60
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Progress on Targeted Gel Media for the Application of Bioanalysis

, , &

References

  • Bercea, M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers. (Basel) 2022, 14, 2365. DOI: 10.3390/polym14122365.
  • Chaudhary, S.; Chakraborty, E. Hydrogel Based Tissue Engineering and Its Future Applications in Personalized Disease Modeling and Regenerative Therapy. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 3. DOI: 10.1186/s43088-021-00172-1.
  • Huy, D. T. N.; Iswanto, A. H.; Opulencia, M. J. C.; Al-Saikhan, F.; Timoshin, A.; Abed, A. M.; Ahmad, I.; Blinova, S. A.; Hammid, A. T.; Mustafa, Y. F.; Tuan, P. V. Optical and Electrochemical Aptasensors Developed for the Detection of Alpha-Fetoprotein. Crit. Rev. Anal. Chem. 2022, 52, 1–15. DOI: 10.1080/10408347.2022.2099221.
  • Allosh, A.; Pantis-Simut, C.; Filipoiu, N.; Preda, A. T.; Necula, G.; Ghitiu, I.; Anghel, D.; Dulea, M. A.; Nemnes, G. A. Tuning Phosphorene and MoS2 2D Materials for Detecting Volatile Organic Compounds Associated with Respiratory Diseases. RSC Adv. 2024, 14, 1803–1812. DOI: 10.1039/d3ra07685g.
  • Taokaew, S.; Kaewkong, W.; Kriangkrai, W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023, 9, 277. DOI: 10.3390/gels9040277.
  • De Lima, C. S. A.; Balogh, T. S.; Varca, J. P. R. O.; Varca, G. H. C.; Lugão, A. B.; Camacho-Cruz, L. A.; Bucio, E.; Kadlubowski, S. S. An Updated Review of Macro, Micro, and Nanostructured Hydrogels for Biomedical and Pharmaceutical Applications. Pharmaceutics 2020, 12, 970. DOI: 10.3390/pharmaceutics12100970.
  • Wang, Q.; Sun, D.; Ma, X. F.; Huang, R. R.; Xu, J. Q.; Xu, X.; Cai, L. L.; Xu, L. X. Surface Enhanced Raman Scattering Active Substrate Based on Hydrogel Microspheres for Pretreatment-Free Detection of Glucose in Biological Samples. Talanta 2023, 260, 124657. DOI: 10.1016/j.talanta.2023.124657.
  • Cui, M.; Gong, Y. H.; Du, M. G.; Wang, K.; Li, T. D.; Zhu, X. L.; Wang, S.; Luo, X. L. An Antifouling Electrochemical Biosensor Based on a Protein Imprinted Hydrogel for Human Immunoglobulin G Recognition in Complex Biological Media. Sens. Actuat. B. Chem. 2021, 337, 129820. DOI: 10.1016/j.snb.2021.129820.
  • Sun, D.; Cao, F. H.; Wang, H. M.; Guan, S. L.; Su, A. L.; Xu, W. Q.; Xu, S. P. SERS Hydrogel Pellets for Highly Repeatable and Reliable Detections of Significant Small Biomolecules in Complex Samples without Pretreatment. Sens. Actuat. B. Chem. 2021, 327, 128943. DOI: 10.1016/j.snb.2020.128943.
  • Han, C. Y.; G, W. W. Fluorescent Noble Metal Nanoclusters Loaded Protein Hydrogel Exhibiting Anti-Biofouling and Self-Healing Properties for Electrochemiluminescence Biosensing Applications. Small 2020, 16, 2002621. DOI: 10.1002/smll.202002621.
  • Sun, K.; Chen, P. P.; Yan, S. X.; Yuan, W. D.; Wang, Y.; Li, X. Q.; Dou, L. Q.; Zhao, C. J.; Zhao, J. F.; Wang, Q.; et al. Ultrasensitive Nanopore Sensing of Mucin 1 and Circulating Tumor Cells in Whole Blood of Breast Cancer Patients by Analyte-Triggered Triplex-DNA Release. ACS Appl. Mater. Interfaces 2021, 13, 21030–21039. DOI: 10.1021/acsami.1c03538.
  • Gopalakrishnan, S.; Nejati, S.; Sedaghat, S.; Gupta, K.; Mishra, R. K.; Rahimi, R. Electronic-Free and Low-Cost Wireless Sensor Tag for Monitoring Fish Freshness. Sens. Actuat. B. Chem. 2023, 381, 133398. DOI: 10.1016/j.snb.2023.133398.
  • Song, F.; Zhang, Z. X.; Xu, X. R.; Lin, X. C. Online Highly Selective Recognition of Domoic Acid by an Aptamer@MOFs Affinity Monolithic Column Coupled with HPLC for Shellfish Safety Monitoring. RSC Adv. 2023, 13, 30876–30884. DOI: 10.1039/d3ra05901d.
  • Li, J. F.; Liu, L.; Ai, Y. J.; Liu, Y.; Sun, H. B.; Liang, Q. L. Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as a Dual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor for the Detection of CEA. ACS Appl. Mater. Interfaces. 2020, 12, 5500–5510. DOI: 10.1021/acsami.9b19161.
  • Jiang, Q.S.; Xiao, Y.C.; Hong, A. N.; Shen, Y. Y.; Li, Z. B.; Feng, P. Y.; Zhong, W. W. Highly Stable Fe/Co-TPY-MIL-88(NH2) Metal–Organic Framework (MOF) in Enzymatic Cascade Reactions for Chemiluminescence-Based Detection of Extracellular Vesicles. ACS Sens. 2023, 8, 1658–1666. DOI: 10.1021/acssensors.2c02791.
  • Ji, Y.; Li, H. M.; Dong, J. H.; Lin, J. S.; Lin, Z. A. Super-Hydrophilic Sulfonate-Modified Covalent Organic Framework Nanosheets for Efficient Separation and Enrichment of Glycopeptides. J. Chromatogr. A 2023, 1699, 464020. DOI: 10.1016/j.chroma.2023.464020.
  • Meng, L. Y.; Wang, B.; Wang, B. C.; Feng, Q. S.; Zhang, S. J.; Xiong, Z.; Zhang, S.; Cai, T.; Ding, C. F.; Yan, Y. H. Post-Synthesis of a Titanium-Rich Magnetic COF Nanocomposite with Flexible Branched Polymers for Efficient Enrichment of Phosphopeptides from Human Saliva and Serum. Analyst 2023, 148, 4738–4745. DOI: 10.1039/d3an00989k.
