Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Latest Articles
207
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The neuroprotective effect of vitamin D in Parkinson's disease: association or causation

References

  • Norman A. Vitamin D. Elsevier; 2012.
  • Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.
  • Holick MF, Chen TC, Lu Z, Sauter E. Vitamin D and skin physiology: AD-lightful story. J Bone Miner Res. 2007;22(S2):V28–V33.
  • Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80(6):1678S–1688S.
  • Al-Kuraishy HM, Al-Gareeb AI, Selim HM, Alexiou A, Papadakis M, Negm WA, et al. Does vitamin D protect or treat Parkinson’s disease? A narrative review. Naunyn-Schmiedeberg's Arch Pharmacol. 2023:1–8. doi:10.1007/s00210-023-02656-6.
  • Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94(1):26–34.
  • Wacker M, Holick MF. Sunlight and Vitamin D: a global perspective for health. Dermatoendocrinol. 2013;5(1):51–108.
  • Fetahu IS, Höbaus J, Kállay E. Vitamin D and the epigenome. Front Physiol. 2014;5:164.
  • Cui X, Pelekanos M, Liu P-Y, Burne THJ, McGrath JJ, Eyles DW. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience. 2013;236:77–87.
  • Holick MF. Vitamin D: extraskeletal health. Rheum Dis Clin. 2012;38(1):141–60.
  • Taylor JG, Bushinsky DA. Calcium and phosphorus homeostasis. Blood Purif. 2009;27(4):387–94.
  • Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Zaafar D, Batiha GE. Orexin pathway in Parkinson’s disease: a review. Mol Biol Rep. 2023–50(7):6107–6120. doi:10.1007/s11033-023-08459-5.
  • Li H, Jang W, Kim HJ, Jo KD, Lee MK, Song SH, et al. Biochemical protective effect of 1,25-dihydroxyvitamin D3 through autophagy induction in the MPTP mouse model of Parkinson's disease. Neuroreport. 2015;26(12):669–74.
  • Al-Kuraishy HM, Al-Fakhrany OM, Elekhnawy E, Al-Gareeb AI, Alorabi M, De Waard M, et al. Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. Eur J Med Res. 2022;27(1):186.
  • Batiha GE, Al-Gareeb AI, Qusti S, Alshammari EM, Kaushik D, Verma R, Al-Kuraishy HM. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. Environ Sci Pollut Res. 2022;29(29):43516–31.
  • Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Batiha GE. COVID-19 and L-arginine supplementations: Yet to find the missed key. Curr Protein Pept Sci. 2022;23(3):166–9.
  • Alomair BM, Al-Kuraishy HM, Al-Gareeb AI, Al-Buhadily AK, Alexiou A, Papadakis M, et al. Mixed storm in SARS-CoV-2 infection: A narrative review and new term in the Covid-19 era. Immun Inflamm Dis. 2023;11(4):e838.
  • Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson’s disease: beneficial or detrimental effects. Inflammopharmacology. 2023;31(2):673–88.
  • Pirotta S, Kidgell DJ, Daly RM. Effects of vitamin D supplementation on neuroplasticity in older adults: a double-blinded, placebo-controlled randomised trial. Osteoporos Int. 2015;26:131–40.
  • Bivona G, Agnello L, Bellia C, Iacolino G, Scazzone C, Lo Sasso B, et al. Non-skeletal activities of vitamin D: from physiology to brain pathology. Medicina (B Aires). 2019;55(7):341.
  • Bivona G, Gambino CM, Iacolino G, Ciaccio M. Vitamin D and the nervous system. Neurol Res. 2019;41(9):827–35.
  • Batiha GE, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E. SIRT1 pathway in Parkinson’s disease: a faraway snapshot but so close. Inflammopharmacology. 2023;31(1):37–56.
  • Alsubaie N, Al-Kuraishy HM, Al-Gareeb AI, Alharbi B, De Waard M, Sabatier JM, et al. Statins use in Alzheimer disease: bane or boon from frantic search and narrative review. Brain Sci. 2022;12(10):1290.
