Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 27, 2024 - Issue 6
294
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Naringenin: its chemistry and roles in neuroprotection

ORCID Icon, , , &

References

  • Patel DK, Kumar R, Prasad SK, Hemalatha S. Pharmacologically screened aphrodisiac plant – a review of current scientific literature. Asian Pac J Trop Biomed. 2011a;1(1):S131–S138.
  • Patel DK, Laloo D, Kumar R, Hemalatha S. Pedalium murex Linn.: an overview of its phytopharmacological aspects. Asian Pac J Trop Med. 2011b;4(9):748–755.
  • Shariff ZU. Modern herbal therapy for common ailments. [place unknown]: Spectrum Books; 2001.
  • Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685–688.
  • Chen L, Teng H, Xie Z, Cao H, Cheang WS, Skalicka-Woniak K, et al. Modifications of dietary flavonoids towards improved bioactivity: an update on structure–activity relationship. Crit Rev Food Sci Nutr. 2018;58(4):513–527.
  • Halake K, Birajdar M, Lee J. Structural implications of polyphenolic antioxidants. J Indus Eng Chem. 2016;35:1–7.
  • Ito T, Fujimoto S, Suito F, Shimosaka M, Taguchi G. C-glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants. Plant J. 2017;91(2):187–198.
  • Williams RJ, Spencer JPE, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 2004;36(7):838–849.
  • Grayer RJ, Veitch NC. Flavanones and dihydroflavonols. Flavonoids: Chem Biochem Appl. 2006: 917–1002.
  • Rimbach G, De Pascual-Teresa S, Ewins BA, Matsugo S, Uchida Y, Minihane A-M, et al. Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica. 2003;33(9):913–925.
  • Pannala A, Rice-Evans CA, Halliwell B, Singh S. Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem Biophys Res Commun. 1997;232(1):164–168.
  • Heijnen CGM, Haenen G, Van Acker FAA, Van der Vijgh WJF, Bast A. Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol in Vitro. 2001;15(1):3–6.
  • Hughes LAE, Arts ICW, Ambergen T, Brants HAM, Dagnelie PC, Goldbohm RA, et al. Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: a longitudinal analysis from The Netherlands cohort study. Am J Clin Nutr. 2008;88(5):1341–1352.
  • Ho PC, Saville DJ, Coville PF, Wanwimolruk S. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products. Pharm Acta Helv. 2000;74(4):379–385.
  • Gel-Moreto N, Streich R, Galensa R. Chiral separation of diastereomeric flavanone-7-O-glycosides in citrus by capillary electrophoresis. Electrophoresis. 2003;24(15):2716–2722.
  • Sung Y-Y, Kim D-S, Yang W-K, Nho KJ, Seo HS, Kim YS, Kim HK. Inhibitory effects of drynaria fortunei extract on house dust mite antigen-induced atopic dermatitis in NC/Nga mice. J Ethnopharmacol. 2012;144(1):94–100.
  • Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C. Flavonoid composition of citrus juices. Molecules. 2007;12(8):1641–1673.
  • Llorach R, Martínez-Sánchez A, Tomás-Barberán FA, Gil MI, Ferreres F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008;108(3):1028–1038.
  • Vallverdu-Queralt A, Odriozola-Serrano I, Oms-Oliu G, Lamuela-Raventós RM, Elez-Martinez P, Martin-Belloso O. Changes in the polyphenol profile of tomato juices processed by pulsed electric fields. J Agric Food Chem. 2012;60(38):9667–9672.
  • Wang H, Nair MG, Strasburg GM, Booren AM, Gray JI. Antioxidant polyphenols from tart cherries (prunus cerasus). J Agric Food Chem. 1999;47(3):840–844.
  • Hungria M, Johnston AWB, Phillips DA. Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in rhizobium leguminosarum bv. phaseoli. Mol Plant Microbe Interact. 1992;5(3):199–203.
  • Sánchez-Rabaneda F, Jáuregui O, Casals I, Andrés-Lacueva C, Izquierdo-Pulido M, Lamuela-Raventós RM. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (theobroma cacao). J Mass Spectrometry. 2003;38(1):35–42.
  • Olsen HT, Stafford GI, Van Staden J, Christensen SB, Jäger AK. Isolation of the MAO-inhibitor naringenin from mentha aquatica L. J Ethnopharmacol. 2008;117(3):500–502.
  • Exarchou V, Godejohann M, van Beek TA, Gerothanassis IP, Vervoort J. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano. Anal Chem. 2003;75(22):6288–6294.
  • Yao LH, Jiang Y-M, Shi J, Tomas-Barberan FA, Datta N, Singanusong R, Chen SS. Flavonoids in food and their health benefits. Plant Foods Human Nutrition. 2004;59:113–122.
  • Graf BA, Milbury PE, Blumberg JB. Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food. 2005;8(3):281–290.
  • Tripoli E, La Guardia M, Giammanco S, Di Majo D, Giammanco M. Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem. 2007;104(2):466–479.
  • Nouri Z, Fakhri S, El-Senduny FF, Sanadgol N, Abd-ElGhani GE, Farzaei MH, Chen J-T. On the neuroprotective effects of naringenin: pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules. 2019;9(11):690.
  • Zobeiri M, Belwal T, Parvizi F, Naseri R, Farzaei MH, Nabavi SF, et al. Naringenin and its nano-formulations for fatty liver: cellular modes of action and clinical perspective. Curr Pharm Biotechnol. 2018;19(3):196–205.
  • Justesen U, Knuthsen P, Leth T. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J Chromatogr A. 1998;799(1–2):101–110.
  • Garg A, Garg S, Zaneveld LJD, Singla AK. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytotherapy Res. 2001;15(8):655–669.
  • Zhang L, Song L, Zhang P, Liu T, Zhou L, Yang G, et al. Solubilities of naringin and naringenin in different solvents and dissociation constants of naringenin. J Chem Eng Data. 2015;60(3):932–940.
  • Manach C, Morand C, Gil-Izquierdo A, Bouteloup-Demange C, Remesy C. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur J Clin Nutr. 2003;57(2):235–242.
  • Andersen OM, Markham KR. Flavonoids: chemistry, biochemistry and applications. [place unknown]: CRC press; 2005.
  • Harborne JB.. The flavonoids: advances in research since 1980. New York (NY): Springer; 2013.
  • Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: molecular mechanisms. World J Gastroenterol. 2018;24(16):1679.
  • Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–956.
  • Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13(10):572–584.