  • Gao, P.; Wang, M. Z.; Chen, Y. Y.; Pan, W.; Zhou, P.; Wan, X. Y.; Li, N.; Tang, B. A COF-Based Nanoplatform for Highly Efficient Cancer Diagnosis, Photodynamic Therapy and Prognosis. Chem. Sci. 2020, 11, 6882–6888. DOI: 10.1039/d0sc00847h.
  • Zhao, W. Y.; Ma, Y.; Ye, J. S. Development of a Novel Sensing Platform Based on Molecularly Imprinted Polymer and Closed Bipolar Electrochemiluminescence for Sensitive Detection of Dopamine. J. Electroanal. Chem. 2021, 888, 115215. DOI: 10.1016/j.jelechem.2021.115215.
  • Silva, M. S.; Tavares, A. P. M.; de Faria, H. D.; Sales, M. G. F.; Figueiredo, E. C. Molecularly Imprinted Solid Phase Extraction Aiding the Analysis of Disease Biomarkers. Crit. Rev. Anal. Chem. 2022, 52, 933–948. DOI: 10.1080/10408347.2020.1843131.
  • Dong, Z. B.; Ma, F. J.; Wei, X. C.; Zhang, L. L.; Ding, Y. L.; Shi, L.; Chen, C.; Ma, Y. X.; Ma, Y. N. Injectable, Thermo-Sensitive and Self-Adhesive Supramolecular Hydrogels Built from Binary Herbal Small Molecules towards Reusable Antibacterial Coatings. RSC Adv. 2024, 14, 2027–2035. DOI: 10.1039/d3ra07882e.
  • Wei, T. F.; Chen, Z. Y.; Li, G. K.; Zhang, Z. M. A Monolithic Column Based on Covalent Cross-Linked Polymer Gels for Online Extraction and Analysis of Trace Aflatoxins in Food Sample. J. Chromatogr. A 2018, 1548, 27–36. DOI: 10.1016/j.chroma.2018.03.015.
  • Wang, D. Y.; Duan, J.; Liu, J. W.; Yi, H.; Zhang, Z. Z.; Song, H. W.; Li, Y. C.; Zhang, K. X. Stimuli-Responsive Self-Degradable DNA Hydrogels: Design, Synthesis, and Applications. Adv. Healthcare Mater. 2023, 12, 2203031. DOI: 10.1002/adhm.202203031.
  • Fan, F. B.; Lu, X. F.; Liang, X. J.; Wang, L. C.; Guo, Y. Preparation of Hydrogel Nanocomposite Functionalized Silica Microspheres and Its Application in Mixed-Mode Liquid Chromatography. J. Chromatogr. A 2022, 1662, 462745. DOI: 10.1016/j.chroma.2021.462745.
  • Oliveira, M. J.; Cunha, I.; de Almeida, M. P.; Calmeiro, T.; Fortunato, E.; Martins, R.; Pereira, L.; Byrne, H. J.; Pereira, E.; Águas, H.; Franco, R. Reusable and Highly Sensitive SERS Immunoassay Utilizing Gold Nanostars and a Cellulose Hydrogel-Based Platform. J. Mater. Chem. B 2021, 9, 7516–7529. DOI: 10.1039/d1tb01404h.
  • Yang, Z. H.; Yin, J.; Xin, L.; Li, Y. F.; Huang, Y. J.; Yuan, R.; Zhuo, Y. Research Advancement of DNA-Based Intelligent Hydrogels: Manufacture, Characteristics, Application of Disease Diagnosis and Treatment. Chinese Chem. Lett. 2024, 109558. DOI: 10.1016/j.cclet.2024.109558.
  • Wu, L.; Liu, X. F.; Zong, S. F.; Wang, Z. Y.; Cui, Y. P. A SERS Composite Hydrogel Device for Point-of-Care Analysis of Neurotransmitter in Whole Blood. Biosensors. (Basel) 2023, 13, 611. DOI: 10.3390/bios13060611.
  • Muhammad, M.; Huang, Q. A Review of Aptamer-Based SERS Biosensors: Design Strategies and Applications. Talanta. 2021, 227, 122188. DOI: 10.1016/j.talanta.2021.122188.
  • Karamikamkar, S.; Yalcintas, E. P.; Haghniaz, R.; Barros, N. R.; Mecwan, M.; Nasiri, R.; Davoodi, E.; Nasrollahi, F.; Erdem, A.; Kang, H.; et al. Aerogel‐Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease‐Targeting Applications. Adv. Sci. (Weinh) 2023, 10, 2204681. DOI: 10.1002/advs.202204681.
  • Qiao, L.; Zhao, Y.; Zhang, M. J.; Tao, Y. N.; Xiao, Y.; Zhang, N.; Zhang, Y.; Zhu, Y. Preparation Strategies, Functional Regulation, and Applications of Multifunctional Nanomaterials‐Based DNA Hydrogels. Small Methods 2023, 8,2301261. DOI: 10.1002/smtd.202301261.
  • Shu, Y.; Zhao, T. K.; Li, X. H.; Jalil, A.; Yang, L.; Feng, G. Y.; Li, Y. T.; Jia, W. Y.; Luo, F. Enhancing Electromagnetic Wave Absorption and Hydrophobicity/Heat Insulation Properties of Coral-Like Co/CoO/RGO Aerogels through Pore Structure Regulation. Carbon 2023, 213, 118278. DOI: 10.1016/j.carbon.2023.118278.
  • Tan, Y. Y.; Chen, D.; Wang, Y. M.; Wang, W.; Xu, L. J.; Liu, R.; You, C. X.; Li, G. G.; Zhou, H. M.; Li, D. Q. Limbal Bio‐Engineered Tissue Employing 3D Nanofiber‐Aerogel Scaffold to Facilitate LSCs Growth and Migration. Macromol. Biosci. 2022, 22, 2100441. DOI: 10.1002/mabi.202100441.
  • García-Faustino, L. L.; Morris, S. M.; Elston, S. J.; Montelongo, Y. Detection of Biomarkers through Functionalized Polymers. Small Methods 2023, 8, 2301025. DOI: 10.1002/smtd.202301025.
