Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 27, 2024 - Issue 7
106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ameliorating effect of Citrus trifoliata L. fruits extract on motor incoordination, neurodegeneration and oxidative stress in Parkinson’s disease model

, ORCID Icon, , , &

References

  • Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, Weintraub D. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7(1):47. doi:10.1038/s41572-021-00280-3
  • Grotemeyer A, McFleder RL, Wu J, Wischhusen J, Ip CW. Neuroinflammation in Parkinson’s disease–putative pathomechanisms and targets for disease-modification. Front Immunol. 2022;13:878771. doi:10.3389/fimmu.2022.878771
  • Stoddard-Bennett T, Reijo Pera R. Treatment of Parkinson’s disease through personalized medicine and induced pluripotent stem cells. Cells. 2019;8(1):26. doi:10.3390/cells8010026
  • Freeman DM, O’Neal R, Zhang Q, Bouwer EJ, Wang Z. Manganese-induced Parkinsonism in mice is reduced using a novel contaminated water sediment exposure model. Environ Toxicol Pharmacol. 2020;78:103399. doi:10.1016/j.etap.2020.103399
  • Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, et al. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology. 2018;64:204–18. doi:10.1016/j.neuro.2017.05.009.
  • Pérez-Hernández J, Zaldívar-Machorro VJ, Villanueva-Porras D, Vega-Ávila E, Chavarría A. A potential alternative against neurodegenerative diseases: phytodrugs. Oxid Med Cell Longev. 2016;2016:1–19. doi:10.1155/2016/8378613.
  • Yao Y, Chen T, Huang J, Zhang H, Tian M. Effect of Chinese herbal medicine on molecular imaging of neurological disorders. Int Rev Neurobiol. 2017: 181–96. doi:10.1016/bs.irn.2017.02.009
  • Zhang S, Tomata Y, Sugiyama K, Sugawara Y, Tsuji I. Citrus consumption and incident dementia in elderly Japanese: The Ohsaki Cohort 2006 study. Br J Nutr. 2017;117:1174–80. doi:10.1017/S000711451700109X
  • Sohi S, Shri R. Neuropharmacological potential of the genus Citrus: a review. J Pharmacogn Phytochem. 2018;7:1538–48.
  • Nielsen ILF, Chee W, Poulsen L, Offord-Cavin E, Rasmussen SE, Frederiksen H, et al. Bioavailability is improved by enzymatic modification of the Citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J Nutr. 2006;136:404–8. doi:10.1093/jn/136.2.404
  • Erlund I, Meririnne E, Alfthan G, Aro A. Plasma kinetics and urinary excretion of the flavanones Naringenin and Hesperetin in humans after ingestion of orange juice and grapefruit juice. J Nutr. 2001;131:235–41. doi:10.1093/jn/131.2.235
  • Poulose SM, Harris ED, Patil BS. Antiproliferative effects of Citrus limonoids against human neuroblastoma and colonic adenocarcinoma cells. Nutr Cancer. 2006;56(1):103–12. doi:10.1207/s15327914nc5601_14
  • Shi Y-S, Zhang Y, Li H-T, Wu C-H, El-Seedi HR, Ye W-K, et al. Limonoids from Citrus: chemistry, anti-tumor potential, and other bioactivities. J Funct Foods. 2020;75:104213. doi:10.1016/j.jff.2020.104213
  • Faria A, Meireles M, Fernandes I, Santos-Buelga C, Gonzalez-Manzano S, Dueñas M, et al. Flavonoid metabolites transport across a human BBB model. Food Chem. 2014;149:190–6. doi:10.1016/j.foodchem.2013.10.095
  • Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev. 2012;6:81. doi:10.4103/0973-7847.99898
  • Bouabid S, Delaville C, De Deurwaerdère P, Lakhdar-Ghazal N, Benazzouz A. Manganese-induced atypical parkinsonism is associated with altered basal ganglia activity and changes in tissue levels of monoamines in the rat. PLoS One. 2014;9:e98952. doi:10.1371/journal.pone.0098952
  • Heikkinen H, Varhe A, Laine T, Puttonen J, Kela M, Kaakkola S, Reinikainen K. Entacapone improves the availability of L-dopa in plasma by decreasing its peripheral metabolism independent of L-dopa/carbidopa dose. Br J Clin Pharmacol. 2002;54:363–71. doi:10.1046/j.1365-2125.2002.01654.x.
