210
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances of Transition Metal-Based Electrochemical Non-enzymatic Glucose Sensors for Glucose Analysis: A Review

, , , , &

References

  • Zimmet, P. Z.; Magliano, D. J.; Herman, W. H.; Shaw, J. E. Diabetes: A 21st Century Challenge. Lancet Diabetes Endocrinol. 2014, 2, 56–64. DOI: 10.1016/S2213-8587(13)70112-8.
  • International Hypoglycaemia Study, G. Hypoglycaemia, Cardiovascular Disease, and Mortality in Diabetes: Epidemiology, Pathogenesis, and Management. Lancet Diabetes Endocrinol. 2019, 7, 385–396. DOI: 10.1016/S2213-8587(18)30315-2.
  • American Diabetes Association Professional Practice, C. Introduction and Methodology: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, S1–S4. DOI: 10.2337/dc24-SINT.
  • International Hypoglycaemia Study, G. Glucose Concentrations of Less than 3.0 Mmol/l (54 mg/dl) Should Be Reported in Clinical Trials: A Joint Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2017, 60, 3–6. DOI: 10.1007/s00125-016-4146-6.
  • Lin, Y. K.; Richardson, C. R.; Dobrin, I.; DeJonckheere, M. J.; Mizokami-Stout, K.; Fetters, M. D.; Aikens, J. E.; Fisher, S. J.; Ye, W.; Pop-Busui, R. Beliefs around Hypoglycemia and Their Impacts on Hypoglycemia Outcomes in Individuals with Type 1 Diabetes and High Risks for Hypoglycemia despite Using Advanced Diabetes Technologies. Diabetes Care 2022, 45, 520–528. DOI: 10.2337/dc21-1285.
  • Gabbay, M. A. L.; Rodacki, M.; Calliari, L. E.; Vianna, A. G. D.; Krakauer, M.; Pinto, M. S.; Reis, J. S.; Puñales, M.; Miranda, L. G.; Ramalho, A. C.; et al. Time in Range: A New Parameter to Evaluate Blood Glucose Control in Patients with Diabetes. Diabetol. Metab. Syndr. 2020, 12, 22. DOI: 10.1186/s13098-020-00529-z.
  • Xu, C.; Solomon, S. A.; Gao, W. Artificial Intelligence-Powered Electronic Skin. Nat. Mach. Intell. 2023, 5, 1344–1355. DOI: 10.1038/s42256-023-00760-z.
  • Clark, L. C. Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. DOI: 10.1111/j.1749-6632.1962.tb13623.x.
  • Li, Z.; Shen, F.; Mishra, R. K.; Wang, Z.; Zhao, X.; Zhu, Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit. Rev. Anal. Chem. 2022, 1–46. DOI: 10.1080/10408347.2022.2072679.
  • Pletcher, D. Electrocatalysis: Present and Future. J. Appl Electrochem. 1984, 14, 403–415. DOI: 10.1007/BF00610805.
  • Burke, L. D. Premonolayer Oxidation and Its Role in Electrocatalysis. Electrochim. Acta 1994, 39, 1841–1848. DOI: 10.1016/0013-4686(94)85173-5.
  • Wang, S. F.; Xu, Q. Electrochemical Parameters of Ethamsylate at Multi-Walled Carbon Nanotube Modified Glassy Carbon Electrodes. Bioelectrochemistry 2007, 70, 296–300. DOI: 10.1016/j.bioelechem.2005.12.005.
  • Park, S.; Boo, H.; Chung, T. D. Electrochemical Non-Enzymatic Glucose Sensors. Anal. Chim. Acta 2006, 556, 46–57. DOI: 10.1016/j.aca.2005.05.080.
  • Yang, J.; Liang, X.; Cui, L.; Liu, H.; Xie, J.; Liu, W. A Novel Non-Enzymatic Glucose Sensor Based on Pt3Ru1 Alloy Nanoparticles with High Density of Surface Defects. Biosens. Bioelectron. 2016, 80, 171–174. DOI: 10.1016/j.bios.2016.01.056.
  • Zheng, W.; Li, Y.; Lee, L. Y. S. Insights into the Transition Metal Ion-Mediated Electrooxidation of Glucose in Alkaline Electrolyte. Electrochim. Acta 2019, 308, 9–19. DOI: 10.1016/j.electacta.2019.04.007.
  • Largeaud, F.; Kokoh, K. B.; Beden, B.; Lamy, C. On the Electrochemical Reactivity of Anomers: Electrocatalytic Oxidation of α-and β-d-Glucose on Platinum Electrodes in Acid and Basic Media. Electroanal. Chem. 1995, 397, 261–269. DOI: 10.1016/0022-0728(95)04139-8.
  • Toghill, K. E.; Compton, R. G. Electrochemical Non-Enzymatic Glucose Sensors: A Perspective and an Evaluation. Int. J. Electrochem. Sci. 2010, 5, 1246–1301. DOI: 10.1016/S1452-3981(23)15359-4.
  • Grochowska, K.; Ryl, J.; Karczewski, J.; Śliwiński, G.; Cenian, A.; Siuzdak, K. Non-Enzymatic Flexible Glucose Sensing Platform Based on Nanostructured TiO2 – Au Composite. Electroanal. Chem. 2019, 837, 230–239. DOI: 10.1016/j.jelechem.2019.02.040.
  • Yadav, H. M.; Lee, J.-J. One-Pot Synthesis of Copper Nanoparticles on Glass: Applications for Non-Enzymatic Glucose Detection and Catalytic Reduction of 4-Nitrophenol. J. Solid State Electrochem. 2018, 23, 503–512. DOI: 10.1007/s10008-018-4137-2.
  • Shahrokhian, S.; Khaki Sanati, E.; Hosseini, H. Advanced on-Site Glucose Sensing Platform Based on a New Architecture of Free-Standing Hollow Cu(OH)(2) Nanotubes Decorated with CoNi-LDH Nanosheets on Graphite Screen-Printed Electrode. Nanoscale 2019, 11, 12655–12671. DOI: 10.1039/c9nr02720c.
  • Liang, L.; Feng, Q.; Wang, X.; Hübner, J.; Gernert, U.; Heggen, M.; Wu, L.; Hellmann, T.; Hofmann, J. P.; Strasser, P. Electroreduction of CO(2) on Au(310)@Cu High-Index Facets. Angew. Chem. Int. Ed. Engl. 2023, 62, e202218039. DOI: 10.1002/anie.202218039.
  • Li, Q.; Li, J.; Bai, H.; Li, F. Progress on Facet Engineering of Catalysts for Application in Photo/Electro-Catalysis. Chin. J. Catal. 2024, 58, 86–104. DOI: 10.1016/s1872-2067(23)64600-5.
  • Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q. N.; Xia, Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem. Rev. 2021, 121, 649–735. DOI: 10.1021/acs.chemrev.0c00454.
  • Kokkinidis, G. Structural Effects in Electrocatalysis: Oxidation of D-Glucose on pt (100), (110) and (111) Single Crystal Electrodes and the Effect of Upd Adlayers of Pb, Tl and Bi. J. Electroanal. Chem. 1988, 242 221–242. DOI: 10.1016/0022-0728(88)80253-5.
  • Mazzotta, E.; Di Giulio, T.; Mastronardi, V.; Brescia, R.; Pompa, P. P.; Moglianetti, M.; Malitesta, C. Nanozymes Based on Octahedral Platinum Nanocrystals with 111 Surface Facets: Glucose Oxidase Mimicking Activity in Electrochemical Sensors. Mikrochim Acta 2023, 190, 425. DOI: 10.1007/s00604-023-05992-9.
  • Seo, B.; Kim, J. Electrooxidation of Glucose at Nanoporous Gold Surfaces: Structure Dependent Electrocatalysis and Its Application to Amperometric Detection. Electroanalysis 2010, 22, 939–945. DOI: 10.1002/elan.200900514.
  • Jiang, Y.; Xia, T.; Shen, L.; Ma, J.; Ma, H.; Sun, T.; Lv, F.; Zhu, N. Facet-Dependent Cu2O Electrocatalysis for Wearable Enzyme-Free Smart Sensing. ACS Catal. 2021, 11, 2949–2955. DOI: 10.1021/acscatal.0c04797.