  • Zhu, Q. J.; Shen, C. L.; Chen, R.; Mao, C.; He, Y.; Yang, K. Intelligent DNA-Based Hydrogels for Bioanalysis and Therapeutics. ACS Appl. Polym. Mater. 2023, 5, 6695–6719. DOI: 10.1021/acsapm.3c01131.
  • Cao, T. Y.; Jia, H. Y.; Dong, Y. C.; Gui, S. B.; Liu, D. S. In Situ Formation of Covalent Second Network in a DNA Supramolecular Hydrogel and Its Application for 3D Cell Imaging. ACS Appl. Mater. Interfaces. 2020, 12, 4185–4192. DOI: 10.1021/acsami.9b11534.
  • Jia, H. Y.; Xu, J. K.; Lu, L. M.; Yu, Y. F.; Zuo, Y. X.; Tian, Q. Y.; Li, P. Three-Dimensional Au Nanoparticles/Nano-Poly(3,4-Ethylene Dioxythiophene)- Graphene Aerogel Nanocomposite: A High-Performance Electrochemical Immunosensing Platform for Prostate Specific Antigen Detection. Sens. Actuat. B. Chem. 2018, 260, 990–997. DOI: 10.1016/j.snb.2018.01.006.
  • Zhou, Z. H.; Yang, Y. B.; Han, Y. Y.; Guo, Q. Q.; Zhang, X. X.; Lu, C. H. In Situ Doping Enables the Multifunctionalization of Templately Synthesized Polyaniline@Cellulose Nanocomposites. Carbohydr. Polym. 2017, 177, 241–248. DOI: 10.1016/j.carbpol.2017.08.136.
  • Roy, H.; Bhanja, S.; Panigrahy, U. P.; Theendra, V. K. Graphene-Based Nanovehicles for Drug Delivery. In Characterization and Biology of Nanomaterials for Drug Delivery. Mohapatra, S.; Ranjan, S., Dasgupta, N., Mishra, R. K., Thomas, S. Eds. Elsevier: Amsterdam, The Netherlands, 2019; pp 77–111. DOI: 10.1016/B978-0-12-814031-4.00004-0.
  • Zhang, S. H.; Xie, B.; Zhuang, X. C.; Wang, S. T.; Qiao, L. X.; Dong, S. M.; Ma, J.; Zhou, Q.; Zhang, H. R.; Zhang, J. J.; et al. Great Challenges and New Paradigm of the in Situ Polymerization Technology inside Lithium Batteries. Adv. Funct. Mater. 2023, 33, 2314063. DOI: 10.1002/adfm.202314063.
  • Mao, H. N.; Wang, X. G. Use of in-Situ Polymerization in the Preparation of Graphene/Polymer Nanocomposites. New Carbon Mater. 2020, 35, 336–343. DOI: 10.1016/S1872-5805(20)60493-0.3.
  • Zhou, P.; Yuan, C. Q.; Yan, X. H. Computational Approaches for Understanding and Predicting the Self-Assembled Peptide Hydrogels. Curr. Opin. Colloid. Int. 2022, 62, 101645. DOI: 10.1016/j.cocis.2022.101645.
  • Zhang, X. F.; Elsayed, I.; Navarathna, C.; Schueneman, G. T.; Hassan, E. B. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification. ACS Appl. Mater. Interfaces. 2019, 11, 46714–46725. DOI: 10.1021/acsami.9b15139.
  • Tikhonova, T. N.; Rovnyagina, N. N.; Arnon, Z. A.; Yakimov, B. P.; Efremov, Y. M.; Cohen Gerassi, D.; Halperin-Sternfeld, M.; Kosheleva, N. V.; Drachev, V. P.; Svistunov, A. A.; et al. Mechanical Enhancement and Kinetics Regulation of Fmoc‐Diphenylalanine Hydrogels by Thioflavin T. Angew. Chem. Int. Ed. Engl. 2021, 60, 25339–25345. DOI: 10.1002/anie.202107063.
  • Wang, Z. X.; Guo, Y. R.; Xianyu, Y. L. Applications of Self-Assembly Srategies in Immunoassays: A Review. Coordin. Chem. Rev. 2023, 478, 214974. DOI: 10.1016/j.ccr.2022.214974.
  • Feng, D. Y.; Li, X. F.; Zhang, L.; Qiao, Z. A. Self-Assembly Method for Two-Dimensional Mesoporous Materials: A Review for Recent Progress. Chem. Synth. 2023, 3, 37. DOI: 10.20517/cs.2023.26.
  • Zheng, J.; Song, X. W.; Yang, Z. Y.; Yin, C.; Luo, W. K.; Yin, C. Y.; Ni, Y. Q.; Wang, Y.; Zhang, Y. Self-Assembly Hydrogels of Therapeutic Agents for Local Drug Delivery. J. Control. Release 2022, 350, 898–921. DOI: 10.1016/j.jconrel.2022.09.001.
  • Zhang, N. X.; Liu, C.; He, Z. L.; Li, Q.; Chen, S. One-Pot Synthesis of Robust Fluorescent Nanocomposite Gel via Frontal Polymerization. Macromol. Rapid Commun. 2023, 44,2200832. DOI: 10.1002/marc.202200832.
  • Li, L. L.; Bai, X. J.; Shao, L.; Zhai, X.; Fan, F. Q.; Li, Y. N.; Fu, Y. Fabrication of a MOF/Aerogel Composite via a Mild and Green One-Pot Method. Bull. Chem. Soc. Jpn. 2021, 94, 2477–2483. DOI: 10.1246/bcsj.20210258.
  • Zhang, Y. D.; Gong, L. L.; Xu, X. J.; Zhao, L.; Li, K.; Liang, G. J.; Li, L.; Xie, Q. Synthesis of Carbon Aerogels with Controlled Morphology and Pore Structure to Modulate Their Bulk Density and Thermal Conductivity via a Quick One-Pot Preparation Strategy. Carbon 2024, 216, 118487. DOI: 10.1016/j.carbon.2023.118487.
  • Hayashi, Y. Pot Economy and One-Pot Synthesis. Chem. Sci. 2016, 7, 866–880. DOI: 10.1039/c5sc02913a.
  • Ma, S. H.; Yan, C. Y.; Cai, M. R.; Yang, J.; Wang, X. L.; Zhou, F.; Liu, W. M. Continuous Surface Polymerization via Fe(II)‐Mediated Redox Reaction for Thick Hydrogel Coatings on Versatile Substrates. Adv. Mater. 2018, 30, 1803371. DOI: 10.1002/adma.201803371.