  • Foyet HS, Hritcu L, Ciobica A, Stefan M, Kamtchouing P, Cojocaru D. Methanolic extract of Hibiscus asper leaves improves spatial memory deficits in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. J Ethnopharmacol. 2011;133(2):773–9. doi:10.1016/j.jep.2010.11.011
  • Rahman MNA, Elsheikh AA. Study of the possible modulatory effect of resveratrol and coenzyme Q10 on MPTP-induced parkinsonism in mice. J Am Sci. 2012;8:958–67.
  • Garrido G, González D, Lemus Y, Delporte C, Delgado R. Protective effects of a standard extract of Mangifera indica L.(VIMANG®) against mouse ear edemas and its inhibition of eicosanoid production in J774 murine macrophages. Phytomedicine. 2006;13:412–8. doi:10.1016/j.phymed.2004.12.003
  • Sharawy N, Imam AAA, Aboulhoda BE, Khalifa MM, Morcos GN, Abd Algaleel WA, et al. Iron dyshomeostasis and time-course changes in iron-uptake systems and ferritin level in relation to pro-inflammatory microglia polarization in sepsis-induced encephalopathy. Front Physiol. 2022;13:P1581.
  • Simirgiotis MJ, Cuevas H, Tapia W, Borquez J. Edible Passiflora (banana passion) fruits: a source of bioactive C-glycoside flavonoids obtained by HSCCC and HPLC-DAD-ESI/MS/MS. Planta Med. 2012;78:PI442. doi:10.1055/s-0032-1321129
  • Park S-H, Park E-K, Kim D-H. Passive cutaneous anaphylaxis-inhibitory activity of flavanones from Citrus unshiu and Poncirus trifoliata. Planta Med. 2005;71:24–7. doi:10.1055/s-2005-837746
  • Dugrand A, Olry A, Duval T, Hehn A, Froelicher Y, Bourgaud F. Coumarin and furanocoumarin quantitation in citrus peel via ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS). J Agric Food Chem. 2013;61:10677–84. doi:10.1021/jf402763t.
  • Huang SC, Chen MT, Wu TS. Alkaloids and coumarins from stem bark of Citrus grandis. Phytochemistry. 1989;28:3574–6. doi:10.1016/0031-9422(89)80402-9.
  • Mokbel MS, Suganuma T. Antioxidant and antimicrobial activities of the methanol extracts from pummelo (Citrus grandis Osbeck) fruit albedo tissues. Eur Food Res Technol. 2006;224:39–47. doi:10.1007/s00217-006-0286-0
  • Mercolini L, Mandrioli R, Ferranti A, Sorella V, Protti M, Epifano F, et al. Quantitative evaluation of auraptene and umbelliferone, chemopreventive coumarins in citrus fruits, by HPLC-UV-FL-MS. J Agric Food Chem. 2013;61:1694–701. doi:10.1021/jf303060b.
  • Siskos EP, Mazomenos BE, Konstantopoulou MA. Isolation and identification of insecticidal components from Citrus aurantium fruit peel extract. J Agric Food Chem. 2008;56:5577–81. doi:10.1021/jf800446t
  • Guiotto A, Rodighiero P, Fornasiero U. Furocoumarins from the seeds of citrus trifo liata l. Zeitschrift Fur Naturforsch - Sect c J Biosci. 1973;28:260–3. doi:10.1515/znc-1973-5-606.
  • Zheng G-D, Zhou P, Yang H, Li Y, Li P, Liu E-H. Rapid resolution liquid chromatography–electrospray ionisation tandem mass spectrometry method for identification of chemical constituents in Citri Reticulatae Pericarpium. Food Chem. 2013;136:604–11. doi:10.1016/j.foodchem.2012.08.040
  • Zhang J-Y, Li N, Che Y-Y, Zhang Y, Liang S-X, Zhao M-B, et al. Characterization of seventy polymethoxylated flavonoids (PMFs) in the leaves of Murraya paniculata by on-line high-performance liquid chromatography coupled to photodiode array detection and electrospray tandem mass spectrometry. J Pharm Biomed Anal. 2011;56:950–61. doi:10.1016/j.jpba.2011.08.019
  • Yang Y, Zhao XJ, Pan Y, Zhou Z. Identification of the chemical compositions of Ponkan peel by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Anal Methods. 2016;8:893–903. doi:10.1039/C5AY02633D.
  • Zhang H, Xi W, Zhou Z, Wang HL, Bai Z. Bioactivities and structure of polymethoxylated flavones in citrus. J Food Agric Envir. 2013;11:237–42.