  • Yanez JA, Andrews PK, Davies NM. Methods of analysis and separation of chiral flavonoids. J Chromatogr B. 2007;848(2):159–181.
  • Krause M, Galensa R. Analysis of enantiomeric flavanones in plant extracts by high-performance liquid chromatography on a cellulose triacetate based chiral stationary phase. Chromatographia. 1991;32:69–72.
  • Wistuba D, Trapp O, Gel-Moreto N, Galensa R, Schurig V. Stereoisomeric separation of flavanones and flavanone-7-O-glycosides by capillary electrophoresis and determination of interconversion barriers. Anal Chem. 2006;78(10):3424–3433.
  • Gaggeri R, Rossi D, Collina S, Mannucci B, Baierl M, Juza M. Quick development of an analytical enantioselective high performance liquid chromatography separation and preparative scale-up for the flavonoid naringenin. J Chromatogr A. 2011;1218(32):5414–5422.
  • Peterson J, Dwyer J. Flavonoids: dietary occurrence and biochemical activity. Nutr Res. 1998;18(12):1995–2018.
  • Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22(1):19–34.
  • Renugadevi J, Prabu SM. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology. 2009;256(1–2):128–134.
  • Jung UJ, Kim HJ, Lee JS, Lee MK, Kim HO, Park EJ, et al. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr. 2003;22(6):561–568.
  • Álvarez-Álvarez R, Botas A, Albillos SM, Rumbero A, Martín JF, Liras P. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by streptomyces clavuligerus. Microb Cell Fact. 2015;14(1):1–12.
  • Wang Q, Yang J, Zhang X, Zhou L, Liao X-L, Yang B. Practical synthesis of naringenin. J Chem Res. 2015;39(8):455–457.
  • Karim N, Jia Z, Zheng X, Cui S, Chen W. A recent review of citrus flavanone naringenin on metabolic diseases and its potential sources for high yield-production. Trends Food Sci Technol. 2018;79:35–54.
  • Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, et al. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:1–15.
  • Pandey RP, Parajuli P, Koffas MAG, Sohng JK. Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv. 2016;34(5):634–662.
  • Zhang W, Liu H, Li X, Liu D, Dong XT, Li FF, Yuan YJ. Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae. Eng Life Sci. 2017;17(9):1021–1029.
  • Qian X, Chen L, Sui Y, Chen C, Zhang W, Zhou J, et al. Biotechnological potential and applications of microbial consortia. Biotechnol Adv. 2020;40:107500.
  • Joshi M, Singh S, Patel S, Shah D, Krishnakumar A. Identification of small molecule activators for ErbB 4 receptor to enhance oligodendrocyte regeneration by in silico approach. Comput Toxicol. 2018a;8:13–20.
  • Otobone FJ, Sanches ACC, Nagae R, Martins JVC, Sela VR, de Mello JCP, Audi EA. Effect of lyophilized extracts from guaraná seeds [paullinia cupana var. sorbilis (mart.) ducke] on behavioral profiles in rats. Phytotherapy Res: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2007;21(6):531–535.
  • Chabane MN, Al AA, Peluso J, Muller CD, Ubeaud-Séquier G. Quercetin and naringenin transport across human intestinal caco-2 cells. J Pharm Pharmacol. 2009;61(11):1473–1483.
  • Xu H, Kulkarni KH, Singh R, Yang Z, Wang SWJ, Tam VH, Hu M. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Mol Pharm. 2009;6(6):1703–1715.
  • Kanaze FI, Bounartzi MI, Georgarakis M, Niopas I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr. 2007;61(4):472–477.
  • Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C. Interaction between flavonoids and the blood–brain barrier: in vitro studies. J Neurochem. 2003;85(1):180–192.
  • Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radic Biol Med. 2004;36(5):592–604.
  • Peng HW, Cheng FC, Huang YT, Chen CF, Tsai TH. Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1998;714(2):369–374.
  • Felgines C, Texier O, Morand C, Manach C, Scalbert A, Régerat F, Rémésy C. Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol-Gastrointestinal Liver Physiol. 2000;279(6):G1148–G1154.
  • El Mohsen MA, Marks J, Kuhnle G, Rice-Evans C, Moore K, Gibson G, et al. The differential tissue distribution of the citrus flavanone naringenin following gastric instillation. Free Radic Res. 2004;38(12):1329–1340.
  • Erlund I, Meririnne E, Alfthan G, Aro A. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J Nutr. 2001;131(2):235–241.
  • Zhang M, Zhu S, Yang W, Huang Q, Ho CT. The biological fate and bioefficacy of citrus flavonoids: bioavailability, biotransformation, and delivery systems. Food Funct. 2021;12(8):3307–3323.
  • Otake Y, Walle T. Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2, and CYP2C9. Drug Metabol Disposition. 2002;30(2):103–105.
  • Nikolic D, van Breemen RB. New metabolic pathways for flavanones catalyzed by rat liver microsomes. Drug Metabol Disposition. 2004;32(4):387–397.
  • Wittemer SM, Ploch M, Windeck T, Müller SC, Drewelow B, Derendorf H, Veit M. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of artichoke leaf extracts in humans. Phytomedicine. 2005;12(1-2):28–38.
  • Koga N, Ohta C, Kato Y, Haraguchi K, Endo T, Ogawa K, Yano M. In vitro metabolism of nobiletin, a polymethoxy-flavonoid, by human liver microsomes and cytochrome P450. Xenobiotica. 2011;41(11):927–933.
  • Fuhr U, Kummert AL. The fate of naringin in humans: a key to grapefruit juice-drug interactions? Clin Pharmacol Ther. 1995;58(4):365–373.
  • Ameer B, Weintraub RA, Johnson JV, Yost RA, Rouseff RL. Flavanone absorption after naringin, hesperidin, and citrus administration. Clin Pharmacol Ther. 1996;60(1):34–40.
  • Lee YS, Reidenberg MM. A method for measuring naringenin in biological fluids and its disposition from grapefruit juice by man. Pharmacology. 1998;56(6):314–317.
  • Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A. Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence. Annu Rev Food Sci Technol. 2017;8:155–180.
  • González-Sarrías A, Espín JC, Tomás-Barberán FA. Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci Tech. 2017;69:281–288.
  • Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology. 2018;154(2):204–219.
  • Qin H, Roberts KL, Niyongere SA, Cong Y, Elson CO, Benveniste EN. Molecular mechanism of lipopolysaccharide-induced SOCS-3 gene expression in macrophages and microglia. J Immunol. 2007;179(9):5966–5976.
