36
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical heat and mass transfer in magnetized Williamson liquid motion over a sensor wall engulfed in a micro-cantilever system: An application to thin-film fluidic cells

, , &
Received 28 Nov 2023, Accepted 12 Apr 2024, Published online: 27 Apr 2024

References

  • A. R. A. Khaled and K. Vafai, “Heat Transfer and hydromagnetic control flow exit conditions inside oscillatory squeezed thin films,” Numer. Heat Transf. A: Appl., vol. 43, no. 3, pp. 239–258, Nov. 2003. DOI: 10.1080/10407780390122655.
  • A. R. A. Khaled and K. Vafai, “Hydromagnetic squeezed flow and heat transfer over a sensor surface,” Int. J. Eng. Sci., vol. 42, no. 5–6, pp. 509–519, Mar. 2004. DOI: 10.1016/j.ijengsci.2003.08.005.
  • M. Mahmood, S. Asghar and M. A. Hossain, “Squeezed flow and heat transfer over a porous surface for viscous fluid,” Heat Mass Transf., vol. 44, no. 2, pp. 165–173, Feb. 2007. DOI: 10.1007/s00231-006-0218-3.
  • T. Hayat, M. Hussain, S. Nadeem, A. Alsaedi and S. Obaidat, “Squeezed flow and heat transfer in a second grade-fluid over a sensor surface,” Therm. Sci., vol. 18, no. 2, pp. 357–364, Jan. 2014. DOI: 10.2298/TSCI110710139H.
  • R. U. Haq, S. Nadeem, Z. H. Khan and N. F. M. Noor, “MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface,” Phys. E: Low-Dimens. Syst. Nanostruct., vol. 73, pp. 45–53, Sep. 2015. DOI: 10.1016/j.physe.2015.05.007.
  • K. Mair, M. Y. Malik, T. Salahuddin and I. Khan, “Heat transfer squeezed flow of Carreau fluid over a sensor surface with variable thermal conductivity: a numerical study,” Results Phys., vol. 6, pp. 940–945, Nov. 2016. DOI: 10.1016/j.rinp.2016.10.024.
  • T. Salahuddin, M. Y. Malik, A. Hussain, S. Bilal, M. Awais and I. Khan, “MHD squeezed flow of Carreau-Yasuda fluid over a sensor surface,” Alexandria Eng. J., vol. 56, no. 1, pp. 27–34, Mar. 2017. DOI: 10.1016/j.aej.2016.08.029.
  • S. M. Atif, S. Hussain and M. Sagheer, “Effect of thermal radiation and variable thermal conductivity on Magnetohydrodynamics squeezed flow of Carreau fluid over a sensor surface,” J. Nanofluids, vol. 8, no. 4, pp. 806–816, Apr. 2019. DOI: 10.1166/jon.2019.1621.
  • A. Hussain, R. Zetoon, S. Ali and S. Nadeem, “Magneto-hydro dynamic squeezed flow of Williamson fluid transiting a sensor surface,” Heliyon, vol. 6, no. 9, pp. e04875, Sep. 2020. DOI: 10.1016/j.heliyon.2020.e04875.
  • H. Basha, M. M. Nandeppanavar and G. J. Reddy, “Dissipative Lorentz force influence on mass flow over a micro-cantilever sensor sheet under magnetic Ohmic heating,” ZAMM, vol. 104, no. 1, pp. e202300055, Sep. 2023. DOI:10.1002/zamm.202300055.
  • K. Singh, S. K. Rawat and M. Kumar, “Heat and mass transfer on squeezing unsteady MHD nanofluid flow between parallel plates with slip velocity effect,” J. Nanosci., vol. 2016, no. 24, pp. 1–11, Nov. 2016. DOI: 10.1155/2016/9708562.