  • Wu, Q. J.; Ma, C.; Chen, L.; Sun, Y.; Wei, X. S.; Ma, C. X.; Zhao, H. L.; Yang, X. L.; Ma, X. F.; Zhang, C. M.; Duan, G. G. A Tissue Paper/Hydrogel Composite Light-Responsive Biomimetic Actuator Fabricated by in Situ Polymerization. Polymers. (Basel) 2022, 14, 5454. DOI: 10.3390/polym14245454.
  • Wang, B. X.; Zhang, S.; Wang, Y. F.; Si, B.; Cheng, D. H.; Liu, L.; Lu, Y. H. Regenerated Antheraea Pernyi Silk Fibroin/Poly(N-Isopropylacrylamide) Thermosensitive Composite Hydrogel with Improved Mechanical Strength. Polymers. (Basel) 2019, 11, 302. DOI: 10.3390/polym11020302.
  • Zeng, R. P.; Lu, S. X.; Qi, C. Y.; Jin, L. L.; Xu, J. B.; Dong, Z. X.; Lei, C. H. Polyacrylamide/Carboxymethyl Chitosan Double‐Network Hydrogels with High Conductivity and Mechanical Toughness for Flexible Sensors. J. Appl. Polym. Sci. 2022, 139, 51993. DOI: 10.1002/app.51993.
  • Li, J. W.; Yang, Z. L.; Jiang, Z. C.; Ni, M. Y.; Xu, M. A Self-Healing and Self-Adhesive Chitosan Based Ion-Conducting Hydrogel Sensor by Ultrafast Polymerization. Int. J. Biol. Macromol. 2022, 209, 1975–1984. DOI: 10.1016/j.ijbiomac.2022.04.176.
  • Wang, L. J.; Peng, Y. R.; Liu, J. T.; Yi, C. X.; Han, T. H.; Ding, L.; Luo, Z. Y.; Sun, T. S.; Zhou, S. One-Step in Situ Construction of Anisotropic Bilayer Hydrogel with High Sensitivity and Wide Detection Range for Adaptive Tactile Sensing. Chem. Eng. J. 2023, 466, 143305. DOI: 10.1016/j.cej.2023.143305.
  • Li, L. C.; Xie, L.; Zheng, R. L.; Sun, R. Q. Self-Assembly Dipeptide Hydrogel: The Structures and Properties. Front. Chem. 2021, 9, 739791. DOI: 10.3389/fchem.2021.739791.
  • Lin, F. C.; Lin, W. Y.; Chen, J. W.; Sun, C. Y.; Zheng, X. X.; Xu, Y. L.; Lu, B. L.; Chen, J. P.; Huang, B. Tannic Acid-Induced Gelation of Aqueous Suspensions of Cellulose Nanocrystals. Polymers. (Basel) 2023, 15, 4092. DOI: 10.3390/polym15204092.
  • Liu, Y.; Zhao, L. L.; Zhao, L.; Xu, B.; Wang, C.; Li, S. Y.; Xu, B. C. Multi-Stimuli-Responsive Supramolecular Hydrogel Based on an Oxidized Glutathione Derivative. Dyes Pigm. 2022, 205, 110552. DOI: 10.1016/j.dyepig.2022.110552.
  • Shang, X.; He, S. Y.; Xu, Z. A.; Lu, W.; Zhang, W. Hemin-Phytic Acid Functionalized Porous Conducting Polymer Hydrogel with Good Biocompatibility for Electrochemical Detection of H2O2 Released from Living Cells. Electroanal 2021, 33, 1088–1095. DOI: 10.1002/elan.202060499.
  • Du, Q. S.; Wang, W. Q.; Zeng, X. H.; Luo, X. L. Antifouling Zwitterionic Peptide Hydrogel Based Electrochemical Biosensor for Reliable Detection of Prostate Specific Antigen in Human Serum. Anal. Chim. Acta. 2023, 1239, 340674. DOI: 10.1016/j.aca.2022.340674.
  • Chen, X. Q.; Song, Z. H.; Li, S. P.; Thang, N. T.; Gao, X.; Gong, X. C.; Guo, M. H. Facile One-Pot Synthesis of Self-Assembled Nitrogen-Doped Carbon Dots/Cellulose Nanofibril Hydrogel with Enhanced Fluorescence and Mechanical Properties. Green Chem. 2020, 22, 3296–3308. DOI: 10.1039/d0gc00845a.
  • Hao, Y. C.; Zhao, Y. C.; Chen, S. H.; Wang, S. Y.; Meng, J. F.; Xu, H. Y. Nanoarchitectonics of Nest-Like Co3O4 Nanowires Embedded Nitrogen-Doped Graphene Aerogel as Electrochemical Sensing Platform for Pb2+ and Cd2+ Trace Detection. Diam. Relat. Mater. 2023, 137, 110132. DOI: 10.1016/j.diamond.2023.110132.
  • Zhu, X.; Gan, T.; Wang, X. C.; Wang, Y. Y.; Zhang, H. J.; Han, Q. X. One-Pot Preparation of a Multi-Functional Enzymatically Generated Gelatin Hydrogel with Controllable Antibacterial and Hemorheological Properties. Int. J. Biol. Macromol. 2021, 168, 143–151. DOI: 10.1016/j.ijbiomac.2020.11.213.
  • Ge, L.; Li, H. N.; Du, X. J.; Zhu, M. Y.; Chen, W.; Shi, T. Y.; Hao, N.; Liu, Q.; Wang, K. Facile One-Pot Synthesis of Visible Light-Responsive BiPO4/Nitrogen Doped Graphene Hydrogel for Fabricating Label-Free Photoelectrochemical Tetracycline Aptasensor. Biosens. Bioelectron. 2018, 111, 131–137. DOI: 10.1016/j.bios.2018.04.008.
  • Dong, S.; Guo, L. M.; Chen, Y. Y.; Zhang, Z. W.; Yang, Z.; Xiang, M. Three-Dimensional Loofah Sponge Derived Amorphous Carbon-Graphene Aerogel via One-Pot Synthesis for High-Performance Electrochemical Sensor for Hydrogen Peroxide and Dopamine. J. Electroanal. Chem. 2022, 911, 116236. DOI: 10.1016/j.jelechem.2022.116236.