  • Tejera D, Heneka MT. Microglia in neurodegenerative disorders. Microglia: Methods Protocols. 2019;18:57–67.
  • Voet S, Mc Guire C, Hagemeyer N, Martens A, Schroeder A, Wieghofer P, et al. A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nat Commun. 2018;9(1):256–265.
  • Choi JK, Dambuza IM, He C, Yu CR, Uche AN, Mattapallil MJ, et al. IL-12p35 inhibits neuroinflammation and ameliorates autoimmune encephalomyelitis. Front Immunol. 2017;8:10–12.
  • Wang J, Qi Y, Niu X, Tang H, Meydani SN, Wu D. Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice. J Nutr Biochem. 2018b;54:130–139.
  • Khajevand-Khazaei M-R, Ziaee P, Motevalizadeh S-A, Rohani M, Afshin-Majd S, Baluchnejadmojarad T, Roghani M. Naringenin ameliorates learning and memory impairment following systemic lipopolysaccharide challenge in the rat. Eur J Pharmacol. 2018;826:114–122.
  • Heo HJ, Kim D-O, Shin SC, Kim MJ, Kim BG, Shin D-H. Effect of antioxidant flavanone, naringenin, from citrus junos on neuroprotection. J Agric Food Chem. 2004a;52(6):1520–1525.
  • Shi L-B, Tang P-F, Zhang W, Zhao Y-P, Zhang L-C, Zhang H. Naringenin inhibits spinal cord injury-induced activation of neutrophils through miR-223. Gene. 2016;592(1):128–133.
  • Park HY, Kim G-Y, Choi YH. Naringenin attenuates the release of pro-inflammatory mediators from lipopolysaccharide-stimulated BV2 microglia by inactivating nuclear factor-κB and inhibiting mitogen-activated protein kinases. Int J Mol Med. 2012;30(1):204–210.
  • Wu L-H, Lin C, Lin H-Y, Liu Y-S, Wu CY-J, Tsai C-F, et al. Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Mol Neurobiol. 2016;53:1080–1091.
  • Vafeiadou K, Vauzour D, Lee HY, Rodriguez-Mateos A, Williams RJ, Spencer JPE. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch Biochem Biophys. 2009;484(1):100–109.
  • Raza SS, Khan MM, Ahmad A, Ashafaq M, Islam F, Wagner AP, Safhi MM. Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience. 2013;230:157–171.
  • Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, Verri Jr WA. Naringenin reduces inflammatory pain in mice. Neuropharmacology. 2016;105:508–519.
  • Kim G, Ouzounova M, Quraishi AA, Davis A, Tawakkol N, Clouthier SG, et al. SOCS3-mediated regulation of inflammatory cytokines in PTEN and p53 inactivated triple negative breast cancer model. Oncogene. 2015;34(6):671–680.
  • Zheng Y, Hou X, Yang S. Lidocaine potentiates SOCS3 to attenuate inflammation in microglia and suppress neuropathic pain. Cell Mol Neurobiol. 2019;39:1081–1092.
  • Bair AM, Thippegowda PB, Freichel M, Cheng N, Richard DY, Vogel SM, et al. Ca2 + entry via TRPC channels is necessary for thrombin-induced NF-κB activation in endothelial cells through AMP-activated protein kinase and protein kinase Cδ. J Biol Chem. 2009;284(1):563–574.
  • Gautam S, Ishrat N, Yadav P, Singh R, Narender T, Srivastava AK. 4-Hydroxyisoleucine attenuates the inflammation-mediated insulin resistance by the activation of AMPK and suppression of SOCS-3 coimmunoprecipitation with both the IR-β subunit as well as IRS-1. Mol Cell Biochem. 2016;414:95–104.
  • Yang P, Sun F. Aducanumab: the first targeted Alzheimer's therapy. Drug Discover Therapeut. 2021;15(3):166–168.
  • Navipour E, Mahbobeh N, Barabadi Z, Mohammad N, Keykhosravi A. Epidemiology and risk factors of Alzheimer's disease in Iran: a systematic review. Iran J Public Health. 2019;48(12):2133–2140.
  • Alzheimer's Association 2009 Alzheimer's Disease Facts and Figures. Available at: www.alz.org/alzheimers_disease_facts_figures.asp; report_alzfactsfigures2009.pdf; and www.alz.org/news_and_events_2009_facts_figures.asp Accessed February 8, 2010.
  • Kumar Vats D, Biswas N, Pandian P, Kamalakannan A. Review current and emerging treatment options for Alzheimer's disease. Neurol Lett. 2023;2(1):1–5.
  • Thrall JH. Prevalence and costs of chronic disease in a health care system structured for treatment of acute illness. Radiology. 2005;235(1):9–12.
  • Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol. 2006;199(2):265–273.
  • Feng G, Wang W, Qian Y, Jin H. Anti-Aβ antibodies induced by Aβ-HBc virus-like particles prevent Aβ aggregation and protect PC12 cells against toxicity of Aβ1–40. J Neurosci Methods. 2013;218(1):48–54.
  • Zhang F, Jiang L. Neuroinflammation in Alzheimer's disease. Neuropsychiatr Dis Treat. 2015;17-25:243–256.
  • Bona DD, Scapagnini G, Candore G, Castiglia L, Colonna-Romano G, Duro G, Vasto S. Immune-inflammatory responses and oxidative stress in Alzheimer's disease: therapeutic implications. Curr Pharmaceut Des. 2010;16(6):684–691.
  • Cai Z, Zhao B, Ratka A. Oxidative stress and β-amyloid protein in Alzheimer's disease. Neuromol Med. 2011;13:223–250.
  • Rajmohan R, Reddy PH. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer's disease neurons. J Alzheimer's Dis. 2017;57(4):975–999.
  • Jin H, Wang W, Zhao S, Yang W, Qian Y, Jia N, Feng G. Aβ-HBc virus-like particles immunization without additional adjuvant ameliorates the learning and memory and reduces Aβ deposit in PDAPP mice. Vaccine. 2014;32(35):4450–4456.
  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. Lancet. 2011;377(9770):1019–1031.
  • Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang H-Y, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14(3):168–181.
  • de la Monte SM, Tong M, Daiello LA, Ott BR. Early-stage Alzheimer's disease is associated with simultaneous systemic and central nervous system dysregulation of insulin-linked metabolic pathways. J Alzheimer's Dis. 2019;68(2):657–668.
  • Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M. Astaxanthin: a mechanistic review on its biological activities and health benefits. Pharmacol Res. 2018a;136:1–20.
  • Fakhri S, Dargahi L, Abbaszadeh F, Jorjani M. Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Res Bull. 2018b;143:217–224.
  • Yang W, Ma J, Liu Z, Lu Y, Hu B, Yu H. Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurolog Sci. 2014;35:741–751.
  • Variya BC, Bakrania AK, Patel SS. Antidiabetic potential of gallic acid from emblica officinalis: improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine. 2020;73:336–345.
  • Zhang N, Hu Z, Zhang Z, Liu G, Wang Y, Ren Y, et al. Protective role of naringenin against Aβ 25-35-caused damage via ER and PI3K/Akt-mediated pathways. Cell Mol Neurobiol. 2018;38:549–557.
  • Yang Z, Kuboyama T, Tohda C. A systematic strategy for discovering a therapeutic drug for Alzheimer's disease and its target molecule. Front Pharmacol. 2017;340:721–735.
  • Ip JP, Fu AK, Ip NY. CRMP2: functional roles in neural development and therapeutic potential in neurological diseases. Neuroscientist. 2014;20(6):589–598.
  • Wilson SM, Ki Yeon S, Yang X-F, Park KD, Khanna R.. Differential regulation of collapsin response mediator protein 2 (CRMP2) phosphorylation by GSK3ss and CDK5 following traumatic brain injury. Front Cell Neurosci. 2014;8:135–142.
  • Sumi T, Imasaki T, Aoki M, Sakai N, Nitta E, Shirouzu M, Nitta R. Structural insights into the altering function of CRMP2 by phosphorylation. Cell Struct Funct. 2018;43(1):15–23.
  • Zambrano P, Suwalsky M, Jemiola-Rzeminska M, Strzalka K, Sepúlveda B, Gallardo MJ, Aguilar LF. The acetylcholinesterase (AChE) inhibitor and anti-Alzheimer drug donepezil interacts with human erythrocytes. Biochim Biophys Acta (BBA)-Biomembranes. 2019;1861(6):1078–1085.
  • Assefa AD, Saini RK, Keum YS. Extraction of antioxidants and flavonoids from yuzu (citrus junos sieb ex tanaka) peels: a response surface methodology study. J Food Measure Characterization. 2017;11:364–379.
  • Heo HJ, Kim M-J, Lee J-M, Choi SJ, Cho H-Y, Hong B, et al. Naringenin from citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement Geriatr Cogn Disord. 2004b;17(3):151–157.
  • Tamagno E, Bardini P, Obbili A, Vitali A, Borghi R, Zaccheo D, et al. Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis. 2002;10(3):279–288.
  • Ciro A, Park J, Burkhard G, Yan N, Geula C. Biochemical differentiation of cholinesterases from normal and Alzheimer's disease cortex. Curr Alzheimer Res. 2012;9(1):138–143.
  • Lee S, Youn K, Lim G, Lee J, Jun M. In silico docking and in vitro approaches towards BACE1 and cholinesterases inhibitory effect of citrus flavanones. Molecules. 2018;23(7):332–345.
  • Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, et al. Naringenin ameliorates Alzheimer's disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int. 2012;61(7):1081–1093.
  • Hickey MA, Kosmalska A, Enayati J, Cohen R, Zeitlin S, Levine MS, Chesselet MF. Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in huntington's disease mice. Neuroscience. 2008;157(1):280–295.
  • Bano D, Zanetti F, Mende Y, Nicotera P. Neurodegenerative processes in huntington's disease. Cell Death Dis. 2011;2(11):e228–e228.
  • Yamagishi N, Yamamoto Y, Noda C, Hatayama T. Naringenin inhibits the aggregation of expanded polyglutamine tract-containing protein through the induction of endoplasmic reticulum chaperone GRP78. Biol Pharm Bull. 2012;35(10):1836–1840.
  • Brouillet E, Jacquard C, Bizat N, Blum D. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in huntington's disease. J Neurochem. 2005;95(6):1521–1540.
  • Amin I, Majid S, Farooq A, Wani HA, Noor F, Khan R, et al. Naringenin (4, 5, 7-trihydroxyflavanone) as a potent neuroprotective agent: from chemistry to medicine. Stud Natural Prod Chem. 2020;65:271–300.
  • Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):345–351.
  • Sweeney MD, Sagare AP, Zlokovic B V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150.
  • Salman M, Sharma P, Alam MI, Tabassum H, Parvez S. Naringenin mitigates behavioral alterations and provides neuroprotection against 3-nitropropinoic acid-induced huntington's disease like symptoms in rats. Nutritional Neurosci. 2022a;25(9):1898–1908.
  • Guimaraes AG, Gomes SVF, Moraes VRS, Nogueira PCL, Ferreira AG, Blank AF, et al. Phytochemical characterization and antinociceptive effect of lippia gracilis schauer. J Nat Med. 2012;66:428–434.
  • Braidy N, Grant R, Adams S, Guillemin GJ. Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J. 2010;277(2):368–382.
  • McGowan DP, van Roon-Mom W, Holloway H, Bates GP, Mangiarini L, Cooper GJS, et al. Amyloid-like inclusions in Huntington's disease. Neuroscience. 2000;100(4):677–680.
  • Kumar P, Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced huntington's like symptoms in rats: possible role of nitric oxide. Behav Brain Res. 2010;206(1):38–46.
  • Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006;116(7):1744–1754.
  • Shulman JM, De Jager PL, Feany MB. Parkinson's disease: genetics and pathogenesis. Annu Rev Pathol: Mech Dis. 2011;6:193–222.
  • Burke RE, O'Malley K. Axon degeneration in Parkinson's disease. Exp Neurol. 2013;246:72–83.
  • Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann Neurol. 2005;57(2):168–175.
  • Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxidative Med Cellular Longevity. 2012;2012:564–572.
  • Abramov AY, Potapova EV, Dremin VV, Dunaev AV. Interaction of oxidative stress and misfolded proteins in the mechanism of neurodegeneration. Life. 2020;10(7):401–411.
  • Jayaraj RL, Beiram R, Azimullah S, Meeran MFN, Ojha SK, Adem A, et al. Lycopodium attenuates loss of dopaminergic neurons by suppressing oxidative stress and neuroinflammation in a rat model of Parkinson's disease. Molecules. 2019;24(11):456–466.
