAHA.112.191767.
  • Shimosawa T. Salt, the renin–angiotensin–aldosterone system and resistant hypertension. Hypertens Res. 2013;36:657–660. doi:10.1038/hr.2013.69.
  • Angelis E, Tse MY, Pang SC. Interactions between atrial natriuretic peptide and the renin-angiotensin system during salt-sensitivity exhibited by the proANP gene-disrupted mouse. Mol Cell Biochem. 2005;276:121–131. doi:10.1007/S11010-005-3672-1.
  • Shimoura CG, Lincevicius GS, Nishi EE, et al. Increased dietary salt changes baroreceptor sensitivity and intrarenal renin-angiotensin system in Goldblatt hypertension. Am J Hypertens. 2017;30:28–36. doi:10.1093/AJH/HPW107.
  • Bayorh DMA, Ganafa AA, Emmett N, et al. Alterations in aldosterone and angiotensin II levels in salt-induced hypertension. Clin Exp Hypertens. 2009;27:355–367. doi:10.1081/CEH-57423.
  • Parodi B, Kerlero de Rosbo N. The Gut-brain axis in multiple sclerosis. Is its dysfunction a pathological trigger or a consequence of the disease? Front Immunol. 2021;12:718220, doi:10.3389/FIMMU.2021.718220/BIBTEX.
  • Fellner L, Irschick R, Schanda K, et al. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia. 2013;61:349–360. doi:10.1002/GLIA.22437.
  • Perez-Pardo P, Dodiya HB, Engen PA, et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut. 2019;68:829–843. doi:10.1136/GUTJNL-2018-316844.
  • Dasu MR, Riosvelasco AC, Jialal I. Candesartan inhibits Toll-like receptor expression and activity both in vitro and in vivo. Atherosclerosis. 2009;202:76, doi:10.1016/J.ATHEROSCLEROSIS.2008.04.010.
  • Burgueno J, Fritsch J, Santander A, et al. P164 EPITHELIAL TLR4-INDUCED DYSBIOSIS INCREASES SUSCEPTIBILITY TO TUMORIGENESIS. Gastroenterology. 2020;158:S66, doi:10.1053/J.GASTRO.2019.11.169.
  • Dange RB, Agarwal D, Masson GS, et al. Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovasc Res. 2014;103:17–27. doi:10.1093/CVR/CVU067.
  • Benicky J, Sánchez-Lemus E, Honda M, et al. Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology. 2011;36:857, doi:10.1038/NPP.2010.225.
  • Dange RB, Agarwal D, Teruyama R, Francis J. Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension. J Neuroinflammation. 2015;12; doi:10.1186/S12974-015-0242-7.
  • Nair AR, Ebenezer PJ, Saini Y, Francis J. Angiotensin II-induced hypertensive renal inflammation is mediated through HMGB1-TLR4 signaling in rat tubulo-epithelial cells. Exp Cell Res. 2015;335:238–247. doi:10.1016/J.YEXCR.2015.05.011.
  • Liu M, Deng M, Luo Q, Dou X, Jia Z. High-salt loading downregulates Nrf2 expression in a sodium-dependent manner in renal collecting duct cells. Front Physiol. 2020;10:1565. doi:10.3389/FPHYS.2019.01565/BIBTEX.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.