  • Wu, K.-H.; Leng, X.; Gentle, I. R.; Wang, D.-W. Enhanced Electroactivity of Facet-Controlled Co3O4 Nanocrystals for Enzymeless Biosensing. J. Mater. Sci. Technol. 2016, 32, 24–27. DOI: 10.1016/j.jmst.2015.11.014.
  • Park, S.; Chung, T. D.; Kim, H. C. Nonenzymatic Glucose Detection Using Mesoporous Platinum. Anal. Chem. 2003, 75, 3046–3049. DOI: 10.1021/ac0263465.
  • Bard, A. J.; Faulkner, L. R. Fundamentals and Applications: Electrochemical Methods. Electrochem. Methods 2001, 2, 580–632.
  • Laviron, E. The Use of Linear Potential Sweep Voltammetry and of ac Voltammetry for the Study of the Surface Electrochemical Reaction of Strongly Adsorbed Systems and of Redox Modified Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1979, 100, 263–270. DOI: 10.1016/S0022-0728(79)80167-9.
  • Laviron, E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28. DOI: 10.1016/S0022-0728(79)80075-3.
  • Geng, D.; Bo, X.; Guo, L. Ni-Doped Molybdenum Disulfide Nanoparticles Anchored on Reduced Graphene Oxide as Novel Electroactive Material for a Non-Enzymatic Glucose Sensor. Sens. Actuators B 2017, 244, 131–141. DOI: 10.1016/j.snb.2016.12.122.
  • Galus, Z. Fundamentals of electrochemical analysis. in (No Title): 1976.
  • Fogler, H. S. Elements of Chemical Reaction Engineering; Prentice Hall PTR, 1999.
  • Ding, Y.; Wang, Y.; Su, L.; Bellagamba, M.; Zhang, H.; Lei, Y. Electrospun Co3O4 Nanofibers for Sensitive and Selective Glucose Detection. Biosens. Bioelectron. 2010, 26, 542–548. DOI: 10.1016/j.bios.2010.07.050.
  • Dilmac, Y.; Guler, M. Fabrication of Non-Enzymatic Glucose Sensor Dependent upon Au Nanoparticles Deposited on Carboxylated Graphene Oxide. Electroanal. Chem. 2020, 864, 114091. DOI: 10.1016/j.jelechem.2020.114091.
  • Juſík, T.; Podešva, P.; Farka, Z.; Kováſ, D.; Skládal, P.; Foret, F. Nanostructured Gold Deposited in Gelatin Template Applied for Electrochemical Assay of Glucose in Serum. Electrochim. Acta 2016, 188, 277–285. DOI: 10.1016/j.electacta.2015.12.009.
  • Yuwen, T.; Zou, H.; Xu, S.; Wu, C.; Peng, Q.; Shu, D.; Yang, X.; Wang, Y.; Yu, C.; Fan, J.; et al. Effect of Glucuronic Acid on Inducing Self-Assembly of Au Nanoflowers@Glucuronic Acid on Carbon Cloth for Non-Enzymatic Glucose Sensing. Mater. Today Chem. 2023, 29, 101388. DOI: 10.1016/j.mtchem.2023.101388.
  • Shamsipur, M.; Karimi, Z.; Amouzadeh Tabrizi, M.; Rostamnia, S. Highly Sensitive Non-Enzymatic Electrochemical Glucose Sensor by Nafion/SBA-15-Cu (II) Modified Glassy Carbon Electrode. Electroanal. Chem. 2017, 799, 406–412. DOI: 10.1016/j.jelechem.2017.06.029.
  • SoYoon, S.; Ramadoss, A.; Saravanakumar, B.; Kim, S. J. Novel Cu/CuO/ZnO Hybrid Hierarchical Nanostructures for Non-Enzymatic Glucose Sensor Application. Electroanal. Chem. 2014, 717-718, 90–95. DOI: 10.1016/j.jelechem.2014.01.012.
  • Hsu, C.-W.; Su, F.-C.; Peng, P.-Y.; Young, H.-T.; Liao, S.; Wang, G.-J. Highly Sensitive Non-Enzymatic Electrochemical Glucose Biosensor Using a Photolithography Fabricated Micro/Nano Hybrid Structured Electrode. Sens. Actuators B 2016, 230, 559–565. DOI: 10.1016/j.snb.2016.02.109.
  • Scandurra, A.; Ruffino, F.; Sanzaro, S.; Grimaldi, M. G. Laser and Thermal Dewetting of Gold Layer onto Graphene Paper for Non-Enzymatic Electrochemical Detection of Glucose and Fructose. Sens. Actuators B 2019, 301, 127113. DOI: 10.1016/j.snb.2019.127113.
  • Rafatmah, E.; Hemmateenejad, B. Dendrite Gold Nanostructures Electrodeposited on Paper Fibers: Application to Electrochemical Non-Enzymatic Determination of Glucose. Sens. Actuators B 2020, 304, 127335. DOI: 10.1016/j.snb.2019.127335.
  • Heli, H.; Amirizadeh, O. Non-Enzymatic Glucose Biosensor Based on Hyperbranched Pine-like Gold Nanostructure. Mater. Sci. Eng C Mater. Biol. Appl. 2016, 63, 150–154. DOI: 10.1016/j.msec.2016.02.068.
  • Zhao, W.; Xu, J.; Shi, C.; Chen, H. Fabrication, Characterization and Application of Gold Nano-Structured Film. Electrochem. Commun. 2006, 8, 773–778. DOI: 10.1016/j.elecom.2006.03.009.
  • Hsiao, M. W.; Adžić, R. R.; Yeager, E. B. Electrochemical Oxidation of Glucose on Single Crystal and Polycrystalline Gold Surfaces in Phosphate Buffer. J. Electrochem. Soc. 1996, 143, 759–767. DOI: 10.1149/1.1836536.
  • Grochowska, K.; Szkoda, M.; Karczewski, J.; Śliwiński, G.; Siuzdak, K. Ordered Titanium Templates Functionalized by Gold Films for Biosensing applications - Towards Non-Enzymatic Glucose Detection. Talanta 2017, 166, 207–214. DOI: 10.1016/j.talanta.2017.01.075.
  • Peng, Y.; Lin, D.; Justin Gooding, J.; Xue, Y.; Dai, L. Flexible Fiber-Shaped Non-Enzymatic Sensors with a Graphene-Metal Heterostructure Based on Graphene Fibres Decorated with Gold Nanosheets. Carbon 2018, 136, 329–336. DOI: 10.1016/j.carbon.2018.05.004.
  • Ye, J.-S.; Liu, Z.-T.; Lai, C.-C.; Lo, C.-T.; Lee, C.-L. Diameter Effect of Electrospun Carbon Fiber Support for the Catalysis of Pt Nanoparticles in Glucose Oxidation. Chem. Eng. J. 2016, 283, 304–312. DOI: 10.1016/j.cej.2015.07.071.
  • Zhong, S. L.; Zhuang, J.; Yang, D. P.; Tang, D. Eggshell Membrane-Templated Synthesis of 3D Hierarchical Porous Au Networks for Electrochemical Nonenzymatic Glucose Sensor. Biosens. Bioelectron. 2017, 96, 26–32. DOI: 10.1016/j.bios.2017.04.038.
  • Chang, G.; Shu, H.; Ji, K.; Oyama, M.; Liu, X.; He, Y. Gold Nanoparticles Directly Modified Glassy Carbon Electrode for Non-Enzymatic Detection of Glucose. Appl. Surf. Sci. 2014, 288, 524–529. DOI: 10.1016/j.apsusc.2013.10.064.
  • Bae, C. W.; Toi, P. T.; Kim, B. Y.; Lee, W. I.; Lee, H. B.; Hanif, A.; Lee, E. H.; Lee, N. E. Fully Stretchable Capillary Microfluidics-Integrated Nanoporous Gold Electrochemical Sensor for Wearable Continuous Glucose Monitoring. ACS Appl. Mater. Interfaces 2019, 11, 14567–14575. DOI: 10.1021/acsami.9b00848.