  • Sultan S, Taimuri U, Basnan SA, et al. Low vitamin D and its association with cognitive impairment and dementia. J Aging Res. 2020;2020. https://doi.org/10.1155/2020/6097820.
  • Pignolo A, Mastrilli S, Davì C, Arnao V, Aridon P, dos Santos Mendes FA, et al. Vitamin D and Parkinson’s disease. Nutrients. 2022;14(6):1220. https://doi.org/10.3390/nu14061220.
  • Uthaiah CA, Beeraka NM, Rajalakshmi R, Ramya CM, Madhunapantula SV. Role of neural stem cells and vitamin D receptor (VDR)–mediated cellular signaling in the mitigation of neurological diseases. Mol Neurobiol. 2022;59(7):4065–105.
  • Alruwaili M, Al-Kuraishy HM, Alexiou A, Papadakis M, ALRashdi BM, Elhussieny O, et al. Pathogenic role of fibrinogen in the neuropathology of multiple sclerosis: a tale of sorrows and fears. Neurochem Res. 2023:1–5.
  • Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE. The potential therapeutic effect of statins in multiple sclerosis: beneficial or detrimental effects. Inflammopharmacology. 2023:1–2.
  • Koduah P, Paul F, Dörr J-M. Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. Epma Journal. 2017;8(4):313–25.
  • Al-Kuraishy HM, Abdulhadi MH, Hussien NR, Al-Niemi MS, Rasheed HA, Al-Gareeb AI. Involvement of orexinergic system in psychiatric and neurodegenerative disorders: a scoping review. Brain Circ. 2020;6(2):70.
  • Al-Kuraishy HM, Al-Gareeb AI, Elewa YH, Zahran MH, Alexiou A, Papadakis M, Batiha GE. Parkinson’s disease risk and hyperhomocysteinemia: the possible link. Cell Mol Neurobiol. 2023:1–7.
  • Newmark HL, Newmark J. Vitamin D and Parkinson's disease—a hypothesis. Mov Disord. 2007;22(4):461–8.
  • Fullard ME, Duda JE. A review of the relationship between vitamin D and Parkinson disease symptoms. Front Neurol. 2020;11:454.
  • Zhou Z, Zhou R, Zhang Z, Li K. The association between vitamin D status, vitamin D supplementation, sunlight exposure, and Parkinson’s disease: a systematic review and meta-analysis. Med Sci Monit: Int Med J Exp Clin Res. 2019;25:666.
  • Barichella M, Garrì F, Caronni S, Bolliri C, Zocchi L, Macchione MC. Vitamin D status and Parkinson’s disease. Brain Sci. 2022;12(6):790.
  • Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Ashour NA, Jabir MS, Negm WA, et al. Metformin role in Parkinson’s disease: a double-sword effect. Mol Cell Biochem. 2023: 1–17. https://doi.org/10.1007/s11010-023-04771-7.
  • Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson's disease in 204 countries/territories from 1990 to 2019. Front Public Health. 2021;9:776847.
  • Al-kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Alsayegh AA, Almohmadi NH, et al. Pros and cons for statins use and risk of Parkinson's disease: An updated perspective. Pharmacol Res Perspect. 2023;11(2):e01063.
  • Dorsey E, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8(s1):S3–S8.
  • Alnaaim SA, Al-Kuraishy HM, Alexiou A, Papadakis M, Saad HM, Batiha GE. Role of brain liver X receptor in Parkinson’s disease: hidden treasure and emerging opportunities. Mol Neurobiol. 2023:1–7. https://doi.org/10.1007/s12035-023-03561-y.
  • Al-Kuraishy HM, Alexiou A, Papadakis M, Elhussieny O, Saad HM, Batiha GE. New insights on the potential effect of vinpocetine in Parkinson’s disease: one of the neglected warden and baffling topics. Metab Brain Dis. 2023:1–10.
  • Alrouji M, Al-kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Jabir MS, et al. NF-κB/NLRP3 inflammasome axis and risk of Parkinson's disease in Type 2 diabetes mellitus: a narrative review and new perspective. J Cell Mol Med. 2023.