  • S. Srinivas, A. Vijayalakshmi, A. S. Reddy and T. R. Ramamohan, “MHD flow of a nanofluid in an expanding or contracting porous pipe with chemical reaction and heat source/sink,” Propul. Power Res., vol. 5, no. 2, pp. 134–148, Jun. 2016. DOI: 10.1016/j.jppr.2016.04.004.
  • W. Khan, T. Gul, M. Idrees, S. Islam and I. Khan, “Dufour and Soret effect with thermal radiation on the nano film flow of Williamson fluid past over an unsteady stretching sheet,” J. Nanofluids, vol. 6, no. 2, pp. 243–253, Apr. 2017. DOI: 10.1166/jon.2017.1328.
  • M. Khan, M. Irfan and W. A. Khan, “Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to rivesd mass flux condition,” Results Phys., vol. 9, pp. 851–857, Jun. 2018. DOI: 10.1016/j.rinp.2018.03.034.
  • S. Islam, et al., “Radiative mixed convection flow of Maxwell nanofluid over a stretching cylinder with joule heating and heat source/sink effects,” Sci. Rep., vol. 10, no. 1, pp. 17823, Oct. 2020. DOI: 10.1038/s41598-020-74393-2.
  • C. Onwubuoya and M. S. Dada, “Soret, viscous dissipation, and thermal radiation effects on MHD free convective flow of Williamson liquid with variable viscosity and thermal conductivity,” Heat Transf., vol. 50, no. 4, pp. 4039–4061, Jun. 2021. DOI: 10.1002/htj.22063.
  • N. A. M. Noor, S. Shafie, Y. S. Hamed and M. A. Admon, “Soret and Dufour effects on MHD squeezing flow of Jeffrey fluid in horizontal channel with thermal radiation,” PLoS ONE, vol. 17, no. 5, pp. e0266494, May 2022. DOI: 10.1371/journal.pone.0266494.
  • M. Saleem, M. Hussain, M. O. Sidi, Z. Iqbal and B. Alqahtani, “Numerical examination of the Darcy– Forchheimer Casson model with instigation energy and second-order momentum slip: thermal features,” Numer. Heat Transf. B: Fund., vol. 84, pp. 1–24, Sep. 2023. DOI: 10.1080/10407790.2023.2257881.
  • M. Hussain, A. Lubna, M. Ashraf, M. S. Anwar, Q. A. Ranjha and A. Ali, “Ohmically dissipated MHD mixed convective flow of Williamson fluid over a penetrable stretching convective wedge with thermal radiations,” Numer. Heat Transf. B: Fund., vol. 84, pp. 1–15, Oct. 2023. DOI: 10.1080/10407790.2023.2261623.
  • M. Hussain, A. Ali, Q. A. Ranjha, I. Ahmad and M. S. Anwar, “Radiative magneto-cross Eyring-Powell flow with activation energy past porous stretching wedge considering suction/injection and Ohmic heating effect,” Numer. Heat Transf. B: Fund., vol. 84, pp. 1–16, Sep. 2023. DOI: 10.1080/10407790.2023.2257383.
  • M. Hussain, Q. A. Ranjha, M. S. Anwar, S. Jahan and A. Ali, “Eyring-Powell model flow near a convectively heated porous wedge with chemical reaction effects,” J. Taiwan Inst. Chem. Eng., vol. 139, pp. 104510, Oct. 2022. DOI: 10.1016/j.jtice.2022.104510.
  • T. Hayat, M. Hussain, A. A. Hendi and S. Nadeem, “MHD stagnation point flow towards heated shrinking surface subjected to heat generation/absorption,” Appl. Math. Mech.-Engl. Ed., vol. 33, no. 5, pp. 631–648, Dec. 2012. DOI: 10.1007/s10483-012-1576-6.
  • M. Hussain, A. Ali, S. W. Yao, A. Ghaffar and M. Inc, “Numerical investigation of ohmically dissipated mixed convective flow,” Case Stud. Therm. Eng., vol. 31, pp. 101809, Jan. 2022. DOI 101016/j.csite.2022.101809. DOI: 10.1016/j.csite.2022.101809.