  • Sanzó, G.; Taurino, I.; Antiochia, R.; Gorton, L.; Favero, G.; Mazzei, F.; De Micheli, G.; Carrara, S. Bubble Electrodeposition of Gold Porous Nanocorals for the Enzymatic and Non-Enzymatic Detection of Glucose. Bioelectrochemistry 2016, 112, 125–131. DOI: 10.1016/j.bioelechem.2016.02.012.
  • Wang, J.; Cao, X.; Wang, X.; Yang, S.; Wang, R. Electrochemical Oxidation and Determination of Glucose in Alkaline Media Based on Au (111)-like Nanoparticle Array on Indium Tin Oxide Electrode. Electrochim. Acta 2014, 138, 174–186. DOI: 10.1016/j.electacta.2014.06.116.
  • Soomro, R. A.; Akyuz, O. P.; Ozturk, R.; Ibupoto, Z. H. Highly Sensitive Non-Enzymatic Glucose Sensing Using Gold Nanocages as Efficient Electrode Material. Sens. Actuators B 2016, 233, 230–236. DOI: 10.1016/j.snb.2016.04.065.
  • Fu, S.; Fan, G.; Yang, L.; Li, F. Non-Enzymatic Glucose Sensor Based on Au Nanoparticles Decorated Ternary Ni-Al Layered Double Hydroxide/Single-Walled Carbon Nanotubes/Graphene Nanocomposite. Electrochim. Acta 2015, 152, 146–154. DOI: 10.1016/j.electacta.2014.11.115.
  • Thanh, T. D.; Balamurugan, J.; Lee, S. H.; Kim, N. H.; Lee, J. H. Effective Seed-Assisted Synthesis of Gold Nanoparticles Anchored Nitrogen-Doped Graphene for Electrochemical Detection of Glucose and Dopamine. Biosens. Bioelectron. 2016, 81, 259–267. DOI: 10.1016/j.bios.2016.02.070.
  • Shu, H.; Chang, G.; Su, J.; Cao, L.; Huang, Q.; Zhang, Y.; Xia, T.; He, Y. Single-Step Electrochemical Deposition of High Performance Au-Graphene Nanocomposites for Nonenzymatic Glucose Sensing. Sens. Actuators B 2015, 220, 331–339. DOI: 10.1016/j.snb.2015.05.094.
  • Toi, P. T.; Trung, T. Q.; Dang, T. M. L.; Bae, C. W.; Lee, N. E. Highly Electrocatalytic, Durable, and Stretchable Nanohybrid Fiber for on-Body Sweat Glucose Detection. ACS Appl. Mater. Interfaces 2019, 11, 10707–10717. DOI: 10.1021/acsami.8b20583.
  • Kangkamano, T.; Numnuam, A.; Limbut, W.; Kanatharana, P.; Thavarungkul, P. Chitosan Cryogel with Embedded Gold Nanoparticles Decorated Multiwalled Carbon Nanotubes Modified Electrode for Highly Sensitive Flow Based Non-Enzymatic Glucose Sensor. Sens. Actuators B 2017, 246, 854–863. DOI: 10.1016/j.snb.2017.02.105.
  • Zhu, J.; Liu, S.; Hu, Z.; Zhang, X.; Yi, N.; Tang, K.; Dexheimer, M. G.; Lian, X.; Wang, Q.; Yang, J.; et al. Laser-Induced Graphene Non-Enzymatic Glucose Sensors for on-Body Measurements. Biosens. Bioelectron. 2021, 193, 113606. DOI: 10.1016/j.bios.2021.113606.
  • Thanh, T. D.; Balamurugan, J.; Hwang, J. Y.; Kim, N. H.; Lee, J. H. In Situ Synthesis of Graphene-Encapsulated Gold Nanoparticle Hybrid Electrodes for Non-Enzymatic Glucose Sensing. Carbon 2016, 98, 90–98. DOI: 10.1016/j.carbon.2015.10.081.
  • Luo, Y.; Kong, F.-Y.; Li, C.; Shi, J.-J.; Lv, W.-X.; Wang, W. One-Pot Preparation of Reduced Graphene Oxide-Carbon Nanotube Decorated with Au Nanoparticles Based on Protein for Non-Enzymatic Electrochemical Sensing of Glucose. Sens. Actuators B 2016, 234, 625–632. DOI: 10.1016/j.snb.2016.05.046.
  • Guo, M-m.; Wang, P-s.; Zhou, C-h.; Xia, Y.; Huang, W.; Li, Z. An Ultrasensitive Non-Enzymatic Amperometric Glucose Sensor Based on a Cu-Coated Nanoporous Gold Film Involving co-Mediating. Sens. Actuators B 2014, 203, 388–395. DOI: 10.1016/j.snb.2014.07.007.
  • Gougis, M.; Tabet-Aoul, A.; Ma, D.; Mohamedi, M. Laser Synthesis and Tailor-Design of Nanosized Gold onto Carbon Nanotubes for Non-Enzymatic Electrochemical Glucose Sensor. Sens. Actuators B 2014, 193, 363–369. DOI: 10.1016/j.snb.2013.12.008.
  • Sedghi, R.; Pezeshkian, Z. Fabrication of Non-Enzymatic Glucose Sensor Based on Nanocomposite of MWCNTs-COOH-Poly(2-Aminothiophenol)-Au NPs. Sens. Actuators B 2015, 219, 119–124. DOI: 10.1016/j.snb.2015.04.097.
  • Sutradhar, S.; Patnaik, A. A New fullerene-C60 – Nanogold Composite for Non-Enzymatic Glucose Sensing. Sens. Actuators B 2017, 241, 681–689. DOI: 10.1016/j.snb.2016.10.111.
  • Muthuchamy, N.; Gopalan, A.; Lee, K. P. Highly Selective Non-Enzymatic Electrochemical Sensor Based on a Titanium Dioxide Nanowire-Poly(3-Aminophenyl Boronic Acid)-Gold Nanoparticle Ternary Nanocomposite. RSC Adv. 2018, 8, 2138–2147. DOI: 10.1039/c7ra09097h.
  • Shamsabadi, A. S.; Tavanai, H.; Ranjbar, M.; Farnood, A.; Bazarganipour, M. Electrochemical Non-Enzymatic Sensing of Glucose by Gold Nanoparticles Incorporated Graphene Nanofibers. Mater. Today Commun. 2020, 24, 100963. DOI: 10.1016/j.mtcomm.2020.100963.
  • Chiu, W. T.; Chang, T. M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Roles of TiO(2) in the Highly Robust Au nanoparticles-TiO(2) Modified Polyaniline Electrode towards Non-Enzymatic Sensing of Glucose. Talanta 2020, 212, 120780. DOI: 10.1016/j.talanta.2020.120780.
  • Huo, Y.; Li, R.; Xiu, S.; Wang, Y.; Zhang, L.; Jin, A.; Quan, B. A High–Performance Non–Enzymatic Glucose Sensor Based Au and ZrO2 Nanoparticles Supported on Multi-Walled Carbon Nanotubes. Diamond Relat. Mater. 2023, 140, 110455. DOI: 10.1016/j.diamond.2023.110455.
  • de Lima, L. F.; de Freitas, A. d S. M.; Ferreira, A. L.; Maciel, C. C.; Ferreira, M.; de Araujo, W. R. Enzymeless Glucose Sensor Based on Disposable Ecoflex®/Graphite Thermoplastic Composite Substrate Modified with Au@GQDs. Sens. Actuators Rep. 2022, 4, 100102. DOI: 10.1016/j.snr.2022.100102.
  • Sabzehmeidani, M. M.; Kazemzad, M. Fabrication of Gold Nanoparticles Surfactant Assisted Electrochemically on Graphite Sheet as Efficient Electrode for Non-Enzymatic Electrochemical Glucose Sensing. Inorg. Chem. Commun. 2023, 155, 111130. DOI: 10.1016/j.inoche.2023.111130.
