34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of vibrational flow on nanofluid flow behavior under different temperature boundary conditions

ORCID Icon, , &
Received 01 Jan 2024, Accepted 11 Mar 2024, Published online: 22 Apr 2024

References

  • S. Sudarmadji, S. Santoso and S. H. Susilo, “Analysis of the effect of ultrasonic vibration on nanofluid as coolant in engine radiator,” EEJET, vol. 5, no. 113, pp. 6–13, 2021. DOI: 10.15587/1729-4061.2021.241694.
  • Q. Xiong, et al., “A comprehensive review on the application of hybrid nanofluids in solar energy collectors,” Sustain. Energy Technol. Assess., vol. 47, no. 10, pp. 101341, 2021. DOI: 10.1016/j.seta.2021.101341.
  • L. B. Thong, G. Gyula, O. O. Vincent, W. Somchai and M. S. Imre, “A CFD study on heat transfer performance of SiO2-TiO2 nanofluids under turbulent flow,” Nanomaterials, vol. 12, no. 3, pp. 299, 2022.
  • Z. Guo, “A review on heat transfer enhancement with nanofluids,” J. Enhanc. Heat Transf., vol. 27, no. 1, pp. 1–70, 2020. DOI: 10.1615/JEnhHeatTransf.2019031575.
  • M. M. Tawfik, “Experimental studies of nanofluid thermal conductivity enhancement and applications: a review,” Renew. Sustain. Energy Rev., vol. 75, pp. 1239–1253, Aug. 2017. DOI: 10.1016/j.rser.2016.11.111.
  • L. Junhao, Z. Xilong, X. Bin and Y. Mingyu, “Nanofluid research and applications: a review,” Int. Commun. Heat Mass Transf., vol. 127, no. 10, pp. 105543, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105543.
  • M. R. Rahimpour, M. A. Makarem, M. R. Kiani and M. A. Sedghamiz, “Chapter 3 - Thermophysical properties of nanofluids,” in Nanofluids and Mass Transfer, Amsterdam: Elsevier, 2022, pp. 39–96.
  • S. Mishra, H. S. Chandra and A. Arora, “Effects on heat transfer and radial temperature profile of non-isoviscous vibrational flow with varying Reynolds number,” JAFM, vol. 12, no. 1, pp. 135–144, 2019. DOI: 10.29252/jafm.75.253.28952.
  • B. Yin, S. Zuo, Y. Xu and S. Chen, “Performance of liquid cooling battery thermal management system in vibration environment,” J. Energy Storage, vol. 53, no. 12, pp. 105232, 2022. DOI: 10.1016/j.est.2022.105232.
  • J. Fu, et al., “Heat transfer and field synergy characteristics in a rectangular unit channel under mechanical vibration,” Int. Commun. Heat Mass Transf., vol. 136, no. 7, pp. 106176, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106176.
  • N. S. Deshpande and M. Barigou, “Vibrational flow of non-newtonian fluids,” Chem. Eng. Sci., vol. 56, no. 12, pp. 3845–3853, 2001. DOI: 10.1016/S0009-2509(01)00059-8.
  • S. Mishra, H. S. Chandra and A. Arora, “CFD study of heat transfer effect on nanofluid of Newtonian and non-Newtonian type under vibration,” Chem. Prod. Process Model., vol. 16, no. 4, pp. 20200027, 2020.
  • A. M. Mohammed, S. Kapan, M. Sen and N. Celik, “Effect of vibration on heat transfer and pressure drop in a heat exchanger with turbulator,” Case Stud. Therm. Eng., vol. 28, pp. 101680, 2021. DOI: 10.1016/j.csite.2021.101680.
  • A. A. Delouei, H. Naeimi, H. Sajjadi, M. Atashafrooz, M. Imanparast and A. J. Chamkha, “An active approach to heat transfer enhancement in indirect heaters of city gate stations: an experimental modeling,” Appl. Therm. Eng., vol. 237, pp. 121795, 2024. DOI: 10.1016/j.applthermaleng.2023.121795.
  • M. Hedeshi, A. Jalali, A. Arabkoohsar and A. A. Delouei, “Nanofluid as the working fluid of an ultrasonic-assisted double-pipe counter-flow heat exchanger,” J. Therm. Anal. Calorim., vol. 148, no. 16, pp. 8579–8591, 2023. DOI: 10.1007/s10973-023-12102-7.
  • A. A. Delouei, H. Sajjadi and G. Ahmadi, “The effect of piezoelectric transducer location on heat transfer enhancement of an ultrasonic-assisted liquid-cooled CPU radiator,” Iran. J. Sci. Technol. Trans. Mech. Eng., vol. 48, no. 1, pp. 239–252, 2024. DOI: 10.1007/s40997-023-00667-5.
  • S. Karimnejad, A. A. Delouei and F. He, “Coupling immersed boundary and lattice Boltzmann method for modeling multi-body interactions subjected to pulsatile flow,” Math. Methods Appl. Sci., vol. 46, no. 6, pp. 6767–6786, 2023. DOI: 10.1002/mma.8939.
  • A. Klaczak, “Report from experiments on heat transfer by forced vibrations of exchangers,” Heat Mass Transf., vol. 32, no. 6, pp. 477–480, 1997. DOI: 10.1007/s002310050148.
  • Y. H. Lee, D. H. Kim and S. H. Chang, “An experimental investigation on the critical heat flux enhancement by mechanical vibration in vertical round tube,” Nucl. Eng. Des., vol. 229, no. 1, pp. 47–58, 2004. DOI: 10.1016/j.nucengdes.2003.11.015.