  • Waresindo, W. X.; Luthfianti, H. R.; Priyanto, A.; Hapidin, D. A.; Edikresnha, D.; Aimon, A. H.; Suciati, T.; Khairurrijal, K. Freeze–Thaw Hydrogel Fabrication Method: Basic Principles, Synthesis Parameters, Properties, and Biomedical Applications. Mater. Res. Express 2023, 10, 024003. DOI: 10.1088/2053-1591/acb98e.
  • Xiang, C. X.; Lei, L.; Ning, H. M.; Hu, N.; Li, A.; Liu, Y. L.; Liu, F.; Zou, R.; Wen, J.; Wu, X. P.; et al. A Self-Reinforced Tough and Multifunctional Polyvinyl Alcohol Fabric Composite Hydrogel. Compos. Sci. Technol. 2023, 243, 110212. DOI: 10.1016/j.compscitech.2023.110212.
  • Chen, Q.; Shen, J. T.; Estevez, D.; Chen, Y. L.; Zhu, Z. H.; Yin, J.; Qin, F. X. Ultraprecise 3D Printed Graphene Aerogel Microlattices on Tape for Micro Sensors and E‐Skin. Adv. Funct. Mater. 2023, 33, 2302545. DOI: 10.1002/adfm.202302545.
  • Yang, Y. Q.; Huang, Y. P.; Wu, Z. Q.; Shi, R.; Chen, Z. Y.; Ruan, G. H. Porous Capillary Monolithic Column Coupled with Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry for Fast and Effective Separation and Determination of Estrogens. Anal. Chim. Acta. 2022, 1227, 340270. DOI: 10.1016/j.aca.2022.340270.
  • Zhang, W. J.; Hu, H. Y.; Ruan, G. H.; Huang, Y. P.; Du, F. Y.; Chen, Z. Y. Aptamer Functionalized and Reduced Graphene Oxide Hybridized Porous Polymers SPE Coupled with LC–MS for Adsorption and Detection of Human α-Thrombin. Anal. Bioanal. Chem. 2022, 414, 1553–1561. DOI: 10.1007/s00216-021-03776-9.
  • Ji, H.; Wang, Z. H.; Wang, S.; Wang, C.; Zhang, K.; Zhang, Y.; Han, L. Highly Stable InSe-FET Biosensor for Ultra-Sensitive Detection of Breast Cancer Biomarker CA125. Biosensors. (Basel) 2023, 13, 193. DOI: 10.3390/bios13020193.
  • Chiang, C. Y.; Chen, C. H.; Wu, C. W. Fiber Optic Localized Surface Plasmon Resonance Sensor Based on Carboxymethylated Dextran Modified Gold Nanoparticles Surface for High Mobility Group Box 1 (HMGB1) Analysis. Biosensors. (Basel) 2023, 13, 522. DOI: 10.3390/bios13050522.
  • Guzman, J. M. C. C.; Hsu, S. M.; Chuang, H. S. Colorimetric Diagnostic Capillary Enabled by Size Sieving in a Porous Hydrogel. Biosensors. (Basel) 2020, 10, 130. DOI: 10.3390/bios10100130.
  • Liu, W.; Wang, Z. H.; Yan, W. Q.; Zhao, Z. Y.; Shi, L. Y.; Huang, L. J.; Liu, Y.; He, X.; Cui, S. Construction of Ultra-Sensitive Surface-Enhanced Raman Scattering Substrates Based on 3D Graphene Oxide Aerogels. Carbon 2023, 202, 389–397. DOI: 10.1016/j.carbon.2022.11.001.
  • Lin, Y. N.; Xu, Y. L.; Xing, Y. Z.; Liu, N. Z.; Chen, X. W. Photoreversible DNA Nanoswitch-Based Eluent-Free Strategy for the Direct and Effective Isolation of Highly-Active Thrombin from Whole Blood. Int. J. Biol. Macromol. 2023, 239, 124359. DOI: 10.1016/j.ijbiomac.2023.124359.
  • Gao, N. N.; Xie, W. B.; Xu, L. J.; Xin, Q. P.; Gao, J. K.; Shi, J. J.; Zhong, J.; Shi, W. X.; Wang, H. G.; Zhao, K. Y.; Lin, L. G. Characterization of a Chlorine Resistant and Hydrophilic TiO2/Calcium Alginate Hydrogel Filtration Membrane Used for Protein Purification Maintaining Protein Structure. Int. J. Biol. Macromol. 2023, 253, 126367. DOI: 10.1016/j.ijbiomac.2023.126367.
  • Qiao, F. X.; Wang, X. R.; Han, Y. H.; Kang, Y. S.; Yan, H. Y. Preparation of Poly (Methacrylic Acid)/Graphene Oxide Aerogel as Solid-Phase Extraction Adsorbent for Extraction and Determination of Dopamine and Tyrosine in Urine of Patients with Depression. Anal. Chim. Acta. 2023, 1269, 341404. DOI: 10.1016/j.aca.2023.341404.
  • Sampaio, N. M. F. M.; Oliveira, B. H. D.; Riegel-Vidotti, I. C.; Silva, B. J. G. D. Polyvinyl Alcohol-Based Hydrogel Sorbent for Extraction of Parabens in Human Milk Samples by in-Tube SPME-LC-UV. Anal. Bioanal. Chem. 2023, 415, 4277–4288. DOI: 10.1007/s00216-022-04481-x.
  • Qu, J. B.; Lin, Y. Y.; Li, Q.; Peng, W. S.; Huang, J. K.; Li, J.; Meteku, B. E.; Zeng, J. B. In-Situ Grafting Temperature-Responsive Hydrogel as a Bifunctional Solid-Phase Microextraction Coating for Tunable Extraction of Biomacromolecules. J. Chromatogr. A 2021, 1639, 461928. DOI: 10.1016/j.chroma.2021.461928.
  • Sun, M.; Bu, Y. N.; Xin, X. B.; Feng, J. J. Polyurethane Functionalized Silica Aerogel for in-Tube Solid-Phase Microextraction of Estrogens Prior to High Performance Liquid Chromatography Detection. Microchem. J. 2022, 181, 107699. DOI: 10.1016/j.microc.2022.107699.
  • Langer, J.; Jimenez, D. J. D. A.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano. 2020, 14, 28–117. DOI: 10.1021/acsnano.9b04224.