  • T. Hayat, M. Hussain, M. Awais and S. Obaidat, “Melting heat transfer in a boundary layer flow of a second grade fluid under Soret and Dufour effects,” Case Stud. Therm. Eng., vol. 23, no. 7, pp. 1155–1168, Sep. 2013. DOI: 10.1108/HFF-09-2011-0182.
  • M. Hussain, A. Ali, M. Inc, N. Sene and M. Hussan, “Impacts of chemical reaction and suction/injection on the mixed convective Williamson fluid past a penetrable porous wedge,” J. Math., vol. 2022, pp. 1–10, Sep. 2013. DOI: 10.1155/2022/3233964.
  • M. Hussain, M. Shoaib, Q. A. Ranjha, M. S. Anwar, Z. Ahmad and M. Inc, “Numerical solution to flow of Casson fluid via stretched permeable wedge with chemical reaction and mass transfer effects,” Mod. Phys. Lett. B, vol. 38, no. 16, pp. 2341008, Aug. 2023. DOI: 10.1142/S0217984923410087.
  • M. S. Anwar, T. Muhammad, M. Irfan, M. Hussain and M. Khan, “Brinkman–Navier–Stokes flow under the influence of electric and magnetic fields,” Mod. Phys. Lett. B, vol. 38, no. 03, pp. 235056, 2024. DOI: 10.1142/S0217984923502561.
  • M. S. Anwar, V. Puneeth, M. Hussain, Z. Hussain and M. Irfan, “Heat convection in a viscoelastic nanofluid flow: a memory descriptive model,” JAND, vol. 12, no. 2, pp. 363–378, Jun. 2023. DOI: 10.5890/JAND.2023.06.013.
  • M. S. Anwar, M. Irfan, M. Hussain, T. Muhammad and Z. Hussain, “Heat transfer in a fractional nanofluid flow through a permeable medium,” Math. Probl. Eng., vol. 2022, pp. 1–18, Mar. 2022. DOI: 10.1155/2022/3390478.
  • R. Baby, et al., “The impact of slip mechanisms on the flow of hybrid nanofluid past a wedge subjected to thermal and solutal stratification,” Int. J. Mod. Phys. B, vol. 37, no. 15, pp. 2350145, 2023. DOI: 10.1142/S021797922350145X.
  • M. Khan, A. Rasheed, M. S. Anwar and S. T. H. Shah, “Application of fractional derivatives in a Darcy medium natural convection flow of MHD nanofluid,” Ain Shams Eng. J., vol. 14, no. 9, pp. 102093, Jan. 2023. DOI: 10.1016/j.asej.2022.102093.
  • S. Sharma, A. Dadheech, A. Parmar, J. Arora, Q. Al‑Mdallal and S. Saranya, “MHD micro polar fluid flow over a stretching surface with melting and slip effect,” Sci Rep, vol. 13, no. 1, pp. 10715, Jul. 2023. DOI: 10.1038/s41598-023-36988-3.
  • A. Dadheech, A. Parmar and A. Olkha, “Inclined MHD and radiative Maxwell slip fluid flow and heat transfer due to permeable melting surface with a non-linear heat source,” Int. J. Appl. Comput. Math., vol. 7, no. 3, pp. 89, May 2021. DOI: 10.1007/s40819-021-01021-6.
  • A. Olkha and A. Dadheech, “Unsteady magnetohydrodynamics slip flow of Powell-eyring fluid with microorganisms over an inclined permeable stretching sheet,” J. Nanofluids, vol. 10, no. 1, pp. 128–145, May 2021. DOI: 10.1166/jon.2021.1774.
  • A. Olkha and A. Dadheech, “Second law analysis for radiative magnetohydrodynamics slip flow for two different non-Newtonian fluid with heat source,” J. Nanofluids, vol. 10, no. 3, pp. 447–461, Jun. 2021. DOI: 10.1166/jon.2021.1797.