  • Alrouji M, Al-Kuraishy HM, Al-Mahammadawy AK, Al-Gareeb AI, Saad HM, Batiha GE. The potential role of cholesterol in Parkinson’s disease neuropathology: perpetrator or victim. Neurol Sci. 2023:1–4.
  • Hall S, Janelidze S, Surova Y, Widner H, Zetterberg H, Hansson O. Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci Rep. 2018;8(1):13276.
  • Alrouji M, Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Elekhnawy E, Batiha GE. DPP-4 inhibitors and type 2 diabetes mellitus in Parkinson’s disease: a mutual relationship. Pharmacol Rep. 2023:1–4.
  • Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol Dis. 2006;21(2):404–12. doi: 10.1016/j.nbd.2005.08.002.
  • Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, et al. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann Neurol. 2005;57(2):168–75.
  • Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38(6):938–49.
  • Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE. Long-term use of metformin and Alzheimer’s disease: beneficial or detrimental effects. Inflammopharmacology. 2023:1–9.
  • Hirsch EC, Standaert DG. Ten unsolved questions about neuroinflammation in Parkinson's disease. Mov Disord. 2021;36(1):16–24.
  • AlAnazi FH, Al-Kuraishy HM, Alexiou A, Papadakis M, Ashour MH, Alnaaim SA, et al. Primary hypothyroidism and Alzheimer’s disease: A tale of Two. Cell Mol Neurobiol. 2023:1–2. doi:10.1007/s10571-023-01392-y.
  • Lee H-S, Lobbestael E, Vermeire S, Sabino J, Cleynen I. Inflammatory bowel disease and Parkinson’s disease: common pathophysiological links. Gut. 2021;70(2):408–17.
  • Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GE. The potential role of human islet amyloid polypeptide in type 2 diabetes mellitus and Alzheimer’s diseases. Diabetol Metab Syndr. 2023;15(1):1–6.
  • Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Abusudah WF, Almohmadi NH, Eldahshan OA, et al. Insights on benzodiazepines’ potential in Alzheimer's disease. Life Sci. 2023: 121532. https://doi.org/10.1016/j.lfs.2023.121532.
  • Zhu F, Li C, Gong J, Zhu W, Gu L, Li N, et al. The risk of Parkinson’s disease in inflammatory bowel disease: A systematic review and meta-analysis. Dig Liver Dis. 2019;51(1):38–42.
  • Dickson DW. Neuropathology of Parkinson disease. Parkinsonism Relat Disord. 2018;46:S30–S33.
  • Peterson AL. A review of vitamin D and Parkinson's disease. Maturitas. 2014;78(1):40–4.
  • Hiller AL, Murchison CF, Lobb BM, O’Connor S, O’Connor M, Quinn JF. A randomized, controlled pilot study of the effects of vitamin D supplementation on balance in Parkinson's disease: does age matter? PLoS One. 2018;13(9):e0203637.
  • Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2011;59(12):2291–300.
  • Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Noya M, Takahashi D, et al. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am Clin Nutr. 2013;97(5):1004–13.
  • Bayo-Olugbami A, Nafiu AB, Amin A, Ogundele OM, Lee CC, Owoyele BV. Vitamin D attenuated 6-OHDA-induced behavioural deficits, dopamine dysmetabolism, oxidative stress, and neuro-inflammation in mice. Nutr Neurosci. 2022;25(4):823–34.
  • Jang W, Park H-H, Lee K-Y, Lee YJ, Kim HT, Koh SH. 1, 25-Dyhydroxyvitamin D 3 attenuates L-DOPA-induced neurotoxicity in neural stem cells. Mol Neurobiol. 2015;51:558–70.
  • Koper J, Zapała B, Spychałowicz A, Piwowar M, Ciałowicz U, Kościuszko M, et al. Vitamin D receptor mutations influence on course of Parkinson's disease in patients treated with L-Dopa. Parkinsonism Relat Disord. 2020;79:e32–e33.