  • Shi, J. L.; Li, J. J.; Liang, A. H.; Jiang, Z. L. Highly Catalysis MOFCe Supported Ag Nanoclusters Coupled with Specific Aptamer for SERS Quantitative Assay of Trace Dopamine. Talanta 2022, 245, 123468. DOI: 10.1016/j.talanta.2022.123468.
  • Zong, C.; Xu, M. X.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 2018, 118, 4946–4980. DOI: 10.1021/acs.chemrev.7b00668.
  • Huang, H. B.; Zhang, Z. M.; Li, G. K. A Review of Magnetic Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Bioanalysis: Morphology, Function and Detection Application. Biosensors. (Basel) 2023, 13, 30. DOI: 10.3390/bios13010030.
  • Huang, C. H.; Li, A. L.; Chen, X. Y.; Wang, T. Understanding the Role of Metal–Organic Frameworks in Surface‐Enhanced Raman Scattering Application. Small 2020, 16, 2004802. DOI: 10.1002/smll.202004802.
  • Guselnikova, O.; Lim, H.; Kim, H. J.; Kim, S. H.; Gorbunova, A.; Eguchi, M.; Postnikov, P.; Nakanishi, T.; Asahi, T.; Na, J.; Yamauch, Y. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. Small 2022, 18, 2107182. DOI: 10.1002/smll.202107182.
  • Guo, X. T.; Li, J. H.; Arabi, M.; Wang, X. Y.; Wang, Y. Q.; Chen, L. X. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors. ACS Sens. 2020, 5, 601–619. DOI: 10.1021/acssensors.9b02039.
  • Chen, Y. L.; Xia, L.; Liang, R. Y.; Lu, Z. C.; Li, L.; Huo, B. Y.; Li, G. K.; Hu, Y. L. Advanced Materials for Sample Preparation in Recent Decade. Trends Anal. Chem. 2019, 120, 115652. DOI: 10.1016/j.trac.2019.115652.
  • Shin, Y.; Jeon, I.; You, Y.; Song, G.; Lee, T. K.; Oh, J.; Son, C.; Baek, D.; Kim, D.; Cho, H.; et al. Facile Microfluidic Fabrication of 3D Hydrogel SERS Substrate with High Reusability and Reproducibility via Programmable Maskless Flow Microlithography. Adv. Opt. Mater. 2020, 8, 2001586. DOI: 10.1002/adom.202001586.
  • Zhu, K.; Yang, K.; Zhang, Y. Z.; Yang, Z. Y.; Qian, Z. T.; Li, N.; Li, L.; Jiang, G. H.; Wang, T. Y.; Zong, S. F.; et al. Wearable SERS Sensor Based on Omnidirectional Plasmonic Nanovoids Array with Ultra‐High Sensitivity and Stability. Small 2020, 18, 2201508. DOI: 10.1002/smll.202201508.
  • Chen, M. M.; Liu, Z. H.; Su, B. H.; Hu, R. J.; Fu, F. F.; Jiang, X. C.; Lin, Z. Y.; Dong, Y. Q. High‐Performance Hydrogel SERS Chips with Tunable Localized Surface Plasmon Resonance for Coordinated Electromagnetic Enhancement with Chemical Enhancement. Adv. Opt. Mater. 2023, 11, 2202852. DOI: 10.1002/adom.202202852.
  • Kubo, T.; Otsuka, K. Recent Progress in Molecularly Imprinted Media by New Preparation Concepts and Methodological Approaches for Selective Separation of Targeting Compounds. Trends Anal. Chem. 2016, 81, 102–109. DOI: 10.1016/j.trac.2015.08.008.
  • Su, R. H.; Li, G. K.; Xiao, X. H. Ag/Poly(N‑Isopropylacrylamide-Isopropylacrylamide)-Laponite Hydrogel Surface-Enhanced Raman Membrane Substrate for Rapid Separation, Concentration and Detection of Hydrophilic Compounds in Complex Sample All-in-One. Anal. Chem. 2023, 95, 6399–6409. DOI: 10.1021/acs.analchem.3c00209.
  • Li, J.; Lu, D. C.; Yang, J. L.; You, R. Y.; Chen, J. B.; Weng, J. Z.; Lu, Y. D. Three-Dimensional Flexible SERS Substrate Based on Bacterial Cellulose Membrane for Detection of Glutathione in Serum. Cellulose 2023, 30, 5187–5200. DOI: 10.1007/s10570-023-05160-5.
  • Jiang, C. Y.; Wu, T.; Liu, J. X.; Wang, Y. P. Application of a Thermo-Sensitive Imprinted SERS Substrate to the Rapid Trace Detection of Ofloxacin. Anal. Methods 2020, 12, 4783–4788. DOI: 10.1039/d0ay00616e.
  • Yue, S.; Fang, J.; Xu, Z. R. Advances in Droplet Microfluidics for SERS and Raman Analysis. Biosens. Bioelectron. 2022, 198, 113822. DOI: 10.1016/j.bios.2021.113822.
  • Kim, D. J.; Jeon, T. Y.; Park, S. G.; Han, H. J.; Im, S. H.; Kim, D. H.; Kim, S. H. Uniform Microgels Containing Agglomerates of Silver Nanocubes for Molecular Size‐Selectivity and High SERS Activity. Small 2017, 13, 1604048. DOI: 10.1002/smll.201604048.
  • Ye, Z. L.; Yao, H. F.; Zhang, Y.; Su, A. L.; Sun, D.; Ye, Y.; Zhou, J.; Xu, S. P. Pretreatment-Free, on-Site Separation and Sensitive Identification of Methamphetamine in Biological Specimens by SERS-Active Hydrogel Microbeads. Anal. Chim. Acta. 2023, 1263, 341285. DOI: 10.1016/j.aca.2023.341285.
  • Ansah, I. B.; Kim, S.; Yang, J. Y.; Mun, C.; Jung, H. S.; Lee, S.; Kim, D. H.; Kim, S. H.; Park, S. G. In Situ Electrodeposition of Gold Nanostructures in 3D Ultra-Thin Hydrogel Skins for Direct Molecular Detection in Complex Mixtures with High Sensitivity. Laser Photonics Rev. 2021, 15, 2100316. DOI: 10.1002/lpor.202100316.
  • Kim, S.; Ansah, I. B.; Park, J. S.; Dang, H. J.; Choi, N.; Lee, W. C.; Lee, S. H.; Jung, H. S.; Kim, D. H.; Yoo, S. M.; et al. Early and Direct Detection of Bacterial Signaling Molecules through One-Pot Au Electrodeposition onto Paper-Based 3D SERS Substrates. Sens. Actuat. B Chem. 2022, 358, 131504. DOI: 10.1016/j.snb.2022.131504.