  • Zhao, J.; Hu, X.; Huang, X.; Jin, X.; Koh, K.; Chen, H. A Facile Gold Nanoparticles Embeded Hydrogel for Non-Enzymatic Sensing of Glucose. Colloids Surf. B Biointerfaces 2019, 183, 110404. DOI: 10.1016/j.colsurfb.2019.110404.
  • Faverge, T.; Gilles, B.; Bonnefont, A.; Maillard, F.; Coutanceau, C.; Chatenet, M. In Situ Investigation of d-Glucose Oxidation into Value-Added Products on Au, Pt, and Pd under Alkaline Conditions: A Comparative Study. ACS Catal. 2023, 13, 2657–2669. DOI: 10.1021/acscatal.2c05871.
  • Hoa, L. T.; Sun, K. G.; Hur, S. H. Highly Sensitive Non-Enzymatic Glucose Sensor Based on Pt Nanoparticle Decorated Graphene Oxide Hydrogel. Sens. Actuators B 2015, 210, 618–623. DOI: 10.1016/j.snb.2015.01.020.
  • Şavk, A.; Aydın, H.; Cellat, K.; Şen, F. A Novel High Performance Non-Enzymatic Electrochemical Glucose Biosensor Based on Activated Carbon-Supported Pt-Ni Nanocomposite. J. Mol. Liq. 2020, 300, 112355. DOI: 10.1016/j.molliq.2019.112355.
  • Yoon, H.; Xuan, X.; Jeong, S.; Park, J. Y. Wearable, Robust, Non-Enzymatic Continuous Glucose Monitoring System and Its in Vivo Investigation. Biosens. Bioelectron. 2018, 117, 267–275. DOI: 10.1016/j.bios.2018.06.008.
  • Lee, S.; Lee, J.; Park, S.; Boo, H.; Kim, H. C.; Chung, T. D. Disposable Non-Enzymatic Blood Glucose Sensing Strip Based on Nanoporous Platinum Particles. Appl. Mater. Today 2018, 10, 24–29. DOI: 10.1016/j.apmt.2017.11.009.
  • Unmüssig, T.; Weltin, A.; Urban, S.; Daubinger, P.; Urban, G. A.; Kieninger, J. Non-Enzymatic Glucose Sensing Based on Hierarchical Platinum Micro-/Nanostructures. Electroanal. Chem. 2018, 816, 215–222. DOI: 10.1016/j.jelechem.2018.03.061.
  • Barman, S. C.; Hossain, M. F.; Park, J. Y. Soft Surfactant-Assisted Uniformly Dispersed Platinum Nanoparticles for High Performance Electrochemical Non-Enzymatic Glucose Sensing Platform. Electroanal. Chem. 2018, 824, 121–127. DOI: 10.1016/j.jelechem.2018.07.028.
  • Chang, G.; Shu, H.; Huang, Q.; Oyama, M.; Ji, K.; Liu, X.; He, Y. Synthesis of Highly Dispersed Pt Nanoclusters Anchored Graphene Composites and Their Application for Non-Enzymatic Glucose Sensing. Electrochim. Acta 2015, 157, 149–157. DOI: 10.1016/j.electacta.2015.01.085.
  • Lee, S. J.; Yoon, H. S.; Xuan, X.; Park, J. Y.; Paik, S.-J.; Allen, M. G. A Patch Type Non-Enzymatic Biosensor Based on 3D SUS Micro-Needle Electrode Array for Minimally Invasive Continuous Glucose Monitoring. Sens. Actuators B 2016, 222, 1144–1151. DOI: 10.1016/j.snb.2015.08.013.
  • Imran, H.; Vaishali, K.; Antony Francy, S.; Manikandan, P. N.; Dharuman, V. Platinum and Zinc Oxide Modified Carbon Nitride Electrode as Non-Enzymatic Highly Selective and Reusable Electrochemical Diabetic Sensor in Human Blood. Bioelectrochemistry 2021, 137, 107645. DOI: 10.1016/j.bioelechem.2020.107645.
  • Wang, Y.; Chen, J.; Zhou, C.; Zhou, L.; Kong, Y.; Long, H.; Zhong, S. A Novel Self-Cleaning, Non-Enzymatic Glucose Sensor Working under a Very Low Applied Potential Based on a Pt Nanoparticle-Decorated TiO2 Nanotube Array Electrode. Electrochim. Acta 2014, 115, 269–276. DOI: 10.1016/j.electacta.2013.09.173.
  • Koçak, İ.; Pekdemir, F. Non-Enzymatic Electrochemical Detection of Hydrogen Peroxide and Glucose through Using Copper(II) and Platinum(II) Complexes with Tridentate Ligand – Platinum Nanoparticles – Graphene Oxide Composite. J. Electrochem. Soc. 2023, 170, 066501. DOI: 10.1149/1945-7111/acd7a9.
  • Huo, H.; Zhao, Y.; Xu, C. 3D Ni3S2nanosheet Arrays Supported on Ni Foam for High-Performance Supercapacitor and Non-Enzymatic Glucose Detection. J. Mater. Chem. A 2014, 2, 15111. DOI: 10.1039/C4TA02857K.
  • Ma, M.; Zhu, W.; Zhao, D.; Ma, Y.; Hu, N.; Suo, Y.; Wang, J. Surface Engineering of Nickel Selenide Nanosheets Array on Nickel Foam: An Integrated Anode for Glucose Sensing. Sens. Actuators B 2019, 278, 110–116. DOI: 10.1016/j.snb.2018.09.075.
  • Xiao, X.; Zheng, S.; Li, X.; Zhang, G.; Guo, X.; Xue, H.; Pang, H. Facile Synthesis of Ultrathin Ni-MOF Nanobelts for High-Efficiency Determination of Glucose in Human Serum. J. Mater. Chem. B 2017, 5, 5234–5239. DOI: 10.1039/c7tb00180k.
  • Lopa, N. S.; Rahman, M. M.; Ahmed, F.; Sutradhar, S. C.; Ryu, T.; Kim, W. A Ni-Based Redox-Active Metal-Organic Framework for Sensitive and Non-Enzymatic Detection of Glucose. Electroanal. Chem. 2018, 822, 43–49. DOI: 10.1016/j.jelechem.2018.05.014.
  • Wang, C.; Han, B.; Li, J.; Gao, Q.; Xia, K.; Zhou, C. Direct Epitaxial Growth of Nickel Phosphide Nanosheets on Nickel Foam as Self-Support Electrode for Efficient Non-Enzymatic Glucose Sensing. Nanotechnology 2021, 32, 435501. DOI: 10.1088/1361-6528/ac162f.
  • Chen, Y.; Yang, L.; Tang, X.; Zhang, Y.; He, Z.; Liu, Y.; Jiang, X.; Xiong, X. Microplasma Synthesis of Ni(OH)2 Nanoflake Array on Carbon Cloth as an Efficient Nonenzymatic Sensor for Glucose. Ionics 2021, 27, 2739–2745. DOI: 10.1007/s11581-021-04067-0.
  • Kumar, R.; Bhuvana, T.; Rai, P.; Sharma, A. Highly Sensitive Non-Enzymatic Glucose Detection Using 3-D Ni3(VO4)2Nanosheet Arrays Directly Grown on Ni Foam. J. Electrochem. Soc. 2018, 165, B1–B8. DOI: 10.1149/2.0201802jes.
  • Kim, S.; Lee, S. H.; Cho, M.; Lee, Y. Solvent-Assisted Morphology Confinement of a Nickel Sulfide Nanostructure and Its Application for Non-Enzymatic Glucose Sensor. Biosens. Bioelectron. 2016, 85, 587–595. DOI: 10.1016/j.bios.2016.05.062.
  • Youcef, M.; Hamza, B.; Nora, H.; Walid, B.; Salima, M.; Ahmed, B.; Malika, F.; Marc, S.; Christian, B.; Wassila, D.; et al. A Novel Green Synthesized NiO Nanoparticles Modified Glassy Carbon Electrode for Non-Enzymatic Glucose Sensing. Microchem. J. 2022, 178, 107332. DOI: 10.1016/j.microc.2022.107332.