  • Feart C, Helmer C, Merle B, Herrmann FR, Annweiler C, Dartigues JF, et al. Associations of lower vitamin D concentrations with cognitive decline and long-term risk of dementia and Alzheimer's disease in older adults. Alzheimers Dement. 2017;13(11):1207–16.
  • Peterson AL, Murchison C, Zabetian C, Leverenz JB, Watson GS, Montine T, et al. Memory, mood, and vitamin D in persons with Parkinson's disease. J Parkinsons Dis. 2013;3(4):547–55.
  • Phillipson OT. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson’s disease. An integrated strategy for management. Ageing Res Rev. 2017;40:149–67.
  • Latimer CS, Brewer LD, Searcy JL, Chen KC, Popović J, Kraner SD, et al. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci USA. 2014;111(41):E4359–E4366.
  • Takeda A, Baba T, Kikuchi A, Hasegawa T, Sugeno N, Konno M, et al. Olfactory dysfunction and dementia in Parkinson's disease. J Parkinsons Dis. 2014;4(2):181–7.
  • Yoo HS, Chung SJ, Lee YH, Ye BS, Sohn YH, Lee PH. Olfactory anosognosia is a predictor of cognitive decline and dementia conversion in Parkinson’s disease. J Neurol. 2019;266:1601–10.
  • Lee JJ, Hong JY, Baik JS. Hyposmia may predict development of freezing of gait in Parkinson’s disease. J Neural Transm. 2021;128(6):763–70.
  • Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Kawasaki K, Noya M, et al. 25-hydroxyvitamin D, vitamin D receptor gene polymorphisms, and severity of Parkinson's disease. Mov Disord. 2012;27(2):264–71.
  • Chitsaz A, Maracy M, Basiri K, Izadi Boroujeni M, Tanhaei AP, Rahimi M, et al. 25-hydroxyvitamin d and severity of Parkinson’s disease. Int J Endocrinol. 2013;2013https://doi.org/10.1155/2013/689149.
  • Barichella M, Cereda E, Iorio L, Pinelli G, Ferri V, Cassani E, et al. Clinical correlates of serum 25-hydroxyvitamin D in Parkinson’s disease. Nutr Neurosci. 2022;25(6):1128–36.
  • Iacopetta K, Collins-Praino LE, Buisman-Pijlman FT, Liu J, Hutchinson AD, Hutchinson MR. Are the protective benefits of vitamin D in neurodegenerative disease dependent on route of administration? A systematic review. Nutr Neurosci. 2020;23(4):251–80.
  • Calvello R, Cianciulli A, Nicolardi G, De Nuccio F, Giannotti L, Salvatore R. et al. Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson’s disease, shifting M1 to M2 microglia responses. J Neuroimmune Pharmacol. 2017;12:327–39.
  • Shrestha S, Lutsey PL, Alonso A, Huang X, Mosley TH, Chen H. Serum 25-hydroxyvitamin D concentrations in Mid-adulthood and Parkinson's disease risk. Mov Disord. 2016;31(7):972–8.
  • Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Sääksjärvi K, Heliövaara M. Serum vitamin D and the risk of Parkinson disease. Arch Neurol. 2010;67(7):808–11.
  • Evatt ML, DeLong MR, Kumari M. High prevalence of hypovitaminosis D status in patients with early Parkinson disease. Arch Neurol. 2011;68(3):314–9.
  • Wang W, Li Y, Meng X. Vitamin D and neurodegenerative diseases. Heliyon. 2023.
  • Littlejohns TJ, Henley WE, Lang IA, Annweiler C, Beauchet O, Chaves PHM, et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology. 2014;83(10):920–8.
  • Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA. 2005;293(18):2257–64.
  • Taghizadeh M, Talaei SA, Djazayeri A, Salami M. Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimer's disease. Nutr Neurosci. 2014;17(4):172–7.
  • Swank RL, Lerstad O, Strøm A, Backer J. Multiple sclerosis in rural Norway: its geographic and occupational incidence in relation to nutrition. N Engl J Med. 1952;246(19):721–8.