  • A. Olkha and A. Dadheech, “Second law analysis for Casson fluid flow over permeable surface embedded in porous mediua,” Nonlin. Stud., vol. 28, no. 4, pp. 1271–1285, Nov. 2021. http://www.nonlinearstudies.com/index.php/nonlinear/article/view/2739.
  • K. Agarwal, R. S. Baghel, A. Olkha and A. Dadheech, “Jeffery slip fluid flow with the magnetic dipole effect over a melting or permeable linearly stretching sheet,” Int. J. Appl. Comput. Math., vol. 10, no. 1, pp. 1–31, Dec. 2023. DOI: 10.1007/s40819-023-01629-w.
  • M. B. Arain, N. Ijaz and J. Hu, “Insight into acoustic wave-driven gas bubble dynamics in Williamson’s fluid,” J. Mol. Liq., vol. 394, pp. 123752, Jan. 2024. DOI: 10.1016/j.molliq.2023.123752.
  • Y. Li, Y. Leng, N. Baazaoui, M. B. Arain, N. Ijaz and A. M. Hassan, “Exploring the dynamics of active swimmers microorganisms with electromagnetically conducting stretching through endothermic heat generation/assimilation flow: observational and computational study,” Case Stud. Therm. Eng., vol. 51, pp. 103560, Sep. 2023. DOI: 10.1016/j.csite.2023.103560.
  • Z. He, Muhammad Bilal, Arain, W.A., Khan, Ali, Rashash R Alzahrani, Taseer, Muhammad, A.S., Hendy, Mohamed R., Ali, “Theoretical exploration of heat transport in a stagnant power-law fluid flow over a stretching spinning porous disk filled with homogeneous-heterogeneous chemical reactions,” Case Stud. Therm. Eng., vol. 50, pp. 103406, Aug. 2023. DOI: 10.1016/j.csite.2023.103406.
  • M. B. Arain, A. Zeeshan, M. M. Bhatti, M. S. Alhodaly and R. Ellahi, “Description of non-Newtonian bio-convective Sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field,” J. Cent. South Univ., vol. 30, no. 8, pp. 2599–2615, Oct. 2023. DOI: 10.1007/s11771-023-5398-1.
  • M. B. Arain, A. Zeeshan, M. S. Alhodaly, L. Fasheng and M. M. Bhatti, “Bioconvection nanofluid flow through vertical rigid parallel plates with the application of Arrhenius kinetics: a numerical study,” Waves Random Complex Media, vol. 32, pp. 1–18, Sep. 2022. DOI: 10.1080/17455030.2022.2123115.
  • H.-X. Bao, Bilal, Izhar, et al., “Boundary-layer flow of heat and mass for Tiwari-Das nanofluid model over a flat plate with variable wall temperature,” Therm. Sci., vol. 26, no. Spec. issue 1, pp. 39–47, 2022. DOI: 10.2298/TSCI22S1039B.
  • S. S. Palaiah, G. J. Reddy, H. Basha and R. Ravi, “Transient magnetized Soret effect on dissipative couple stress convection flow past a cylinder,” Numer. Heat Transf. B: Fund., vol. 84, pp. 1–21, Oct. 2023. DOI: 10.1080/10407790.2023.2265551.
  • S. S. Palaiah, G. J. Reddy, S. Ballem, H. Basha and O. A. Beg, “Turbulent Lorentz heat flow visualization in radiative boundary layer regime,” Numer. Heat Transf. A: Appl., vol. 84, pp. 1–25, Sep. 2023. DOI: 10.1080/10407782.2023.2255934.
  • R. Dasari, N. N. Kumar and H. Basha, “Lorentz force influenced entropy generation in couple stress squeezed hybrid-nanofluid flow: application to cardiovascular hemodynamics,” Numer. Heat Transf. B: Fund., vol. 84, pp. 1–33, Oct. 2023. DOI: 10.1080/10407790.2023.2262756.