  • Xuan, X.; Qian, M.; Pan, L.; Lu, T.; Han, L.; Yu, H.; Wan, L.; Niu, Y.; Gong, S. A Longitudinally Expanded Ni-Based Metal-Organic Framework with Enhanced Double Nickel Cation Catalysis Reaction Channels for a Non-Enzymatic Sweat Glucose Biosensor. J. Mater. Chem. B 2020, 8, 9094–9109. DOI: 10.1039/d0tb01657h.
  • Xie, F.; Liu, T.; Xie, L.; Sun, X.; Luo, Y. Metallic Nickel Nitride Nanosheet: An Efficient Catalyst Electrode for Sensitive and Selective Non-Enzymatic Glucose Sensing. Sens. Actuators B 2018, 255, 2794–2799. DOI: 10.1016/j.snb.2017.09.095.
  • Liu, Z.; Guo, Y.; Dong, C. A High Performance Nonenzymatic Electrochemical Glucose Sensor Based on Polyvinylpyrrolidone-Graphene Nanosheets-Nickel Nanoparticles-Chitosan Nanocomposite. Talanta 2015, 137, 87–93. DOI: 10.1016/j.talanta.2015.01.037.
  • Wang, F.; Chen, X.; Chen, L.; Yang, J.; Wang, Q. High-Performance Non-Enzymatic Glucose Sensor by Hierarchical Flower-like Nickel(II)-Based MOF/Carbon Nanotubes Composite. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 41–50. DOI: 10.1016/j.msec.2018.11.004.
  • Jia, H.; Shang, N.; Feng, Y.; Ye, H.; Zhao, J.; Wang, H.; Wang, C.; Zhang, Y. Facile Preparation of Ni Nanoparticle Embedded on Mesoporous Carbon Nanorods for Non-Enzymatic Glucose Detection. J. Colloid Interface Sci. 2021, 583, 310–320. DOI: 10.1016/j.jcis.2020.09.051.
  • Zhang, Y.; Liu, Y.-Q.; Bai, Y.; Chu, W.; Sh, J. Confinement Preparation of Hierarchical NiO-N-Doped Carbon@Reduced Graphene Oxide Microspheres for High-Performance Non-Enzymatic Detection of Glucose. Sens. Actuators B 2020, 309, 127779. DOI: 10.1016/j.snb.2020.127779.
  • Kurt Urhan, B.; Demir, Ü.; Öznülüer Özer, T.; Öztürk Doğan, H. Electrochemical Fabrication of Ni Nanoparticles-Decorated Electrochemically Reduced Graphene Oxide Composite Electrode for Non-Enzymatic Glucose Detection. Thin Solid Films 2020, 693, 137695. DOI: 10.1016/j.tsf.2019.137695.
  • Subramanian, P.; Niedziolka-Jonsson, J.; Lesniewski, A.; Wang, Q.; Li, M.; Boukherroub, R.; Szunerits, S. Preparation of Reduced Graphene Oxide–Ni(OH)2composites by Electrophoretic Deposition: Application for Non-Enzymatic Glucose Sensing. J. Mater. Chem. A 2014, 2, 5525–5533. DOI: 10.1039/C4TA00123K.
  • Zhang, L.; Ding, Y.; Li, R.; Ye, C.; Zhao, G.; Wang, Y. Ni-Based Metal–Organic Framework Derived Ni@C Nanosheets on a Ni Foam Substrate as a Supersensitive Non-Enzymatic Glucose Sensor. J. Mater. Chem. B 2017, 5, 5549–5555. DOI: 10.1039/C7TB01363A.
  • Deng, Z.; Long, H.; Wei, Q.; Yu, Z.; Zhou, B.; Wang, Y.; Zhang, L.; Li, S.; Ma, L.; Xie, Y.; Min, J. High-Performance Non-Enzymatic Glucose Sensor Based on Nickel-Microcrystalline Graphite-Boron Doped Diamond Complex Electrode. Sens. Actuators B 2017, 242, 825–834. DOI: 10.1016/j.snb.2016.09.176.
  • Zhu, J.; Yin, H.; Gong, J.; Al-Furjan, M. S. H.; Nie, Q. In Situ Growth of Ni/NiO on N-Doped Carbon Spheres with Excellent Electrocatalytic Performance for Non-Enzymatic Glucose Detection. J. Alloys Compd. 2018, 748, 145–153. DOI: 10.1016/j.jallcom.2018.03.125.
  • Wang, Q.; Zheng, S.; Li, T.; Wang, Z. Ni/NiO Multivalent System Encapsulated in Nitrogen-Doped Graphene Realizing Efficient Activation for Non-Enzymatic Glucose Sensing. Ceram. Int. 2021, 47, 22869–22880. DOI: 10.1016/j.ceramint.2021.04.307.
  • Li, G.; Xie, G.; Chen, D.; Gong, C.; Chen, X.; Zhang, Q.; Pang, B.; Zhang, Y.; Li, C.; Hu, J.; et al. Facile Synthesis of Bamboo-like Ni3S2@NCNT as Efficient and Stable Electrocatalysts for Non-Enzymatic Glucose Detection. Appl. Surf. Sci. 2022, 585, 152683. DOI: 10.1016/j.apsusc.2022.152683.
  • Zhan, T.; Yin, H.; Zhu, J.; Chen, J.; Gong, J.; Wang, L.; Nie, Q. Ni3(PO4)2 Nanoparticles Decorated Carbon Sphere Composites for Enhanced Non-Enzymatic Glucose Sensing. J. Alloys Compd. 2019, 786, 18–26. DOI: 10.1016/j.jallcom.2019.01.304.
  • Chen, J.; Yin, H.; Zhou, J.; Gong, J.; Wang, L.; Zheng, Y.; Nie, Q. Non-Enzymatic Glucose Sensor Based on Nickel Nitride Decorated Nitrogen Doped Carbon Spheres (Ni3N/NCS) via Facile One Pot Nitridation Process. J. Alloys Compd. 2019, 797, 922–930. DOI: 10.1016/j.jallcom.2019.05.234.
  • Jo, H. J.; Shit, A.; Jhon, H. S.; Park, S. Y. Highly Sensitive Non-Enzymatic Wireless Glucose Sensor Based on Ni–Co Oxide Nanoneedle-Anchored Polymer Dots. J. Ind. Eng. Chem. 2020, 89, 485–493. DOI: 10.1016/j.jiec.2020.06.028.
  • Liu, C.-W.; Chen, W.-E.; Sun, Y. T. A.; Lin, C.-R. Fabrication and Electrochemistry Characteristics of Nickel-Doped Diamond-like Carbon Film toward Applications in Non-Enzymatic Glucose Detection. Appl. Surf. Sci. 2018, 436, 967–973. DOI: 10.1016/j.apsusc.2017.12.035.
  • Pal, N.; Banerjee, S.; Bhaumik, A. A Facile Route for the Syntheses of Ni(OH)(2) and NiO Nanostructures as Potential Candidates for Non-Enzymatic Glucose Sensor. J. Colloid Interface Sci. 2018, 516, 121–127. DOI: 10.1016/j.jcis.2018.01.027.
  • Yang, J.; Cho, M.; Pang, C.; Lee, Y. Highly Sensitive Non-Enzymatic Glucose Sensor Based on over-Oxidized Polypyrrole Nanowires Modified with Ni(OH)2 Nanoflakes. Sens. Actuators B 2015, 211, 93–101. DOI: 10.1016/j.snb.2015.01.045.
  • Shahhoseini, L.; Mohammadi, R.; Ghanbari, B.; Shahrokhian, S. Ni(II) 1D-Coordination Polymer/C60-Modified Glassy Carbon Electrode as a Highly Sensitive Non-Enzymatic Glucose Electrochemical Sensor. Appl. Surf. Sci. 2019, 478, 361–372. DOI: 10.1016/j.apsusc.2019.01.240.
  • Zhu, Z.; Chen, C.; Zhu, X.; Xie, R.; Flewitt, A. J.; Milne, W. I. Effects of Ni Deposition on the Electrochemical Properties of CNT/Ni Electrode and Its Application for Glucose Sensing. J. Nanosci. Nanotechnol. 2015, 15, 3196–3199. DOI: 10.1166/jnn.2015.9664.