  • Laursen JH, Søndergaard HB, Sørensen PS, Sellebjerg F, Oturai AB. Vitamin D supplementation reduces relapse rate in relapsing-remitting multiple sclerosis patients treated with natalizumab. Mult Scler Relat Disord. 2016;10:169–73.
  • Lasoń W, Jantas D, Leśkiewicz M, Regulska M, Basta-Kaim A. The vitamin D receptor as a potential target for the treatment of Age-related neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases: a narrative review. Cells. 2023;12(4):660.
  • Bytowska ZK, Korewo-Labelle D, Berezka P, Kowalski K, Przewłócka K, Libionka W, et al. Effect of 12-week BMI-based vitamin D3 supplementation in Parkinson’s disease with deep brain stimulation on physical performance, inflammation, and vitamin D Metabolites. Int J Mol Sci. 2023;24(12):10200.
  • Wang L, Evatt ML, Maldonado LG, Perry WR, Ritchie JC, Beecham GW, et al. Vitamin D from different sources is inversely associated with Parkinson disease. Mov Disord. 2015;30(4):560–6.
  • Pertile RAN, Brigden R, Raman V, Cui X, Du Z, Eyles D. Vitamin D: A potent regulator of dopaminergic neuron differentiation and function. J Neurochem. 2023. https://doi.org/10.1111/jnc.15829.
  • Cui X, Pertile R, Liu P, Eyles DW. Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator. Neuroscience. 2015;304:90–100.
  • Volakakis N, Tiklova K, Decressac M, Papathanou M, Mattsson B, Gillberg L, et al. Nurr1 and retinoid X receptor ligands stimulate ret signaling in dopamine neurons and can alleviate α-synuclein disrupted gene expression. J Neurosci. 2015;35(42):14370–85.
  • Harms LR, Burne TH, Eyles DW, McGrath JJ. Vitamin D and the brain. Best Pract Res Clin Endocrinol Metab. 2011;25(4):657–69.
  • Mayne PE, Burne TH. Vitamin D in synaptic plasticity, cognitive function, and neuropsychiatric illness. Trends Neurosci. 2019;42(4):293–306.
  • Lima LA, Lopes MJP, Costa RO, Lima FAV, Neves KRT, Calou IB, et al. Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J Neuroinflammation. 2018;15(1):1–11.
  • Li H, Jang W, Kim HJ, Jo KD, Lee MK, Song SH, et al. Biochemical protective effect of 1, 25-dihydroxyvitamin D3 through autophagy induction in the MPTP mouse model of Parkinson’s disease. Neuroreport. 2015;26(12):669–74.
  • Lu H-C, Lin T, Ng MY, Hsieh CW, Liao YW, Chen CC, et al. Anti-inflammaging effects of vitamin D in human gingival fibroblasts with advanced glycation end product stimulation. J Dent Sci. 2023;18(2):666–73.
  • Lv L, Tan X, Peng X, Bai R, Xiao Q, Zou T. The relationships of vitamin D, vitamin D receptor gene polymorphisms, and vitamin D supplementation with Parkinson’s disease. Transl Neurodegener. 2020;9(1):1–13.
  • Aureli C, Cassano T, Masci A, Francioso A, Martire S, Cocciolo A, et al. 5-S-cysteinyldopamine neurotoxicity: influence on the expression of α-synuclein and ERp57 in cellular and animal models of Parkinson's disease. J Neurosci Res. 2014;92(3):347–58.
  • Grillo C, D'Ambrosio C, Scaloni A, Maceroni M, Merluzzi S, Turano C, et al. Cooperative activity of Ref-1/APE and ERp57 in reductive activation of transcription factors. Free Radic Biol Med. 2006;41(7):1113–23.
  • Cassano T, Giamogante F, Calcagnini S, Romano A, Lavecchia AM, Inglese F, et al. Pdia3 expression is altered in the limbic brain regions of ttriple-transgenic mouse model of Alzheimer’s disease. Int J Mol Sci. 2023;24(3):3005.
  • Bargsted L, Hetz C, Matus S. ERp57 in neurodegeneration and regeneration. Neural Regen Res. 2016;11(2):232.