  • Sharma K, Mahato N, Lee YR. Extraction, characterization and biological activity of citrus flavonoids. Rev Chem Eng. 2019;35:265–84. doi:10.1515/revce-2017-0027.
  • Rodríguez-Rivera MP, Lugo-Cervantes E, Winterhalter P, Jerz G. Metabolite profiling of polyphenols in peels of Citrus limetta Risso by combination of preparative high-speed countercurrent chromatography and LC-ESI-MS/MS. Food Chem. 2014;158:139–52. doi:10.1016/j.foodchem.2014.02.077.
  • Jayaprakasha GK, Dandekar DV, Tichy SE, Patil BS. Simultaneous separation and identification of limonoids from citrus using liquid chromatography-collision-induced dissociation mass spectra. J Sep Sci. 2011;34:2–10. doi:10.1002/jssc.201000644.
  • Guilarte TR, Burton NC, McGlothan JL, et al. Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by pre-synaptic mechanism(s): implications to manganese-induced parkinsonism. J Neurochem. 2008;107(5):1236–47. doi:10.1111/j.1471-4159.2008.05695.x
  • Huang CC. Parkinsonism induced by chronic manganese intoxication—an experience in Taiwan. Chang GungMedical Journal. 2007;30(5):385–95.
  • Normandin L, Panisset M, Zayed J. Manganese neurotoxicity: behavioral, pathological, and biochemical effects following various routes of exposure. Rev Environ Health. 2002;17(3):189–217. doi:10.1515/REVEH.2002.17.3.189
  • Schober A. Classic toxin-induced animal models of Parkinsons disease: 6-OHDA and MPTP. Cell Tissue Res. 2004;318(1):215–24. doi:10.1007/s00441-004-0938-y
  • Khalid M, Aoun RA, Mathews TA. Altered striatal dopamine release following a sub-acute exposure to manganese. J Neurosci Methods. 2011;202:182–91. doi:10.1016/j.jneumeth.2011.06.019.
  • Anderson JG, Fordahl SC, Cooney PT, Weaver TL, Colyer CL, Erikson KM. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain. Neurotoxicology. 2008;29:1044–53. doi:10.1016/j.neuro.2008.08.002.
  • Delaville C, Chetrit J, Abdallah K, Morin S, Cardoit L, De Deurwaerdère P, Benazzouz A. Emerging dysfunctions consequent to combined monoaminergic depletions in parkinsonism. Neurobiol. Dis. 2012;45:763–73. doi:10.1016/j.nbd.2011.10.023.
  • Verina T, Kiihl SF, Schneider JS, Guilarte TR. Manganese exposure induces microglia activation and dystrophy in the substantia nigra of non-human primates. Neurotoxicology. 2011;32:215–26. doi:10.1016/j.neuro.2010.11.003.
  • Chiva-Blanch G, Urpi-Sarda M, Llorach R, et al. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: a randomized clinical trial. Am J Clin Nutr. 2012;95(2):326–34. doi:10.3945/ajcn.111.022889
  • Holland TM, Agarwal P, Wang Y, Leurgans SE, Bennett DA, Booth SL, etal Dietary flavonols and risk of Alzheimer dementia. Neurology. 2020;94(16): e1749–e1756.