  • Ensafi, A. A.; Ahmadi, N.; Rezaei, B. Nickel Nanoparticles Supported on Porous Silicon Flour, Application as a Non-Enzymatic Electrochemical Glucose Sensor. Sens. Actuators B 2017, 239, 807–815. DOI: 10.1016/j.snb.2016.08.088.
  • Adzic, R. R.; Hsiao, M. W.; Yeager, E. B. Electrochemical Oxidation of Glucose on Single Crystal Gold Surfaces. J. Electroanal. Chem. Interfacial Electrochem. 1989, 260, 475–485. DOI: 10.1016/0022-0728(89)87164-5.
  • Miao, Y.; Ouyang, L.; Zhou, S.; Xu, L.; Yang, Z.; Xiao, M.; Ouyang, R. Electrocatalysis and Electroanalysis of Nickel, Its Oxides, Hydroxides and Oxyhydroxides toward Small Molecules. Biosens. Bioelectron. 2014, 53, 428–439. DOI: 10.1016/j.bios.2013.10.008.
  • Medway, S. L.; Lucas, C. A.; Kowal, A.; Nichols, R. J.; Johnson, D. In Situ Studies of the Oxidation of Nickel Electrodes in Alkaline Solution. Electroanal. Chem. 2006, 587, 172–181. DOI: 10.1016/j.jelechem.2005.11.013.
  • Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of Electrocatalysts for Oxygen- and Hydrogen-Involving Energy Conversion Reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. DOI: 10.1039/c4cs00470a.
  • Beverskog, B.; Puigdomenech, I. J. C. S. Revised Pourbaix Diagrams for Nickel at 25–300 C. Corros. Sci. 1997, 39, 969–980. DOI: 10.1016/S0010-938X(97)00002-4.
  • Zhang, E.; Xie, Y.; Ci, S.; Jia, J.; Wen, Z. Porous Co3O4 Hollow Nanododecahedra for Nonenzymatic Glucose Biosensor and Biofuel Cell. Biosens. Bioelectron. 2016, 81, 46–53. DOI: 10.1016/j.bios.2016.02.027.
  • Wang, M.; Shi, M.; Meng, E.; Gong, F.; Li, F. Non‐Enzymatic Glucose Sensor Based on Three‐Dimensional Hierarchical Co3O4 Nanobooks. Micro Nano Lett. 2020, 15, 191–195. DOI: 10.1049/mnl.2019.0552.
  • Pore, O. C.; Fulari, A. V.; Kamble, R. K.; Shelake, A. S.; Velhal, N. B.; Fulari, V. J.; Lohar, G. M. Hydrothermally Synthesized Co3O4 Microflakes for Supercapacitor and Non-Enzymatic Glucose Sensor. J. Mater. Sci.: Mater. Electron. 2021, 32, 20742–20754. DOI: 10.1007/s10854-021-06586-y.
  • Meng, S.; Wu, M.; Wang, Q.; Dai, Z.; Si, W.; Huang, W.; Dong, X. Cobalt Oxide Nanosheets Wrapped onto Nickel Foam for Non-Enzymatic Detection of Glucose. Nanotechnology 2016, 27, 344001. DOI: 10.1088/0957-4484/27/34/344001.
  • Dai, H.; Lin, M.; Wang, N.; Xu, F.; Wang, D.; Ma, H. Nickel‐Foam‐Supported Co3O4 Nanosheets/PPy Nanowire Heterostructure for Non‐Enzymatic Glucose Sensing. ChemElectroChem 2017, 4, 1135–1140. DOI: 10.1002/celc.201600919.
  • Cheng, S.; DelaCruz, S.; Chen, C.; Tang, Z.; Shi, T.; Carraro, C.; Maboudian, R. Hierarchical Co3O4/CuO Nanorod Array Supported on Carbon Cloth for Highly Sensitive Non-Enzymatic Glucose Biosensing. Sens. Actuators B 2019, 298, 126860. DOI: 10.1016/j.snb.2019.126860.
  • Kang, L.; He, D.; Bie, L.; Jiang, P. Nanoporous Cobalt Oxide Nanowires for Non-Enzymatic Electrochemical Glucose Detection. Sens. Actuators B 2015, 220, 888–894. DOI: 10.1016/j.snb.2015.06.015.
  • Niu, X.; Li, Y.; Tang, J.; Hu, Y.; Zhao, H.; Lan, M. Electrochemical Sensing Interfaces with Tunable Porosity for Nonenzymatic Glucose Detection: A Cu Foam Case. Biosens. Bioelectron. 2014, 51, 22–28. DOI: 10.1016/j.bios.2013.07.032.
  • Mahmoudian, M. R.; Basirun, W. J.; Woi, P. M.; Sookhakian, M.; Yousefi, R.; Ghadimi, H.; Alias, Y. Synthesis and Characterization of Co3O4 Ultra-Nanosheets and Co3O4 Ultra-nanosheet-Ni(OH)2 as Non-Enzymatic Electrochemical Sensors for Glucose Detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 500–508. DOI: 10.1016/j.msec.2015.10.055.
  • Xie, F.; Cao, X.; Qu, F.; Asiri, A. M.; Sun, X. Cobalt Nitride Nanowire Array as an Efficient Electrochemical Sensor for Glucose and H2O2 Detection. Sens. Actuators B 2018, 255, 1254–1261. DOI: 10.1016/j.snb.2017.08.098.
  • Liu, T.; Li, M.; Dong, P.; Zhang, Y.; Guo, L. Design and Facile Synthesis of Mesoporous Cobalt Nitride Nanosheets Modified by Pyrolytic Carbon for the Nonenzymatic Glucose Detection. Sens. Actuators B 2018, 255, 1983–1994. DOI: 10.1016/j.snb.2017.08.218.
  • Liu, Y.; Cao, X.; Kong, R.; Du, G.; Asiri, A. M.; Lu, Q.; Sun, X. Cobalt Phosphide Nanowire Array as an Effective Electrocatalyst for Non-Enzymatic Glucose Sensing. J. Mater. Chem. B 2017, 5, 1901–1904. DOI: 10.1039/c6tb02882a.
  • Li, Y.; Xie, M.; Zhang, X.; Liu, Q.; Lin, D.; Xu, C.; Xie, F.; Sun, X. Co-MOF Nanosheet Array: A High-Performance Electrochemical Sensor for Non-Enzymatic Glucose Detection. Sens. Actuators B 2019, 278, 126–132. DOI: 10.1016/j.snb.2018.09.076.
  • Wang, Q.; Chen, Y.; Zhu, R.; Luo, M.; Zou, Z.; Yu, H.; Jiang, X.; Xiong, X. One-Step Synthesis of Co(OH)F Nanoflower Based on Micro-Plasma: As an Effective Non-Enzymatic Glucose Sensor. Sens. Actuators B 2020, 304, 127282. DOI: 10.1016/j.snb.2019.127282.
  • Lopa, N. S.; Rahman, M. M.; Ahmed, F.; Ryu, T.; Lei, J.; Choi, I.; Kim, D. H.; Lee, Y. H.; Kim, W. A Chemically and Electrochemically Stable, Redox-Active and Highly Sensitive Metal Azolate Framework for Non-Enzymatic Electrochemical Detection of Glucose. Electroanal. Chem. 2019, 840, 263–271. DOI: 10.1016/j.jelechem.2019.03.081.
  • Liu, T.; Li, M.; Guo, L. Designing and Facilely Synthesizing a Series of Cobalt Nitride (Co(4)N) Nanocatalysts as Non-Enzymatic Glucose Sensors: A Comparative Study toward the Influences of Material Structures on Electrocatalytic Activities. Talanta 2018, 181, 154–164. DOI: 10.1016/j.talanta.2017.12.082.
  • Balamurugan, J.; Thanh, T. D.; Karthikeyan, G.; Kim, N. H.; Lee, J. H. A Novel Hierarchical 3D N-Co-CNT@NG Nanocomposite Electrode for Non-Enzymatic Glucose and Hydrogen Peroxide Sensing Applications. Biosens. Bioelectron. 2017, 89, 970–977. DOI: 10.1016/j.bios.2016.09.077.