  • Weissmiller AM, Wu C. Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener. 2012;1(1):1–9.
  • Luong KVQ, Nguyen LTH. Vitamin D and Parkinson's disease. J Neurosci Res. 2012;90(12):2227–36.
  • Gezen-Ak D, Dursun E, Yilmazer S. The effect of vitamin D treatment on nerve growth factor (NGF) release from hippocampal neurons. Nöro Psikiyatri Arşivi. 2014;51(2):157.
  • Pedre LL, Fuentes NP, Gonzalez LA, McRae A, Serrano Sánchez T, Blanco Lescano L, et al. Nerve growth factor levels in Parkinson disease and experimental parkinsonian rats. Brain Res. 2002;952(1):122–7.
  • Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun. 2015;460(1):53–71.
  • Câmara AB, Brandão IA. The relationship between vitamin D deficiency and oxidative stress can be independent of age and gender. Int J Vitam Nutr Res. 2019. https://doi.org/10.1024/0300-9831/a000614.
  • Santner A, Uversky VN. Metalloproteomics and metal toxicology of α-synuclein. Metallomics. 2010;2(6):378–92.
  • da Silva TC, Hiller C, Gai Z, Kullak-Ublick GA. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J Steroid Biochem Mol Biol. 2016;163:77–87.
  • Bock FJ, Tait SW. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100.
  • Alkuraishy HM, Al-Gareeb AI, Waheed HJ. Lipoprotein-associated phospholipase A2 is linked with poor cardio-metabolic profile in patients with ischemic stroke: a study of effects of statins. J Neurosci Rural Pract. 2018;9(04):496–503.
  • Al-Kuraishy HM, Al-Gareeb AI. Effects of rosuvastatin on metabolic profile: Versatility of dose-dependent effect. J Adv Pharm Technol Res. 2019;10(1):33.
  • Al-Kuraishy HM, Al-Gareeb AI, Abdullah SM, Cruz-Martins N, Batiha GE. Case report: hyperbilirubinemia in gilbert syndrome attenuates Covid-19-induced metabolic disturbances. Front Cardiovasc Med. 2021;8:642181.
  • Al-Kuraishy HM, Al-Gareeb AI, Batiha GE. The possible role of ursolic acid in Covid-19: a real game changer. Clin Nutr ESPEN. 2022;47:414–7.
  • Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Kasozi KI, Zirintunda G, Aslam A, et al. Effects of β-blockers on the sympathetic and cytokines storms in Covid-19. Front Immunol. 2021;12:749291.
  • Al-Kuraishy HM, Sami OM, Hussain NR, Al-Gareeb AI. Metformin and/or vildagliptin mitigate type II diabetes mellitus induced-oxidative stress: the intriguing effect. J Adv Pharm Technol Res. 2020;11(3):142.
  • Hussien NR, Al-Naimi MS, Rasheed HA, Al-Kuraishy HM, Al-Gareeb AI. Sulfonylurea and neuroprotection: the bright side of the moon. J Adv Pharm Technol Res. 2018;9(4):120–3.
  • Babalghith AO, Al-Kuraishy HM, Al-Gareeb AI, De Waard M, Sabatier JM, Saad HM, Batiha GE. The potential role of growth differentiation factor 15 in COVID-19: a corollary subjective effect or not? Diagnostics. 2022;12(9):2051.
  • Chen C, Turnbull DM, Reeve AK. Mitochondrial dysfunction in Parkinson’s disease—cause or consequence? Biology. 2019;8(2):38.
  • Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson's disease. Biochim Biophys Acta (BBA). 2010;1802(1):29–44.
  • Ayala A, Venero JL, Cano J, Machado A. Mitochondrial toxins and neurodegenerative diseases. Front Biosci-Landmark. 2007;12(3):986–1007.
  • Parker Jr WD, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson's disease frontal cortex. Brain Res. 2008;1189:215–8.
  • Franco-Iborra S, Vila M, Perier C. The Parkinson disease mitochondrial hypothesis: where are we at? Neuroscientist. 2016;22(3):266–77.
