Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 27, 2024 - Issue 2
340
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Nutritional supplement induced modulations in the functional connectivity of a porcine brain

, , , , , , & show all

References

  • Higgins IA, Kundu S, Choi KS, Mayberg HS, Guo Y. A difference degree test for comparing brain networks. Hum Brain Mapp. 2019;40(15):4518–36.
  • Farahani FV, Karwowski W, Lighthall NR. Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front Neurosci. 2019;13. doi:10.3389/fnins.2019.00585
  • Ishfaque Ahmed MJ, Iqbal ST, Azhar M, Siddiqui I. Classification of brain signals of event related potentials using different methods of feature extraction. Int J Sci Eng Res. 2017;8(4):7. doi:10.14299/ijser.2017.04.004
  • Azhar M, Ahmed I, Iqbal ST, Jahangir M, Shah NA, Siddiqui I. Feature extraction using independent component analysis method from non-invasive recordings of electroencephalography (EEG) brain signals. J Basic Appl Sci. 2017;13:259–67.
  • Chiang S, Cassese A, Guindani M, Vannucci M, Yeh HJ, Haneef Z, Stern JM. Time-dependence of graph theory metrics in functional connectivity analysis. NeuroImage. 2016;125:601–15.
  • Wilke C, Worrell G, He B. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia. 2011;52(1):84–93.
  • Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol. 2008;4(6):e1000100.
  • Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, et al. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res. 2006;87(1–3):60–6.
  • Vlooswijk MC, Jansen JF, de Krom MC, Majoie HM, Hofman PA, Backes WH, Aldenkamp AP. Functional MRI in chronic epilepsy: associations with cognitive impairment. Lancet Neurol. 2010;9(10):1018–27.
  • Simchick G, Shen A, Campbell B, Park HJ, West FD, Zhao Q. Pig brains have homologous resting-state networks with human brains. Brain Connect. 2019;9(7):566–79. doi:10.1089/brain.2019.0673
  • Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol. 2011;7:113–40.
  • Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp. 1994;2(1–2):56–78.
  • Brier MR, Thomas JB, Fagan AM, Hassenstab J, Holtzman DM, Benzinger TL, et al. Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiol Aging. 2014;35(4):757–68.
  • Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.
  • Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc B. 2005;360(1457):1001–13.
  • Higgins IA, Kundu S, Guo Y. Integrative Bayesian analysis of brain functional networks incorporating anatomical knowledge. NeuroImage. 2018;181:263–78.
  • Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11.
  • Mueller S, Wang D, Fox M, Yeo BT, Sepulcre J, Sabuncu M, et al. Individual variability in functional connectivity architecture of the human brain. Neuron. 2013;77(3):586–95. doi:10.1016/j.neuron.2012.12.028
  • Seung S. Connectome: how the brain’s wiring makes us who we are. HMH; 2012.
  • Christova P, Joseph J, Georgopoulos AP. Functional cortical associations and their intraclass correlations and heritability as revealed by the fMRI human connectome project. Exp Brain Res. 2022;240(5):1459–69. doi:10.1007/s00221-022-06346-2
  • Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D. Diet before and during pregnancy and offspring health: the importance of animal models and what can be learned from them. Int J Environ Res Public Health. 2016;13(6):586. doi:10.3390/ijerph13060586
  • Sauleau P, Lapouble E, Val-Laillet D, Malbert CH. The pig model in brain imaging and neurosurgery. Animal. 2009;3(8):1138–51. doi:10.1017/S1751731109004649
  • Sporns O. Networks of the brain. MIT Press; 2016.
  • Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, et al. Test–retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage. 2012;59(2):1404–12.
  • Chiang S, Haneef Z. Graph theory findings in the pathophysiology of temporal lobe epilepsy. Clin Neurophysiol. 2014;125(7):1295–305.
  • Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. Neuroimage. 2010;53(4):1197–207.
  • Gutman DA, Holtzheimer PE, Behrens TE, Johansen-Berg H, Mayberg HS. A tractography analysis of two deep brain stimulation white matter targets for depression. Biol Psychiatry. 2009;65(4):276–82. doi:10.1016/j.biopsych.2008.09.021
  • Sugasini D, Thomas R, Yalagala PCR, Tai LM, Subbaiah PV. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep. 2017;7(1):11263. doi:10.1038/s41598-017-11766-0
  • Gibson RA, Neumann MA, Makrides M. Effect of dietary docosahexaenoic acid on brain composition and neural function in term infants. Lipids. 1996;31(1):S177–S181.
  • Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. Jama. 2010;304(17):1903–11.
  • Fang X, Sun W, Jeon J, Azain M, Kinder H, Ahn J, et al. Perinatal docosahexaenoic acid supplementation improves cognition and alters brain functional organization in piglets. Nutrients. 2020;12(7):2090. Available from: https://www.mdpi.com/2072-6643/12/7/2090
  • Kucab M, Boateng T, Brett N, Schwartz A, Zepetnek JTd, Bellissimo N. Effects of eggs and egg components on cognitive performance, glycemic response, and subjective appetite in children aged 9–14 years (P14-017-19). Curr Dev Nutrit. 2019;3(Supplement_1):nzz052.P14-017-19.
  • Christifano DN, Chollet-Hinton L, Hoyer D, Schmidt A, Gustafson KM. Intake of eggs, choline, lutein, zeaxanthin, and DHA during pregnancy and their relationship to fetal neurodevelopment. Nutr Neurosci. 2022:1–7. doi:10.1080/1028415X.2022.2088944
  • Wallace TC. A comprehensive review of eggs, choline, and lutein on cognition across the life-span. J Am Coll Nutr. 2018;37(4):269–85.
  • Zalesky A, Fornito A, Bullmore E. On the use of correlation as a measure of network connectivity. Neuroimage. 2012;60(4):2096–106.
  • Hirschberger M, Qi Y, Steuer RE. Randomly generating portfolio-selection covariance matrices with specified distributional characteristics. Eur J Oper Res. 2007;177(3):1610–25.
  • Chen S, Kang J, Xing Y, Wang G. A parsimonious statistical method to detect groupwise differentially expressed functional connectivity networks. Hum Brain Mapp. 2015;36(12):5196–206.
  • Saikali S, Meurice P, Sauleau P, Eliat P-A, Bellaud P, Randuineau G, et al. A three-dimensional digital segmented and deformable brain atlas of the domestic pig. J Neurosci Methods. 2010;192(1):102–9.
  • Lukemire J, Kundu S, Pagnoni G, Guo Y. Bayesian joint modeling of multiple brain functional networks. J Am Stat Assoc. 2021;116(534):518–30.
  • Ivanoska I, Trivodaliev K, Kalajdziski S, Zanin M. Statistical and machine learning link selection methods for brain functional networks: review and comparison. Brain Sci. 2021;11(6):735.
  • Chen H, Guo Y, He Y, Ji J, Liu L, Shi Y, et al. Simultaneous differential network analysis and classification for matrix-variate data with application to brain connectivity. Biostatistics. 2022;23(3):967–89.
  • Ji J, He Y, Liu L, Xie L. Brain connectivity alteration detection via matrix-variate differential network model. Biometrics. 2021;77(4):1409–21.
  • Strang A, Haynes O, Cahill ND, Narayan DA. Generalized relationships between characteristic path length, efficiency, clustering coefficients, and density. Soc Netw Anal Min. 2018;8(1):1–6.
  • Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701. doi:10.1103/PhysRevLett.87.198701
  • Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69.
  • Bridge H, Leopold DA, Bourne JA. Adaptive pulvinar circuitry supports visual cognition. Trends Cogn Sci. 2016;20(2):146–57.
  • Borsook D, Maleki N, Burstein R. Chapter 42 – migraine. In: Zigmond MJ, Rowland LP, Coyle JT, editors. Neurobiology of brain disorders; 2015. p. 693–708.
  • Ilg UJ, Hoffmann KP. Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur J Neurosci. 1996;8(1):92–105.
  • Child ND, Benarroch EE. Anterior nucleus of the thalamus. Funct Org Clin Impl. 2013;81(21):1869–76. doi:10.1212/01.wnl.0000436078.95856.56
  • Covington BP, Al Khalili Y. Neuroanatomy, nucleus lateral geniculate. StatPearls; 2021.
  • Vadhan J, Das JM. Neuroanatomy, red nucleus. StatPearls; 2021.
  • Sonne J, Reddy V, Beato M. Neuroanatomy, substantia nigra [updated 2020 Nov 8]. Treasure Island (FL): Stat Pearls; 2021.
  • Ramnani N, Owen AM. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci. 2004;5(3):184–94. doi:10.1038/nrn1343
  • Leech R, Smallwood J. Chapter 5 – the posterior cingulate cortex: insights from structure and function. In: Vogt BA, editor. Handbook of clinical neurology. Vol. 166. London: Elsevier; 2019. p. 73–85.
  • Oh J-Y, Lee YS, Hwang TY, Cho SJ, Jang JH, Ryu Y, et al. Acupuncture regulates symptoms of Parkinson’s disease via brain neural activity and functional connectivity in mice. Front Aging Neurosci. 2022;14:585.
  • Simchick G, Scheulin KM, Sun W, Sneed SE, Fagan MM, Cheek SR, et al. Detecting functional connectivity disruptions in a translational pediatric traumatic brain injury porcine model using resting-state and task-based fMRI. Sci Rep. 2021;11(1):12406. doi:10.1038/s41598-021-91853-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.