  • Zhang, Y.; Zhang, Y.; Zhu, H.; Li, S.; Jiang, C.; Blue, R. J.; Su, Y. Functionalization of the Support Material Based on N-Doped Carbon-Reduced Graphene Oxide and Its Influence on the Non-Enzymatic Detection of Glucose. J. Alloys Compd. 2019, 780, 98–106. DOI: 10.1016/j.jallcom.2018.11.368.
  • Kumar, B. S.; Gudla, V. C.; Ambat, R.; Kalpathy, S. K.; Anandhan, S. Graphene Nanoclusters Embedded Nickel Cobaltite Nanofibers as Multifunctional Electrocatalyst for Glucose Sensing and Water-Splitting Applications. Ceram. Int. 2019, 45, 25078–25091. DOI: 10.1016/j.ceramint.2019.03.155.
  • Qi, Y.; Hu, Y.; Wu, X.; Wu, W.; Bao, J.; Yang, H.; Zhao, J.; Hou, C.; Huo, D. Self-Supporting Flexible Enzyme-Free Sensor Based on CoS-PPy-CP for Glucose Detection. J. Electrochem. Soc. 2021, 168, 107507. DOI: 10.1149/1945-7111/ac29dc.
  • Ayranci, R.; Torlak, Y.; Ak, M. Non-Enzymatic Electrochemical Detection of Glucose by Mixed-Valence Cobalt Containing Keggin Polyoxometalate/Multi-Walled Carbon Nanotube Composite. J. Electrochem. Soc. 2019, 166, B205–B211. DOI: 10.1149/2.0581904jes.
  • Muqaddas, S.; Aslam, H.; Ul Hassan, S.; Raza Ashraf, A.; Adeel Asghar, M.; Ahmad, M.; Nazir, A.; Shoukat, R.; Kaleli, M.; Mostafa Ibrahim, S.; et al. Electrochemical Sensing of Glucose and Ascorbic Acid via POM-Based CNTs Fiber Electrode. Mater. Sci. Eng.: B 2023, 293, 116446. DOI: 10.1016/j.mseb.2023.116446.
  • Gopalan, A. I.; Muthuchamy, N.; Komathi, S.; Lee, K. P. A Novel Multicomponent Redox Polymer Nanobead Based High Performance Non-Enzymatic Glucose Sensor. Biosens. Bioelectron. 2016, 84, 53–63. DOI: 10.1016/j.bios.2015.10.079.
  • Liu, X.; Long, L.; Yang, W.; Chen, L.; Jia, J. Facilely Electrodeposited Coral-like Copper Micro-/Nano-Structure Arrays with Excellent Performance in Glucose Sensing. Sens. Actuators B 2018, 266, 853–860. DOI: 10.1016/j.snb.2018.04.007.
  • Jin, J.; Zheng, G.; Ge, Y.; Deng, S.; Liu, W.; Hui, G. A Non-Enzyme Electrochemical Qualitative and Quantitative Analyzing Method for Glucose, D-Fructose, and Sucrose Utilizing Cu Foam Material. Electrochim. Acta 2015, 153, 594–601. DOI: 10.1016/j.electacta.2014.11.194.
  • Siampour, H.; Abbasian, S.; Moshaii, A. Copper Columnar Nanostructures Fabricated by Glancing Angle Deposition as a Robust and Scalable Method for High Sensitive Non-Enzymatic Glucose Detection. Appl. Surf. Sci. 2020, 518, 146182. DOI: 10.1016/j.apsusc.2020.146182.
  • Ye, J.; Deng, D.; Wang, Y.; Luo, L.; Qian, K.; Cao, S.; Feng, X. Well-Aligned Cu@C Nanocubes for Highly Efficient Nonenzymatic Glucose Detection in Human Serum. Sens. Actuators B 2020, 305, 127473. DOI: 10.1016/j.snb.2019.127473.
  • Dong, C.; Zhong, H.; Kou, T.; Frenzel, J.; Eggeler, G.; Zhang, Z. Three-Dimensional Cu Foam-Supported Single Crystalline Mesoporous Cu2O Nanothorn Arrays for Ultra-Highly Sensitive and Efficient Nonenzymatic Detection of Glucose. ACS Appl. Mater. Interfaces 2015, 7, 20215–20223. DOI: 10.1021/acsami.5b05738.
  • Arul, P.; Abraham John, S. Electrodeposition of CuO from Cu-MOF on Glassy Carbon Electrode: A Non-Enzymatic Sensor for Glucose. Electroanal. Chem. 2017, 799, 61–69. DOI: 10.1016/j.jelechem.2017.05.041.
  • Li, C.; Yamahara, H.; Lee, Y.; Tabata, H.; Delaunay, J. J. CuO Nanowire/Microflower/Nanowire Modified Cu Electrode with Enhanced Electrochemical Performance for Non-Enzymatic Glucose Sensing. Nanotechnology 2015, 26, 305503. DOI: 10.1088/0957-4484/26/30/305503.
  • Cheng, S.; Gao, X.; DelaCruz, S.; Chen, C.; Tang, Z.; Shi, T.; Carraro, C.; Maboudian, R. In Situ Formation of Metal-Organic Framework Derived CuO Polyhedrons on Carbon Cloth for Highly Sensitive Non-Enzymatic Glucose Sensing. J. Mater. Chem. B 2019, 7, 4990–4996. DOI: 10.1039/c9tb01166h.
  • Jayasingha, L.; Jayathilaka, C.; Kumara, R.; Ohara, K.; Kaumal, M.; Gunewardene, S.; Dissanayake, D.; Jayanetti, S. Nanoporous Cu2O Nanotube/Nanorod Array Electrodes for Non-Enzymatic Glucose Sensing with High Sensitivity and Very Low Detection Limit. Electrochim. Acta 2020, 329, 135177. DOI: 10.1016/j.electacta.2019.135177.
  • Wang, S.; Jiang, L.; Hu, J.; Wang, Q.; Zhan, S.; Lu, Y. Dual-Functional CuxO/Cu Electrodes for Supercapacitors and Non-Enzymatic Glucose Sensors Fabricated by Femtosecond Laser Enhanced Thermal Oxidation. J. Alloys Compd. 2020, 815, 152105. DOI: 10.1016/j.jallcom.2019.152105.
  • Bie, L.; Luo, X.; He, Q.; He, D.; Liu, Y.; Jiang, P. Hierarchical Cu/Cu(OH)2 Nanorod Arrays Grown on Cu Foam as a High-Performance 3D Self-Supported Electrode for Enzyme-Free Glucose Sensing. RSC Adv. 2016, 6, 95740–95746. DOI: 10.1039/C6RA19576H.
  • Babitha, K. B.; Soorya, P. S.; Peer Mohamed, A.; Rakhi, R. B.; Ananthakumar, S. Development of ZnO@rGO Nanocomposites for the Enzyme Free Electrochemical Detection of Urea and Glucose. Mater. Adv. 2020, 1, 1939–1951. DOI: 10.1039/D0MA00445F.
  • Sharma, M.; Gangan, A.; Chakraborty, B.; Rout, C. S. Non-Enzymatic Glucose Sensing Properties of MoO3nanorods: Experimental and Density Functional Theory Investigations. J. Phys. D: Appl. Phys. 2017, 50, 475401. DOI: 10.1088/1361-6463/aa8e7f.
  • Liu, Y.; Zhao, W.; Li, X.; Liu, J.; Han, Y.; Wu, J.; Zhang, X.; Xu, Y. Hierarchical α-Fe2O3 Microcubes Supported on Ni Foam as Non-Enzymatic Glucose Sensor. Appl. Surf. Sci. 2020, 512, 145710. DOI: 10.1016/j.apsusc.2020.145710.