  • M. K. V. Rafeek, G. J. Reddy, A. Matta, H. Basha and O. A. Bég, “Numerical study of linear and nonlinear stability in double-diffusive Hadley-Prats flow through a horizontal porous layer with Soret and internal heat source effects,” Numer. Heat Transf. B: Fund., vol. 85, pp. 1–24, Feb. 2024. DOI: 10.1080/10407790.2024.2316841.
  • S. Nadeem, S. T. Hussain and C. Lee, “Flow of a Williamson fluid over a stretching sheet,” Braz. J. Chem. Eng., vol. 30, no. 3, pp. 619–625, Sep. 2013. DOI: 10.1590/S0104-66322013000300019.
  • N. A. Khan and H. Khan, “A boundary layer flows of non-Newtonian Williamson fluid,” Nonlinear Eng., vol. 3, no. 2, pp. 107–115, May 2014. DOI: 10.1515/nleng-2014-0002.
  • T. Hayat, Y. Saeed, S. Asad and A. Alsaedi, “Soret and Dufour effects in the flow of Williamson fluid over an unsteady stretching surface with thermal radiation,” Z. Naturforsch, vol. 70, no. 4, pp. 235–243, Mar. 2015. DOI: 10.1515/zna-2014-0252.
  • M. S. Khan, M. M. Rahman, S. M. Arifuzzaman, P. Biswas and I. Karim, “Williamson fluid flow behaviour of MHD convective radiative Cattaneo–Christov heat flux type over a linearly stretched-surface with heat generation and thermal-diffusion,” Front. Heat Mass Transf., vol. 9, pp. 1–11, Sep. 2017. DOI: 10.5098/hmt.9.15.
  • A. Shafiq and T. N. Sindhu, “Statistical study of hydro-magnetics boundary layer flow of Williamson fluid regarding a radiative surface,” Results Phys., vol. 7, pp. 3059–3067, Aug. 2017. DOI: 10.1016/j.rinp.2017.07.077.
  • T. Hayat, S. Ahmad, M. I. Khan and A. Alsaedi, “Exploring magnetic dipole contribution on radiative flow of ferromagnetic Williamson fluid,” Results Phys., vol. 8, pp. 545–551, Mar. 2018. DOI: 10.1016/j.rinp.2017.11.040.
  • M. Khan, T. Salahuddin, M. Y. Malik and F. O. Mallawi, “Change in viscosity of Williamson nanofluid flow due to thermal and solutal stratification,” Int. J. Heat Mass Transf., vol. 126, pp. 941–948, Nov. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.074.
  • T. Kebede, E. Haile, G. Awgichew and T. Walelign, “Heat and mass transfer in unsteady boundary layer flow of Williamson nanofluids,” J. Appl. Math., vol. 2020, pp. 1–13, Feb. 2020. DOI: 10.1155/2020/1890972.
  • S. Usha, N. B. Naduvinamani and H. Basha, “Effect of magnetized variable thermal conductivity on flow and heat transfer characteristics of unsteady Williamson fluid,” Nonlinear Eng., vol. 9, no. 1, pp. 338–351, Aug. 2020. DOI: 10.1515/nleng-2020-0020.
  • A. Shafiq, A. B. Çolak, T. N. Sindhu, Q. M. A. Mdallal and T. Abdeljawad, “Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling,” Sci Rep, vol. 11, no. 1, pp. 14509, Jul. 2021. DOI: 10.1038/s41598-021-93790-9.
  • K. V. M. Rafeek, H. Basha, G. J. Reddy, S. Usha S and O. A. Bég, “Influence of variable thermal conductivity and dissipation on magnetic Carreau fluid flow along a micro-cantilever sensor in a squeezing regime,” Waves Random Complex Media, vol. 32, pp. 1–30, 2022. (Article in press). DOI: 10.1080/17455030.2022.2139013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.