  • D. H. Kim, Y. H. Lee and S. H. Chang, “Effects of mechanical vibration on critical heat flux in vertical annulus tube,” Nucl. Eng. Des., vol. 237, no. 9, pp. 982–987, 2007. DOI: 10.1016/j.nucengdes.2006.11.002.
  • W. Liu, Z. Yang, B. Zhang and P. Lv, “Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow,” Int. J. Heat Mass Transf., vol. 115, no. Part A, pp. 169–179, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.025.
  • A. Bash, A. Alkumait and H. Yaseen, “Experimental investigation of the influence of mechanical forced vibrations and heat flux on coefficient of heat transfer,” SJUOZ, vol. 6, no. 3, pp. 124–129, 2018. DOI: 10.25271/sjuoz.2018.6.3.519.
  • N. M. Maleki and S. Pourahmad, “Heat transfer enhancement in a heated copper tube using the electromagnetic vibration method for nanofluids as working fluid: an experimental study,” Int. Commun. Heat Mass Transf., vol. 141, pp. 106566, Feb. 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106566.
  • A. Hosseinian and A. H. M. Isfahani, “Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger,” Heat Mass Transf., vol. 54, no. 4, pp. 1113–1120, 2018. DOI: 10.1007/s00231-017-2213-2.
  • M. Setareh, M. Saffar-Avval and A. Abdullah, “Experimental and numerical study on heat transfer enhancement using ultrasonic vibration in a double-pipe heat exchanger,” Appl. Therm. Eng., vol. 159, pp. 113867, 2019. DOI: 10.1016/j.applthermaleng.2019.113867.
  • L. Zhang, J. Lv, M. Bai and D. Guo, “Effect of vibration on forced convection heat transfer for SiO2–water nanofluids,” Heat Transf. Eng., vol. 36, no. 5, pp. 452–461, 2015. DOI: 10.1080/01457632.2014.935214.
  • S. Mishra, H. S. Chandra and A. Arora, “Effect of velocity and rheology of nanofluid on heat transfer of laminar vibrational flow through a pipe under constant heat flux,” Int. Nano Lett., vol. 9, no. 3, pp. 245–256, 2019. DOI: 10.1007/s40089-019-0276-4.
  • P. K. Gangadhar, M. B. G. Rao, B. Sreenivasulu and S. S. Arasavelli, “Effect of vibration on heat transfer to laminar non-Newtonian nanofluid flowing through a circular pipe: a numerical analysis,” Numer. Heat Transf. , Part A: Appl., vol. 82, no. 11, pp. 683–699, 2022. DOI: 10.1080/10407782.2022.2083862.
  • S. Mishra, H. S. Chandra and A. Arora. “Application of vibration on heat transfer - a review,” JFET, vol. 15, no. 1, pp. 72–81, 2019. DOI: 10.26634/jfet.15.1.15877.
  • T. Jiyuan, Y. Guan-Heng and L. Chaoqun, Computational Fluid Dynamics- a Practical Approach. Waltham, USA: Eslevier, 2015.
  • K. V. Sharma, A. Suleiman, H. S. B. Hassan and G. Hegde, “Considerations on the thermophysical properties of nanofluids,” in Engineering Applications of Nanotechnology: From Energy to Drug Delivery. Switzerland: Springer International Publishing, 2017, pp. 33–70.
  • C. Chou, K. Kihm, S. Lee and S. Choi, “Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement,” APPl. physics Letter, vol. 87, no. 15 2005.
  • M. Ahmed and M. Eslamian, “Numerical simulation of natural convection of a nanofluid in an inclined heated enclosure using two-phase lattice Boltzmann method: accurate effects of thermophoresis and Brownian forces,” Nanoscale Res Lett, vol. 10, no. 1, pp. 1006, 2015. DOI: 10.1186/s11671-015-1006-0.
  • M. Hojjat, S. G. Etemad, R. Bagheri and J. Thibault, “Pressure drop of non-Newtonian nanofluids flowing through a horizontal circular tube,” J. Dispers. Sci. Technol., vol. 33, no. 7, pp. 1066–1070, 2011. DOI: 10.1080/01932691.2011.599216.
  • M. Hojjat, S. G. Etemad, R. Bagheri and J. Thibault, “Rheological characteristics of non-Newtonian nanofluids: experimental investigation,” Int. Commun. Heat Mass Transf., vol. 38, no. 2, pp. 144–148, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.11.019.
  • R. Chhabra and J. Richardson, Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications. Oxford (UK) : Butterworth Heinemann, 1999,
  • ANSYS ICEM-CFD user manual, Ansys, Inc., USA, 2022.
  • ANSYS CFX-solver modeling guide, ANSYS, Inc., USA, 2022.
  • R. K. Shah and M. S. Bhatti, “Laminar convective heat transfer in ducts,” in Handbook of Single Phase Convective Heat Transfer, New York: Wiley, 1987.
  • M. Eesa and M. Barigou, “Enhancing radial temperature uniformity and boundary layer development in viscous Newtonian and non-Newtonian flow by transverse oscillations: a CFD study,” Chem. Eng. Sci., vol. 65, no. 6, pp. 2199–2212, 2010. DOI: 10.1016/j.ces.2009.12.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.