  • McMeekin LJ, Fox SN, Boas SM, Cowell RM. Dysregulation of PGC-1α-dependent transcriptional programs in neurological and developmental disorders: therapeutic challenges and opportunities. Cells. 2021;10(2):352.
  • Tsunemi T, La Spada AR. PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington's disease to Parkinson's disease and beyond. Prog Neurobiol. 2012;97(2):142–51.
  • Ferretta A, Gaballo A, Tanzarella P, Piccoli C, Capitanio N, Nico B, et al. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease. Biochim Biophys Acta (BBA). 2014;1842(7):902–15.
  • Pacelli C, De Rasmo D, Signorile A, Grattagliano I, di Tullio G, D'Orazio A, et al. Mitochondrial defect and PGC-1α dysfunction in parkin-associated familial Parkinson's disease. Biochim Biophys Acta (BBA). 2011;1812(8):1041–53.
  • Berridge MJ. Vitamin D deficiency accelerates ageing and age-related diseases: a novel hypothesis. J Physiol. 2017;595(22):6825–36.
  • Rovito D, Belorusova AY, Chalhoub S, Rerra AI, Guiot E, Molin A, et al. Cytosolic sequestration of the vitamin D receptor as a therapeutic option for vitamin D-induced hypercalcemia. Nat Commun. 2020;11(1):6249.
  • El-Din SS, Rashed L, Medhat E, Emad Aboulhoda B, Desoky Badawy A, Mohammed ShamsEldeen A, et al. Active form of vitamin D analogue mitigates neurodegenerative changes in Alzheimer’s disease in rats by targeting Keap1/Nrf2 and MAPK-38p/ERK signaling pathways. Steroids. 2020;156:108586.
  • Eyles D, Almeras L, Benech P, Patatian A, Mackay-Sim A, McGrath J, et al. Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol. 2007;103(3–5):538–45.
  • Chen C, Luo Y, Su Y, Teng L. The vitamin D receptor (VDR) protects pancreatic beta cells against Forkhead box class O1 (FOXO1)-induced mitochondrial dysfunction and cell apoptosis. Biomed Pharmacother. 2019;117:109170.
  • Fan YG, Pang ZQ, Wu TY, Zhang YH, Xuan WQ, Wang Z. Vitamin D deficiency exacerbates Alzheimer-like pathologies by reducing antioxidant capacity. Free Radic Biol Med. 2020;161:139–49.
  • Vishlaghi N, Lisse TS. Exploring vitamin D signalling within skin cancer. Clin Endocrinol. 2020;92(4):273–81.
  • Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11(6):1164–78.
  • Sasi M, Vignoli B, Canossa M, Blum R. Neurobiology of local and intercellular BDNF signaling. Pflügers Archiv-European Journal of Physiology. 2017;469:593–610.
  • Lau D, Bengtson CP, Buchthal B, Bading H. BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/activin A. Cell Rep. 2015;12(8):1353–66.
  • Numakawa T, Odaka H. Brain-Derived neurotrophic factor signaling in the pathophysiology of Alzheimer's disease: beneficial effects of flavonoids for neuroprotection. Int J Mol Sci. 2021;22(11. https://doi.org/10.1515/revneuro-2016-0017.
  • Nilsson J, Ekblom Ö, Ekblom M, Lebedev A, Tarassova O, Moberg M, et al. Acute increases in brain-derived neurotrophic factor in plasma following physical exercise relates to subsequent learning in older adults. Sci Rep. 2020;10(1):4395.
  • Koo JW, Chaudhury D, Han MH, Nestler EJ. Role of mesolimbic brain-derived neurotrophic factor in Depression. Biol Psychiatry. 2019;86(10):738–48.
  • Scalzo P, Kümmer A, Bretas TL, Cardoso F, Teixeira AL. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson's disease. J Neurol. 2010;257(4):540–5.
  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neurosci Lett. 1999;270(1):45–8.