  • Zella MAS, Metzdorf J, Ostendorf F, Maass F, Muhlack S, Gold R, et al. Novel immunotherapeutic approaches to target alpha-synuclein and related neuroinflammation in Parkinson's disease. Cells. 2019;8(2):891–906.
  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson's disease. Front Neuroana. 2015;9:1011–1023.
  • Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27(1):27–42.
  • Li J, Long X, Hu J, Bi J, Zhou T, Guo X, et al. Multiple pathways for natural product treatment of Parkinson's disease: a mini review. Phytomedicine. 2019;60:782–791.
  • Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology. 2014;79:380–388.
  • Pascua-Maestro R, González E, Lillo C, Ganfornina MD, Falcón-Pérez JM, Sanchez D. Extracellular vesicles secreted by astroglial cells transport apolipoprotein D to neurons and mediate neuronal survival upon oxidative stress. Front Cell Neurosci. 2019;12:102–111.
  • Wang G-Q, Zhang B, He X-M, Li D-D, Shi J-S, Zhang F. Naringenin targets on astroglial Nrf2 to support dopaminergic neurons. Pharmacol Res. 2019;139:452–459.
  • Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic Res. 2005;39(10):1119–1125.
  • Ved R, Saha S, Westlund B, Perier C, Burnam L, Sluder A, Wolozin B. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of α-synuclein, parkin, and DJ-1 in caenorhabditis elegans. J Biol Chem. 2005;280(52):42655–42668.
  • Song S, Jang S, Park J, Bang S, Choi S, Kwon KY, Chung J. Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and Drosophila. J Biol Chem. 2013;288(8):5660–5672.
  • Guo L, Gandhi PN, Wang W, Petersen RB, Wilson-Delfosse AL, Chen SG. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res. 2007;313(16):3658–3670.
  • Haavik J, Toska K. Tyrosine hydroxylase and Parkinson's disease. Mol Neurobiol. 1998;16:285–309.
  • Angeline MS, Sarkar A, Anand K, Ambasta RK, Kumar P. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience. 2013;254:379–394.
  • Wegrzynowicz M, Bar-On D, Calo' L, Anichtchik O, Iovino M, Xia J, et al. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson's disease model. Acta Neuropathol. 2019;138:575–595.
  • Mani S, Sekar S, Barathidasan R, Manivasagam T, Thenmozhi AJ, Sevanan M, et al. Naringenin decreases α-synuclein expression and neuroinflammation in MPTP-induced Parkinson's disease model in mice. Neurotox Res. 2018a;33:656–670.
  • Sugumar M, Sevanan M, Sekar S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int J Neurosci. 2019;129(6):534–539.
  • Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015;14(4):406–419.
  • Lee MJ, Jang M, Choi J, Chang BS, Kim DY, Kim S-H, et al. Korean red ginseng and ginsenoside-Rb1/-Rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Mol Neurobiol. 2016;53:1977–2002.
  • Ahmad SF, Zoheir KMA, Abdel-Hamied HE, Ashour AE, Bakheet SA, Attia SM, Abd-Allah ARA. Amelioration of autoimmune arthritis by naringin through modulation of T regulatory cells and Th1/Th2 cytokines. Cell Immunol. 2014;287(2):112–120.
  • Sánchez-López AL, Ortiz GG, Pacheco-Moises FP, Mireles-Ramírez MA, Bitzer-Quintero OK, Delgado-Lara DLC, et al. Efficacy of melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing remitting multiple sclerosis. Arch Med Res. 2018;49(6):391–398.
  • Wang J, Niu X, Wu C, Wu D. Naringenin modifies the development of lineage-specific effector CD4+ T cells. Front Immunol. 2018a;9:209–219.
  • Xie L, Gong W, Chen J, Xie H, Wang M, Yin X, Wu W. The flavonoid kurarinone inhibits clinical progression of EAE through inhibiting Th1 and Th17 cell differentiation and proliferation. Int Immunopharmacol. 2018;62:227–236.
  • de Araújo Farias V, Carrillo-Gálvez AB, Martin F, Anderson P. TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev. 2018;43:25–37.
  • Xiao S, Jin H, Korn T, Liu SM, Oukka M, Lim B, Kuchroo VK. Retinoic acid increases Foxp3 + regulatory T cells and inhibits development of Th17 cells by enhancing TGF-β-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol. 2008;181(4):2277–2284.
  • Niu X, Wu C, Li M, Zhao Q, Meydani SN, Wang J, Wu D. Naringenin is an inhibitor of T cell effector functions. J Nutr Biochem. 2018;58:71–79.
  • Zhan Z, Song L, Zhang W, Gu H, Cheng H, Zhang Y, et al. Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability. Cell Death Dis. 2019:10(4):209–215.
  • Lee Y, Lahens NF, Zhang S, Bedont J, Field JM, Sehgal A. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment. PLoS Biol. 2019;17(4):562–572.
  • Proost P, Struyf S, Van Damme J, Fiten P, Ugarte-Berzal E, Opdenakker G. Chemokine isoforms and processing in inflammation and immunity. J Autoimmun. 2017;85:45–57.
  • Galvez-Contreras AY, Quiñones-Hinojosa A, Gonzalez-Perez O. The role of EGFR and ErbB family related proteins in the oligodendrocyte specification in germinal niches of the adult mammalian brain. Front Cell Neurosci. 2013;7:435–444.
  • Aguirre A, Dupree JL, Mangin JM, Gallo V. A functional role for EGFR signaling in myelination and remyelination. Nat Neurosci. 2007;10(8):990–1002.
  • Joshi R, Kulkarni YA, Wairkar S. Pharmacokinetic, pharmacodynamic and formulations aspects of naringenin: an update. Life Sci. 2018b;215: 43-56.
  • Sveinsson OA, Kjartansson O, Valdimarsson EM. Cerebral ischemia/infarction-diagnosis and treatment. Laeknabladid. 2014;100(7–8):393–401.
  • Yang J, Yuan L, Wen Y, Zhou H, Jiang W, Xu D, Wang M. Protective effects of naringin in cerebral infarction and its molecular mechanism. Med Sci Monit. 2020;26:e918772–1.
  • Olmez I, Ozyurt H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int. 2012;60(2):208–212.
  • Fukui M, Choi HJ, Zhu BT. Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic Biol Med. 2010;49(5):800–813.
  • Egbuonu ACC, Obidoa O, Ezeokonkwo CA, Ejikeme PM. Hepatotoxic effects of low dose oral administration of monosodium glutamate in male albino rats. Afr J Biotechnol. 2009;8:562–571.
  • Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, et al. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci. 2001;98(20):11569–11574.
  • Xu X-H, Ma C-M, Han Y-Z, Li Y, Liu C, Duan Z-H, et al. Protective effect of naringenin on glutamate-induced neurotoxicity in cultured hippocampal cells. Arch Biol Sci. 2015;67(2):639–646.
  • Kara S, Gencer B, Karaca T, Tufan HA, Arikan S, Ersan I, et al. Protective effect of hesperetin and naringenin against apoptosis in ischemia/reperfusion-induced retinal injury in rats. Scientific World J. 2014;2014:15–23.
  • Bai X, Zhang X, Chen L, Zhang J, Zhang L, Zhao X, et al. Protective effect of naringenin in experimental ischemic stroke: down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression. Neurochem Res. 2014;39:1405–1415.
  • Drishya S, Dhanisha SS, Raghukumar P, Guruvayoorappan C. Amomum subulatum mitigates total body irradiation-induced oxidative stress and its associated inflammatory response by enhancing the antioxidant status and regulating the pro-inflammatory cytokines. J Nutr Biochem. 2022;107:25–31.
  • Saleh TM, Saleh MC, Connell BJ, Song Y. A co-drug conjugate of naringenin and lipoic acid mediates neuroprotection in a rat model of oxidative stress. Clin Exp Pharmacol Physiol. 2017;44(10):1008–1016.
  • Pathan AR, Viswanad B, Sonkusare SK, Ramarao P. Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci. 2006;79(23):2209–2216.
  • Ren B, Qin W, Wu F, Wang S, Pan C, Wang L, et al. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. Eur J Pharmacol. 2016;773:13–23.
  • Hong Y, Yin Y, Tan Y, Hong K, Zhou H.. The flavanone, naringenin, modifies antioxidant and steroidogenic enzyme activity in a rat model of letrozole-induced polycystic ovary syndrome. Med Sci Monit. 2019;25:27–33.
  • Rahigude A, Bhutada P, Kaulaskar S, Aswar M, Otari K. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience. 2012;226:62–72.
  • Baluchnejadmojarad T, Roghani M. Effect of naringenin on intracerebroventricular streptozotocin-induced cognitive deficits in rat: a behavioral analysis. Pharmacology. 2006;78(4):193–197.
  • Upadhyay P, Sadhu A, Singh PK, Agrawal A, Ilango K, Purohit S, Dubey GP. Revalidation of the neuroprotective effects of a United States patented polyherbal formulation on scopolamine induced learning and memory impairment in rats. Biomed Pharmacother. 2018;97:1046–1052.
  • Liaquat L, Batool Z, Sadir S, Rafiq S, Shahzad S, Perveen T, Haider S. Naringenin-induced enhanced antioxidant defence system meliorates cholinergic neurotransmission and consolidates memory in male rats. Life Sci. 2018;194:213–223.
  • Zaki HF, Abd-El-Fattah MA, Attia AS. Naringenin protects against scopolamine-induced dementia in rats. Bull Faculty Pharmacy, Cairo University. 2014;52(1):15–25.
  • Li Y, Zeng M, Chen W, Liu C, Wang F, Han X, et al. Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats. PLoS One. 2014;9(4):35–41.
  • Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–644.
  • Hua F-Z, Ying J, Zhang J, Wang X-F, Hu Y-H, Liang Y-P, et al. Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation. Int J Mol Med. 2016;38(4):1271–1280.
  • Ahshin-Majd S, Zamani S, Kiamari T, Kiasalari Z, Baluchnejadmojarad T, Roghani M. Carnosine ameliorates cognitive deficits in streptozotocin-induced diabetic rats: possible involved mechanisms. Peptides (NY). 2016;86:102–111.
  • Gao J, Wang W-Y, Mao Y-W, Gräff J, Guan J-S, Pan L, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 2010;466(7310):1105–1109.
  • Sarubbo F, Ramis MR, Kienzer C, Aparicio S, Esteban S, Miralles A, Moranta D. Chronic silymarin, quercetin and naringenin treatments increase monoamines synthesis and hippocampal Sirt1 levels improving cognition in aged rats. J Neuroimmune Pharmacol. 2018;13:24–38.
  • Farina M, Aschner M, Rocha JBT. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol. 2011;256(3):405–417.
  • Mailloux RJ, Yumvihoze E, Chan HM. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells. Toxicol Appl Pharmacol. 2015;289(3):371–380.
  • Sumathi T, Christinal J. Neuroprotective effect of portulaca oleraceae ethanolic extract ameliorates methylmercury induced cognitive dysfunction and oxidative stress in cerebellum and cortex of rat brain. Biol Trace Elem Res. 2016;172:155–165.
  • Chandran AMK, Christina H, Das S, Mumbrekar KD, Rao BSS.. Neuroprotective role of naringenin against methylmercury induced cognitive impairment and mitochondrial damage in a mouse model. Environ Toxicol Pharmacol. 2019;71:57–62.
  • Fagan AM, Christopher E, Taylor JW, Parsadanian M, Spinner M, Watson M, Holtzman DM. ApoAI deficiency results in marked reductions in plasma cholesterol but no alterations in amyloid-β pathology in a mouse model of Alzheimer's disease-like cerebral amyloidosis. Am J Pathol. 2004;165(4):1413–1422.
  • Bahramsoltani R, Farzaei MH, Farahani MS, Rahimi R. Phytochemical constituents as future antidepressants: a comprehensive review. Rev Neurosci. 2015;26(6):699–719.
  • Ghofrani S, Joghataei M-T, Mohseni S, Baluchnejadmojarad T, Bagheri M, Khamse S, Roghani M. Naringenin improves learning and memory in an Alzheimer's disease rat model: insights into the underlying mechanisms. Eur J Pharmacol. 2015;764:195–201.
  • Ma J, Yang W-Q, Zha H, Yu H-R. Effect of naringenin on learning and memory ability on model rats with Alzheimer disease. Zhong Yao Cai. 2013;36(2):271–276.
  • Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson's and wilson's diseases. J Trace Elements Med Biol. 2015;31:193–203.
  • Kumar R, Jain V, Kushwah N, Dheer A, Mishra KP, Prasad D, Singh SB. Role of DNA methylation in hypobaric hypoxia-induced neurodegeneration and spatial memory impairment. Ann Neurosci. 2018;25:191–200.