  • Yang, H. H.; Liu, H. P.; Kang, H. Z.; Tan, W. H. Engineering Target-Responsive Hydrogels Based on Aptamer − Target Interactions. J. Am. Chem. Soc. 2008, 130, 6320–6321. DOI: 10.1021/ja801339w.
  • Wang, Q.; Hu, Y. J.; Jiang, N. J.; Wang, J. J.; Yu, M.; Zhuang, X. M. Preparation of Aptamer Responsive DNA Functionalized Hydrogels for the Sensitive Detection of α-Fetoprotein Using SERS Method. Bioconjug. Chem. 2020, 31, 813–820. DOI: 10.1021/acs.bioconjchem.9b00874.
  • Wang, X. M.; Chen, C.; Waterhouse, G. I. N.; Qiao, X. G.; Xu, Z. X. Ultra-Sensitive Detection of Streptomycin in Foods Using a Novel SERS Switch Sensor Fabricated by AuNRs Array and DNA Hydrogel Embedded with DNAzyme. Food Chem. 2022, 393, 133413. DOI: 10.1016/j.foodchem.2022.133413.
  • Si, Y. M.; Xu, L.; Wang, N. N.; Zheng, J.; Yang, R. H.; Li, J. S. Target MicroRNA-Responsive DNA Hydrogel-Based Surface-Enhanced Raman Scattering Sensor Arrays for MicroRNA-Marked Cancer Screening. Anal. Chem. 2020, 92, 2649–2655. DOI: 10.1021/acs.analchem.9b04606.
  • Khajouei, S.; Ravan, H.; Ebrahimi, A. DNA Hydrogel-Empowered Biosensing. Adv. Colloid Interface Sci. 2020, 275, 102060. DOI: 10.1016/j.cis.2019.102060.
  • He, Y.; Yang, X.; Yuan, R.; Chai, Y. Q. Switchable Target-Responsive 3D DNA Hydrogels as a Signal Amplification Strategy Combining with SERS Technique for Ultrasensitive Detection of miRNA 155. Anal. Chem. 2017, 89, 8538–8544. DOI: 10.1021/acs.analchem.7b02321.
  • He, Y.; Yang, X.; Yuan, R.; Chai, Y. Q. A Novel Ratiometric SERS Biosensor with One Raman Probe for Ultrasensitive MicroRNA Detection Based on DNA Hydrogel Amplification. J. Mater. Chem. B 2019, 7, 2643–2647. DOI: 10.1039/c8tb02894j.
  • Chen, Q.; Tian, R.; Liu, G.; Wen, Y. L.; Bian, X. J.; Luan, D. L.; Wang, H. Y.; Lai, K. Q.; Yan, J. Fishing Unfunctionalized SERS Tags with DNA Hydrogel Network Generated by Ligation-Rolling Circle Amplification for Simple and Ultrasensitive Detection of Kanamycin. Biosens. Bioelectron. 2022, 207, 114187. DOI: 10.1016/j.bios.2022.114187.
  • Basan, H.;Yarımkaya, S. A Novel Solid-Phase Extraction-Spectrofluorimetric Method for the Direct Determination of Atenolol in Human Urine. Luminescence 2014, 29, 225–229. DOI: 10.1002/bio.2532.
  • Dong, Z. M.; Cheng, L.; Sun, T.; Zhao, G. C.; Kan, X. W. Carboxylation Modified Meso-Porous Carbon Aerogel Templated by Ionic Liquid for Solid-Phase Microextraction of Trace Tetracyclines Residues Using HPLC with UV Detection. Microchim. Acta 2021, 188, 43. DOI: 10.1007/s00604-021-04707-2.
  • Chen, M. M.; Su, B. H.; Wu, H. Y.; Dai, Y. W.; Chen, T. W.; Fu, F. F.; Lin, Z. Y.; Dong, Y. Q. Hydrogel SERS Chip with Strong Localized Surface Plasmon Resonance for Sensitive and Rapid Detection of T-2 Toxin. Talanta 2024, 268, 125329. DOI: 10.1016/j.talanta.2023.125329.
  • Zhan, C. B.; Guan, Z. H.; Yu, L. D.; Jing, T. M.; Jia, H. K.; Chen, X. Z.; Gao, R. K. Microfluidics-Aided Fabrication of 3D,Micro-Nano Hierarchical SERS Substrate for Rapid Detection of Dual Hepatocellular Carcinoma Biomarkers. Lab Chip. 2024, 24, 528–536. DOI: 10.1039/d3lc00907f.
  • Kissell, L. N.; Liu, H.; Sheokand, M.; Vang, D.; Kachroo, P.; Strobbia, P. Direct Detection of Tobacco Mosaic Virus in Infected Plants with SERS-Sensing Hydrogels. ACS Sens. 2024, 9, 514–523. DOI: 10.1021/acssensors.3c02537.
  • Li, H. H.; Geng, W. H.; Qi, Z. X.; Ahmad, W.; Haruna, S. A.; Chen, Q. S. Stimuli-Responsive SERS Biosensor for Ultrasensitive Tetracycline Sensing Using EDTA-Driven PEI@CaCO3 Microcapsule and CS@FeMMs. Biosens. Bioelectron. 2023, 226, 115122. DOI: 10.1016/j.bios.2023.115122.
  • Wang, Y.; Kong, H. X.; Chen, R. J.; Xu, Z. W.; Zhou, P.; Zhan, Y. Q.; Huang, W. Y.; Cheng, H.; Li, L. J.; Feng, J. Determination of Aminophylline in Human Serum Using Hydrogel Microspheres for Coupled Surface-Enhanced Raman Spectroscopy (SERS) and Solid-Phase Extraction. Appl. Spectrosc. 2024, DOI: 10.1177/000.37028241233016.
  • Ham, J.; Yun, B. J.; Koh, W. G. SERS-Based Biosensing Platform Using Shape-Coded Hydrogel Microparticles Incorporating Silver Nanoparticles. Sens. Actuat. B Chem. 2021, 341, 129989. DOI: 10.1016/j.snb.2021.129989.