  • Rahmani F, Saghazadeh A, Rahmani M, Teixeira AL, Rezaei N, Aghamollaii V, et al. Plasma levels of brain-derived neurotrophic factor in patients with Parkinson disease: a systematic review and meta-analysis. Brain Res. 2019;1704:127–36.
  • Rahmani F, Saghazadeh A, Rahmani M, Teixeira AL, Rezaei N, Aghamollaii V, et al. Plasma levels of brain-derived neurotrophic factor in patients with Parkinson disease: a systematic review and meta-analysis. Brain Res. 2019;1704:127–36.
  • Khairy EY, Attia MM. Protective effects of vitamin D on neurophysiologic alterations in brain aging: role of brain-derived neurotrophic factor (BDNF). Nutr Neurosci. 2021;24(8):650–9.
  • Mansouri F, Ghanbari H, Marefati N, Arab Z, Salmani H, Beheshti F, et al. Protective effects of vitamin D on learning and memory deficit induced by scopolamine in male rats: the roles of brain-derived neurotrophic factor and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(7):1451–66.
  • Rana T, Behl T, Sehgal A, Mehta V, Singh S, Bhatia S, et al. Exploring the role of autophagy dysfunction in neurodegenerative Disorders. Mol Neurobiol. 2021;58(10):4886–905.
  • Srinivasan V, Korhonen L, Lindholm D. The unfolded protein response and autophagy as drug targets in neuropsychiatric disorders. Front Cell Neurosci. 2020;14:554548.
  • Djajadikerta A, Keshri S, Pavel M, Prestil R, Ryan L, Rubinsztein DC. Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J Mol Biol. 2020;432(8):2799–821.
  • Park H, Kang JH, Lee S. Autophagy in neurodegenerative diseases: a hunter for aggregates. Int J Mol Sci. 2020;21(9):3369. doi: 10.3390/ijms21093369.
  • Hou X, Watzlawik JO, Fiesel FC, Springer W. Autophagy in Parkinson's Disease. J Mol Biol. 2020;432(8):2651–72.
  • Bolam JP, Pissadaki EK. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord. 2012;27(12):1478–83.
  • Haddad D, Nakamura K. Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson's disease. FEBS Lett. 2015;589(24 Pt A):3702–13.
  • Zhu JH, Guo F, Shelburne J, Watkins S, Chu CT. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol. 2003;13(4):473–81.
  • Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol. 2010;67(12):1464–72.
  • Murphy KE, Gysbers AM, Abbott SK, Spiro AS, Furuta A, Cooper A, et al. Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson's disease. Mov Disord. 2015;30(12):1639–47.
  • Bhutia SK. Vitamin D in autophagy signaling for health and diseases: Insights on potential mechanisms and future perspectives. J Nutr Biochem. 2022 ;99:108841.
  • Kong C, Wang C, Shi Y, Yan L, Xu J, Qi W. Active vitamin D activates chondrocyte autophagy to reduce osteoarthritis via mediating the AMPK–mTOR signaling pathway. Biochem Cell Biol. 2020;98(3):434–42.
  • Lasoń W, Jantas D, Leśkiewicz M, Regulska M, Basta-Kaim A. The vitamin D receptor as a potential target for the treatment of Age-related neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A Narrative Review. Cells. 2023(12(4):660. doi: 10.3390/cells12040660.
  • Cui C, Cui J, Jin F, Cui Y, Li R, Jiang X, et al. Induction of the vitamin D receptor attenuates autophagy dysfunction-mediated cell death following traumatic brain injury. Cell Physiol Biochem. 2017;42(5):1888–96.
  • Jang W, Kim HJ, Li H, Jo KD, Lee MK, Song SH, et al. 1,25-Dyhydroxyvitamin D₃ attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochem Biophys Res Commun. 2014;451(1):142–7.
  • de Siqueira EA, Magalhães EP, de Menezes R, Sampaio TL, Lima DB, da Silva Martins C, et al. Vitamin D3 actions on astrocyte cells: A target for therapeutic strategy in Parkinson's disease? Neurosci Lett. 2023;793:136997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.