  • Cheraghi G, Hajiabedi E, Niaghi B, Nazari F, Naserzadeh P, Hosseini M.. High doses of sodium tungstate can promote mitochondrial dysfunction and oxidative stress in isolated mitochondria. J Biochem Mol Toxicol. 2019;33(4):772–785.
  • Fakhri S, Dargahi L, Abbaszadeh F, Jorjani M. Effects of astaxanthin on sensory-motor function in a compression model of spinal cord injury: involvement of ERK and AKT signalling pathway. Eur J Pain. 2019;23(4):750–764.
  • Yao J, Peng S, Xu J, Fang J. Reversing ROS-mediated neurotoxicity by chlorogenic acid involves its direct antioxidant activity and activation of Nrf2-ARE signaling pathway. BioFactors. 2019;45(4):616–626.
  • Sarkar A, Angeline MS, Anand K, Ambasta RK, Kumar P. Naringenin and quercetin reverse the effect of hypobaric hypoxia and elicit neuroprotective response in the murine model. Brain Res. 2012;1481:59–70.
  • Muthaiah VPK, Venkitasamy L, Michael FM, Chandrasekar K, Venkatachalam S. Neuroprotective role of naringenin on carbaryl induced neurotoxicity in mouse neuroblastoma cells. J Pharmacol Pharmacother. 2013;4(3):192–209.
  • Chtourou Y, Fetoui H, Gdoura R. Protective effects of naringenin on iron-overload-induced cerebral cortex neurotoxicity correlated with oxidative stress. Biol Trace Elem Res. 2014;158:376–383.
  • Chtourou Y, Ben SA, Gdoura R, Fetoui H. Naringenin mitigates iron-induced anxiety-like behavioral impairment, mitochondrial dysfunctions, ectonucleotidases and acetylcholinesterase alteration activities in rat hippocampus. Neurochem Res. 2015;40:1563–1575.
  • Sachdeva S, Pant SC, Kushwaha P, Bhargava R, Flora SJS. Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants. Food Chem Toxicol. 2015;82:64–71.
  • Xue L, Murray JH, Tolkovsky AM. The Ras/phosphatidylinositol 3-kinase and Ras/ERK pathways function as independent survival modules each of which inhibits a distinct apoptotic signaling pathway in sympathetic neurons. J Biol Chem. 2000;275(12):8817–8824.
  • Kipp M, Clarner T, Gingele S, Pott F, Amor S, Van Der Valk P, et al. Brain lipid binding protein (FABP7) as modulator of astrocyte function. Physiol Res. 2011;60:85–98.
  • Hegazy HG, Ali EHA, Sabry HA. The neuroprotective action of naringenin on oseltamivir (tamiflu) treated male rats. J Basic Appl Zool. 2016;77:83–90.
  • Lee M-K, Moon S-S, Lee S-E, Bok S-H, Jeong T-S, Park YB, Choi M-S. Naringenin 7-O-cetyl ether as inhibitor of HMG-CoA reductase and modulator of plasma and hepatic lipids in high cholesterol-fed rats. Bioorg Med Chem. 2003;11(3):393–398.
  • Lee C-H, Jeong T-S, Choi Y-K, Hyun B-H, Oh G-T, Kim E-H, et al. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun. 2001;284(3):681–688.
  • Liu L, Shan S, Zhang K, Ning Z, Lu X, Cheng Y. Naringenin and hesperetin, two flavonoids derived from citrus aurantium up-regulate transcription of adiponectin. Phytotherapy Res: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2008;22(10):1400–1403.
  • Li P, Wang S, Guan X, Liu B, Wang Y, Xu K, et al. Acute and 13 weeks subchronic toxicological evaluation of naringin in Sprague-Dawley rats. Food Chem Toxicol. 2013;60:1–9.
  • Burke AC, Sutherland BG, Telford DE, Morrow MR, Sawyez CG, Edwards JY, et al. Intervention with citrus flavonoids reverses obesity and improves metabolic syndrome and atherosclerosis in obese Ldlr−/− mice. J Lipid Res. 2018;59(9):1714–1728.
  • Toth C, Lander J, Wiebe S. The prevalence and impact of chronic pain with neuropathic pain symptoms in the general population. Pain Med. 2009;10(5):918–929.
  • Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10(1):23–36.
  • Somers DL, Clemente FR. Transcutaneous electrical nerve stimulation for the management of neuropathic pain: the effects of frequency and electrode position on prevention of allodynia in a rat model of complex regional pain syndrome type II. Phys Therapy. 2006;86(5):698–709.
  • Léonard G, Cloutier C, Marchand S. Reduced analgesic effect of acupuncture-like TENS but not conventional TENS in opioid-treated patients. J Pain. 2011;12(2):213–221.
  • Qiao L, Guo M, Qian J, Xu B, Gu C, Yang Y. Research advances on acupuncture analgesia. Am J Chin Med. 2020;48(02):245–258.
  • Ge M-M, Li D-Y, Wang L, Zhang L-Q, Liu D-Q, Tian Y-K, et al. Naringenin promoted spinal microglia M2 polarization in rat model of cancer-induced bone pain via regulating AMPK/PGC-1α signaling axis. Biomed Pharmacotherapy. 2022;149:68–72.
  • Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y.. Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARα, PPARγ and LXRα. PLoS One. 2010;5(8):773–784.
  • Kaulaskar S, Bhutada P, Rahigude A, Jain D, Harle U. Effects of naringenin on allodynia and hyperalgesia in rats with chronic constriction injury-induced neuropathic pain. Zhong Xi Yi Jie He Xue Bao. 2012;10(12):1482–1489.
  • Al-Rejaie SS, Aleisa AM, Abuohashish HM, Parmar MY, Ola MS, Al-Hosaini AA, Ahmed MM. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol Res. 2015;37(10):924–933.
  • Chin RFM, Neville BGR, Scott RC. Meningitis is a common cause of convulsive status epilepticus with fever. Arch Dis Childhood. 2005;90(1):66–69.
  • Shorvon SD. The causes of epilepsy: changing concepts of etiology of epilepsy over the past 150 years. Epilepsia. 2011;52(6):1033–1044.
  • Del Brutto OH. Human neurocysticercosis: an overview. Pathogens. 2022;11(10):1212–1218.
  • Shakeel S, Rehman MU, Tabassum N, Amin U. Effect of naringenin (a naturally occurring flavanone) against pilocarpine-induced status epilepticus and oxidative stress in mice. Pharmacogn Mag. 2017;13(Suppl 1):154–162.