  • Liu, B.; Zhang, D.; Ni, H. B.; Wang, D. L.; Jiang, L. Y.; Fu, D. G.; Han, X. F.; Zhang, C.; Chen, H. Y.; Gu, Z. Z.; Zhao, X. W. Multiplex Analysis on a Single Porous Hydrogel Bead with Encoded SERS Nanotags. ACS Appl. Mater. Interfaces. 2018, 10, 21–26. DOI: 10.1021/acsami.7b14942.
  • Wang, W. X.; Chen, Y. M.; Xiao, C. X.; Xiao, S. Y.; Wang, C. Y.; Nie, Q. L.; Xu, P. P.; Chen, J. B.; You, R. Y.; Zhang, G. F.; Lu, Y. D. Flexible SERS Wearable Sensor Based on Nanocomposite Hydrogel for Detection of Metabolites and pH in Sweat. Chem. Eng. J. 2023, 474, 145953. DOI: 10.1016/j.cej.2023.145953.
  • Mei, R. C.; Wang, Y. Q.; Shi, S.; Zhao, X. Z.; Zhang, Z. Y.; Wang, X. Y.; Shen, D. Z.; Kang, Q.; Chen, L. X. Highly Sensitive and Reliable Internal-Standard Surface-Enhanced Raman Scattering Microneedles for Determination of Bacterial Metabolites as Infection Biomarkers in Skin Interstitial Fluid. Anal. Chem. 2022, 94, 16069–16078. DOI: 10.1021/acs.analchem.2c03208.
  • Feyzi, F.; Soleymani, J.; Dastmalchi, S.; Ranjbar, F.; Jouyban, A. Dispersive Solid-Phase Extraction of Risperidone from Plasma Samples Using Graphene Oxide Aerogels and Determination with Liquid Chromatography. J. Sep. Sci. 2023, 46, 2201028. DOI: 10.1002/jssc.202201028.
  • Manouchehri, M.; Seidi, S.; Naseri, M. T.; Rouhollahi, A. Trace Determination of Antifungal Drugs in Biological Fluids through a Developed Approach of Hydrogel-Based Spin-Column Micro-Solid-Phase Extraction Followed by LC-MS/MS Analysis. J. Sep. Sci. 2022, 45, 594–601. DOI: 10.1002/jssc.202100560.
  • Marinho, A.; Da Silva, B. J. Polyvinyl Alcohol/Pectin-Based Hydrogel as Sorptive Phase for the Determination of Freely Dissolved Parabens in Urine Samples by LC-DAD. J. Brazil. Chem. Soc 2023, 11, 1641–1651. DOI: 10.21577/0103-5053.20230093.
  • Meng, X. D.; Zhang, K.; Dai, W. H.; Cao, Y.; Yang, F.; Dong, H. F.; Zhang, X. J. Multiplex MicroRNA Imaging in Living Cells Using DNA-Capped-Au Assembled Hydrogels. Chem. Sci. 2018, 9, 7419–7425. DOI: 10.1039/c8sc02858c.
  • Mohammadi, S.; Mohammadi, S.; Salimi, A. A 3D Hydrogel Based on Chitosan and Carbon Dots for Sensitive Fluorescence Detection of MicroRNA-21 in Breast Cancer Cells. Talanta 2021, 224, 121895. DOI: 10.1016/j.talanta.2020.121895.
  • Wu, M. X.; Zhang, Y. J.; Liu, Q.; Huang, H.; Wang, X.; Shi, Z. K.; Li, Y. P.; Liu, S.; Xue, L. J.; Lei, Y. F. A Smart Hydrogel System for Visual Detection of Glucose. Biosens. Bioelectron. 2019, 142, 111547. DOI: 10.1016/j.bios.2019.111547.
  • Li, N.; Wang, X. Y.; Xiang, M. H.; Liu, J. W.; Yu, R. Q.; Jiang, J. H. Programmable Self-Assembly of Protein-Scaffolded DNA Nanohydrogels for Tumor-Targeted Imaging and Therapy. Anal. Chem. 2019, 91, 2610–2614. DOI: 10.1021/acs.analchem.8b05706.
  • Xu, X.; Jiang, Y. F.; Lu, C. H. Self-Assembled ATP-Responsive DNA Nanohydrogel for Specifically Activated Fluorescence Imaging and Chemotherapy in Cancer Cells. Anal. Chem. 2022, 94, 10221–10226. DOI: 10.1021/acs.analchem.2c01760.
  • Li, C.; Faulkner-Jones, A.; Dun, A. R.; Jin, L.; Chen, P.; Xing, Y. Z.; Yang, Z. Q.; Li, Z. B.; Shu, W. M.; Liu, D. S.; Duncan, R. R. Rapid Formation of a Supramolecular Polypeptide–DNA Hydrogel for in Situ Three‐Dimensional Multilayer Bioprinting. Angew. Chem. Int. Ed. Engl. 2015, 54, 3957–3961. DOI: 10.1002/anie.201411383.
  • Song, P.; Ye, D.; Zuo, X. L.; Li, J.; Wang, J. B.; Liu, H. J.; Hwang, M. T.; Chao, J.; Su, S.; Wang, L. H.; et al. DNA Hydrogel with Aptamer-Toehold-Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis. Nano Lett. 2017, 17, 5193–5198. DOI: 10.1021/acs.nanolett.7b01006.
  • Yao, C.; Tang, H.; Wu, W. J.; Tang, J. P.; Guo, W. W.; Luo, D.; Yang, D. Y. Double Rolling Circle Amplification Generates Physically Cross-Linked DNA Network for Stem Cell Fishing. J. Am. Chem. Soc. 2020, 142, 3422–3429. DOI: 10.1021/jacs.9b11001.
  • Yao, C.; Zhu, C. X.; Tang, J. P.; Ou, J. H.; Zhang, R.; Yang, D. Y. T Lymphocyte-Captured DNA Network for Localized Immunotherapy. J. Am. Chem. Soc. 2021, 143, 19330–19340. DOI: 10.1021/jacs.1c07036.
  • Chaudhuri, O.; Cooper-White, J.; Janmey, P. A.; Mooney, D. J.; Shenoy, V. B. Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour. Nature 2020, 584, 535–546. DOI: 10.1038/s41586-020-2612-2.
  • Wu, J. Y.; Liyarita, B. R.; Zhu, H. S.; Liu, M.; Hu, X.; Shao, F. S. Self-Assembly of Dendritic DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Appl. Mater. Interfaces. 2021, 13, 49705–49712. DOI: 10.1021/acsami.1c14445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.