  • Roodenrys S, Booth D, Bulzomi S, Phipps A, Micallef C, Smoker J. Chronic effects of Brahmi (Bacopa monnieri) on human memory. Neuropsychopharmacology. 2002;27(2):279–81. doi:10.1016/S0893-133X(01)00419-5
  • Ozawa M, Ninomiya T, Ohara T, Doi Y, Uchida K, Shirota T, et al. Dietary patterns and risk of dementia in an elderly Japanese population: The Hisayama study. Am J Clin Nut. 2013;97:1076–82. doi:10.3945/ajcn.112.045575
  • Tomata Y, Sugiyama K, Kaiho Y, Honkura K, Watanabe T, Zhang S, et al. Dietary patterns and incident dementia in elderly Japanese: The Ohsaki Cohort 2006 study. J Gerontol Ser A Biol Sci Med Sci. 2016;71:1322–8. doi:10.1093/gerona/glw117
  • Calapai G, Bonina F, Bonina A, Rizza L, Mannucci C, Arcoraci V, et al. A randomized, double-blinded, clinical trial on effects of a vitis vinifera extract on cognitive function in healthy older adults. Front Pharm. 2017;8. doi:10.3389/fphar.2017.00776
  • Stough C, Lloyd J, Clarke J, et al. The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology. 2001;156(4):481–4. doi:10.1007/s002130100815
  • Assogna M, Casula EP, Borghi I, Bonnì S, Samà D, Motta C, et al. Effects of palmitoylethanolamide combined with luteoline on frontal lobe functions, high frequency oscillations, and GABAergic transmission in patients with frontotemporal dementia. J Alzheimer’s Dis. 2020;76:1297–308. doi:10.3233/JAD-200426
  • Bowtell JL, Aboo-Bakkar Z, Conway ME, Adlam A-LR, Fulford J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab. 2017;42:773–9. doi:10.1139/apnm-2016-0550
  • Petrovic S, Arsic A, Ristic-Medic D, Cvetkovic Z, Vucic V. Lipid peroxidation and antioxidant supplementation in neurodegenerative diseases: a review of human studies. Antioxidants. 2020;9(11):1128. doi:10.3390/antiox9111128
  • Li X, Huang W, Tan R, Xu C, Chen X, Li S, et al. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect. Biomed Pharmacother. 2023;159:114222. doi:10.1016/j.biopha.2023.114222
  • Hajialyani M, Farzaei MH, Echeverría J, Nabavi SM, Uriarte E, Eduardo SS. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules. 2019;24. doi:10.3390/molecules24030648.
  • Kim HD, Jeong KH, Jung UJ, Kim SR. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson’s disease in vivo, but not enough to restore the lesioned dopaminergic system. J Nutr Biochem. 2016;28:140–6. doi:10.1016/j.jnutbio.2015.10.013.
  • Leem E, Nam JH, Jeon MT, Shin WH, Won SY, Park SJ, et al. Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson’s disease. J Nutr Biochem. 2014;25:801–6. doi:10.1016/j.jnutbio.2014.03.006.
  • Kumar P, Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: possible role of nitric oxide. Behav Brain Res. 2010;206:38–46. doi:10.1016/j.bbr.2009.08.028
  • Golechha M, Chaudhry U, Bhatia J, Saluja D, Arya DS. Naringin protects against kainic acid-induced status epilepticus in rats: evidence for an antioxidant, anti-inflammatory and neuroprotective intervention. Biol Pharm Bull. 2011;34:360–5. doi:10.1248/bpb.34.360
  • Golechha M, Sarangal V, Bhatia J, Chaudhry U, Saluja D, Arya DS. Naringin ameliorates pentylenetetrazol-induced seizures and associated oxidative stress, inflammation, and cognitive impairment in rats: possible mechanisms of neuroprotection. Epilepsy Behav. 2014;41:98–102. doi:10.1016/j.yebeh.2014.09.058.
  • Mani VM, Sadiq AMM. Naringin modulates the impairment of memory, anxiety, locomotor, and emotionality behaviors in rats exposed to deltamethrin; a possible mechanism association with oxidative stress, acetylcholinesterase and ATPase. Biomed Prev Nutr. 2014;4:527–33. doi:10.1016/j.bionut.2014.08.006
  • Okuyama S, Minami S, Shimada N, Makihata N, Nakajima M, Furukawa Y. Anti-inflammatory and neuroprotective effects of auraptene, a citrus coumarin, following cerebral global ischemia in mice. Eur J Pharmacol. 2013;699:118–23. doi:10.1016/j.ejphar.2012.11.043.
  • Subramaniam SR, Ellis EM. Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson’s disease. J Neurosci Res. 2013;91:453–61. doi:10.1002/jnr.23164.
  • Braidy N, Behzad S, Habtemariam S, Ahmed T, Daglia M, Nabavi SM, et al. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS Neurol Disord - Drug Targets. 2017;16:387–97. doi:10.2174/1871527316666170328113309.
  • Sun JB, Jiang N, Lv MY, Wang P, Xu FG, Liang JY, Qu W. Limonoids from the root bark of dictamnus angustifolius: potent neuroprotective agents with biometal chelation and halting copper redox cycling properties. RSC Adv. 2015;5:24750–7. doi:10.1039/C5RA00278H.
  • Martin-Arjol I, Bassas-Galia M, Bermudo E, Garcia F, Manresa A. Identification of oxylipins with antifungal activity by LC-MS/MS from the supernatant of Pseudomonas 42A2. Chem Phys Lipids. 2010;163:341–6. doi:10.1016/j.chemphyslip.2010.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.