  • Kolominsky-Rabas PL, Sarti C, Heuschmann PU, Graf C, Siemonsen S, Neundoerfer B, et al. A prospective community-based study of stroke in Germany—the erlangen stroke project (ESPRO) incidence and case fatality at 1, 3, and 12 months. Stroke. 1998;29(12):2501–2506.
  • Khodayar MJ, Salehi S, Rezaei M, Siahpoosh A, Khazaei A, Houshmand G. Evaluation of the effect of naringenin on pentylenetetrazole and maximal electroshock-induced convulsions in mice. Jundishapur J Nat Pharm Prod. 2017;12:23–29.
  • Park J, Jeong KH, Shin W-H, Bae Y-S, Jung UJ, Kim SR. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy. Neuroreport. 2016;27(15):1182–1189.
  • Feifel D, Shilling PD, MacDonald K. A review of oxytocin's effects on the positive, negative, and cognitive domains of schizophrenia. Biol Psychiatry. 2016;79(3):222–233.
  • Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008;31(5):234–242.
  • Obrosova IG. Diabetes and the peripheral nerve. Biochim Biophys Acta (BBA)-Molecular Basis of Disease. 2009;1792(10):931–940.
  • Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol. 2015;29(2):97–115.
  • Li P-F, Dietz R, von Harsdorf R. P53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 1999;18(21):6027–6036.
  • Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, Riella M, et al. IL-10, IL-6, and TNF-α: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly. Kidney Int 2005;67(4):1216–1233.
  • Higley MJ, Picciotto MR. Neuromodulation by acetylcholine: examples from schizophrenia and depression. Curr Opin Neurobiol. 2014;29:88–95.
  • Zou W, Xiao Z, Wen X, Luo J, Chen S, Cheng Z, et al. The anti-inflammatory effect of andrographis paniculata (burm. f.) nees on pelvic inflammatory disease in rats through down-regulation of the NF-κB pathway. BMC Complement Altern Med. 2016;16:1–7.
  • Shorter E.How everyone became depressed: The rise and fall of the nervous breakdown. Oxford (England): Oxford University Press; 2013.
  • Patel K, Singh GK, Patel DK. A review on pharmacological and analytical aspects of naringenin. Chin J Integr Med. 2018;24:551–560.
  • Mitra S, Lami MS, Uddin TM, Das R, Islam F, Anjum J, et al. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed Pharmacother. 2022b;150:345–351.
  • Halbreich U, Kahn LS. Role of estrogen in the aetiology and treatment of mood disorders. CNS Drugs. 2001;15:797–817.
  • Mitra S, Anjum J, Muni M, Das R, Rauf A, Islam F, et al. Exploring the journey of emodin as a potential neuroprotective agent: novel therapeutic insights with molecular mechanism of action. Biomed Pharmacother. 2022a;149:456–463.
  • Yi L-T, Li C-F, Zhan X, Cui C-C, Xiao F, Zhou L-P, Xie Y. Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(7):1223–1228.
  • Yi L-T, Liu B-B, Li J, Luo L, Liu Q, Geng D, et al. BDNF signaling is necessary for the antidepressant-like effect of naringenin. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:135–141.
  • Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression. Expert Opin Investig Drugs. 2013;22(7):863–880.
  • Stafford GI, Pedersen ME, van Staden J, Jäger AK. Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J Ethnopharmacol. 2008;119(3):513–537.
  • Salman M, Sharma P, Alam MI, Tabassum H, Parvez S. Naringenin mitigates behavioral alterations and provides neuroprotection against 3-nitropropinoic acid-induced Huntington's disease like symptoms in rats. Nutr Neurosci. 2022b;25(9):1898–1908.
  • El Madani MA, Elsalam RMA, Attia AS, El-Shenawy SM, Arbid MS. Neuropharmacological effects of naringenin, harmine and adenosine on parkinsonism induced in rats. Scholars Res Library. 2016;8(5):45–57.
  • Chen C, Wei Y-Z, He X-M, Li D-D, Wang G-Q, Li J-J, et al. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front Immunol. 2019;10:21–29.
  • Kabir MSH, Hossain MM, Kabir MI, Rahman MM, Hasanat A, Emran T Bin, et al. Phytochemical screening, antioxidant, thrombolytic, alpha-amylase inhibition and cytotoxic activities of ethanol extract of steudnera colocasiifolia K. koch leaves. J Young Pharmacists. 2016;8(4):24–29.
  • Mani S, Sekar S, Chidambaram SB, Sevanan M. Naringenin protects against 1-methyl-4-phenylpyridinium-induced neuroinflammation and resulting reactive oxygen species production in SH-SY5Y cell line: an: in vitro: model of Parkinson's disease. Pharmacogn Mag. 2018b;14(57):458–464.
  • Mercer LD, Kelly BL, Horne MK, Beart PM. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol. 2005;69(2):339–345.
  • Kesh S, Kannan RR, Balakrishnan A. Naringenin alleviates 6-hydroxydopamine induced parkinsonism in SHSY5Y cells and zebrafish model. Comp Biochem Physiol C Toxicol Pharmacol. 2021;239:101–121.
  • Zhang B, Wei YZ, Wang GQ, Li DD, Shi JS, Zhang F. Targeting MAPK pathways by naringenin modulates microglia M1/M2 polarization in lipopolysaccharide-stimulated cultures. Front Cell Neurosci. 2019;12:531–543.
  • Hu CY, Zhao Y. Analgesic effects of naringenin in rats with spinal nerve ligation–induced neuropathic pain. Biomed Rep. 2014;2(4):569–573.
  • Tayyab M, Farheen S, Khanam N, Mobarak Hossain M, Shahi MH. Antidepressant and neuroprotective effects of naringenin via sonic hedgehog-GLI1 cell signaling pathway in a rat model of chronic unpredictable mild stress. Neuromolecular Med. 2019;21:250–261.
  • Yi L-T, Li J, Li H-C, Su D-X, Quan X-B, He X-C, Wang X-H. Antidepressant-like behavioral, neurochemical and neuroendocrine effects of naringenin in the mouse repeated tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(1):175–181.
  • Olugbemide AS, Ben-Azu B, Bakre AG, Ajayi AM, Femi-Akinlosotu O, Umukoro S. Naringenin improves depressive-and anxiety-like behaviors in mice exposed to repeated hypoxic stress through modulation of oxido-inflammatory mediators and NF-kB/BDNF expressions. Brain Res Bull. 2021;169:214–227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.