  • Sun, Y.; Zhang, T.; Guan, Y.; Yang, D.; Zhang, J.; Xu, J. Mn2O3 Porous Microsheets Prepared by a Chemical Precipitation Method as an Effective Electrochemical Sensor for Non-Enzymatic Glucose Detection. J. Mater. Sci. 2021, 56, 14035–14046. DOI: 10.1007/s10853-021-05888-0.
  • Du, J.; Tao, Y.; Xiong, Z.; Yu, X.; Xie, A.; Luo, S.; Li, X.; Yao, C. Titanium Dioxide–Graphene–Polyaniline Hybrid for Nonenzymatic Detection of Glucose. Nano 2019, 14, 1950093. DOI: 10.1142/S1793292019500930.
  • Li, X.; Zhang, M.; Hu, Y.; Xu, J.; Sun, D.; Hu, T.; Ni, Z. Developing a Versatile Electrochemical Platform with Optimized Electrode Configuration through Screen-Printing Technology toward Glucose Detection. Biomed. Microdevices 2020, 22, 74. DOI: 10.1007/s10544-020-00527-y.
  • Hilal, M.; Yang, W. A Dual-Functional Flexible Sensor Based on Defects-Free Co-Doped ZnO Nanorods Decorated with CoO Clusters towards pH and Glucose Monitoring of Fruit Juices and Human Fluids. Nano Converg. 2022, 9, 14. DOI: 10.1186/s40580-022-00305-x.
  • Chen, H.-C.; Yeh, Y.-C.; Yen, M.-H. Synthesis of Au or Ag/Cu2O/Aluminum Doped Zinc Oxide Nanorods Hybrid Electrode for High Sensitive Non-Enzymatic Glucose Sensor: Mechanism Investigation of Formation and Surface Plasmon Resonance. Mater. Chem. Phys. 2022, 282, 125924. DOI: 10.1016/j.matchemphys.2022.125924.
  • Ci, S.; Huang, T.; Wen, Z.; Cui, S.; Mao, S.; Steeber, D. A.; Chen, J. Nickel Oxide Hollow Microsphere for Non-Enzyme Glucose Detection. Biosens. Bioelectron. 2014, 54, 251–257. DOI: 10.1016/j.bios.2013.11.006.
  • Kim, W. B.; Lee, S. H.; Cho, M.; Lee, Y. Facile and Cost-Effective CuS Dendrite Electrode for Non-Enzymatic Glucose Sensor. Sens. Actuators B 2017, 249, 161–167. DOI: 10.1016/j.snb.2017.04.089.
  • Ma, P.; Ma, X.; Suo, Q.; Chen, F. Cu NPs@NiF Electrode Preparation by Rapid One-Step Electrodeposition and Its Sensing Performance for Glucose. Sens. Actuators B 2019, 292, 203–209. DOI: 10.1016/j.snb.2019.04.132.
  • Zhu, W.; Wang, J.; Zhang, W.; Hu, N.; Wang, J.; Huang, L.; Wang, R.; Suo, Y.; Wang, J. Monolithic Copper Selenide Submicron Particulate Film/Copper Foam Anode Catalyst for Ultrasensitive Electrochemical Glucose Sensing in Human Blood Serum. J. Mater. Chem. B 2018, 6, 718–724. DOI: 10.1039/c7tb02996a.
  • Wang, Z.; Cao, X.; Liu, D.; Hao, S.; Kong, R.; Du, G.; Asiri, A. M.; Sun, X. Copper-Nitride Nanowires Array: An Efficient Dual-Functional Catalyst Electrode for Sensitive and Selective Non-Enzymatic Glucose and Hydrogen Peroxide Sensing. Chemistry 2017, 23, 4986–4989. DOI: 10.1002/chem.201700366.
  • Xie, L.; Asiri, A. M.; Sun, X. Monolithically Integrated Copper Phosphide Nanowire: An Efficient Electrocatalyst for Sensitive and Selective Nonenzymatic Glucose Detection. Sens. Actuators B 2017, 244, 11–16. DOI: 10.1016/j.snb.2016.12.093.
  • Jiang, D.; Liu, Q.; Wang, K.; Qian, J.; Dong, X.; Yang, Z.; Du, X.; Qiu, B. Enhanced Non-Enzymatic Glucose Sensing Based on Copper Nanoparticles Decorated Nitrogen-Doped Graphene. Biosens. Bioelectron. 2014, 54, 273–278. DOI: 10.1016/j.bios.2013.11.005.
  • Preechakasedkit, P.; Nawaukkaratharnant, N.; Teekayupak, K.; Lomae, A.; Ruecha, N. Single-Preparation rGO/Cu–Cu2O Nanocomposite-Modified Electrode Integrating NaOH Immobilized Polymer Blend Film for One-Step Nonenzymatic Glucose Detection. J. Sci: Adv. Mater. Devices 2023, 8, 100535. DOI: 10.1016/j.jsamd.2023.100535.
  • Wu, L.; Lu, Z.; Ye, J. Enzyme-Free Glucose Sensor Based on Layer-by-Layer Electrodeposition of Multilayer Films of Multi-Walled Carbon Nanotubes and Cu-Based Metal Framework Modified Glassy Carbon Electrode. Biosens. Bioelectron. 2019, 135, 45–49. DOI: 10.1016/j.bios.2019.03.064.
  • Khosroshahi, Z.; Karimzadeh, F.; Kharaziha, M.; Allafchian, A. A Non-Enzymatic Sensor Based on Three-Dimensional Graphene Foam Decorated with Cu-xCu(2)O Nanoparticles for Electrochemical Detection of Glucose and Its Application in Human Serum. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110216. DOI: 10.1016/j.msec.2019.110216.
  • Zhao, C.; Wu, X.; Li, P.; Zhao, C.; Qian, X. Hydrothermal Deposition of CuO/rGO/Cu2O Nanocomposite on Copper Foil for Sensitive Nonenzymatic Voltammetric Determination of Glucose and Hydrogen Peroxide. Microchim. Acta 2017, 184, 2341–2348. DOI: 10.1007/s00604-017-2229-9.
  • Yang, T.; Xu, J.; Lu, L.; Zhu, X.; Gao, Y.; Xing, H.; Yu, Y.; Ding, W.; Liu, Z. Copper Nanoparticle/Graphene Oxide/Single Wall Carbon Nanotube Hybrid Materials as Electrochemical Sensing Platform for Nonenzymatic Glucose Detection. Electroanal. Chem. 2016, 761, 118–124. DOI: 10.1016/j.jelechem.2015.12.015.
  • Xie, Y.; Song, Y.; Zhang, Y.; Xu, L.; Miao, L.; Peng, C.; Wang, L. Cu Metal-Organic Framework-Derived Cu Nanospheres@Porous Carbon/Macroporous Carbon for Electrochemical Sensing Glucose. J. Alloys Compd. 2018, 757, 105–111. DOI: 10.1016/j.jallcom.2018.05.064.
  • Gong, Q.; Sun, L.-P.; Wu, Z.; Huo, L.-H.; Zhao, H. Enhanced Non-Enzymatic Glucose Sensing of Cu–BTC-Derived Porous Copper@Carbon Agglomerate. J. Mater Sci. 2018, 53, 7305–7315. DOI: 10.1007/s10853-018-2078-x.
  • Lv, J.; Kong, C.; Xu, Y.; Yang, Z.; Zhang, X.; Yang, S.; Meng, G.; Bi, J.; Li, J.; Yang, S. Facile Synthesis of Novel CuO/Cu2O Nanosheets on Copper Foil for High Sensitive Nonenzymatic Glucose Biosensor. Sens. Actuators B 2017, 248, 630–638. DOI: 10.1016/j.snb.2017.04.052.
  • Lin, L.-Y.; Karakocak, B. B.; Kavadiya, S.; Soundappan, T.; Biswas, P. A Highly Sensitive Non-Enzymatic Glucose Sensor Based on Cu/Cu2O/CuO Ternary Composite Hollow Spheres Prepared in a Furnace Aerosol Reactor. Sens. Actuators B 2018, 259, 745–752. DOI: 10.1016/j.snb.2017.12.035.
  • Wei, C.; Zou, X.; Liu, Q.; Li, S.; Kang, C.; Xiang, W. A Highly Sensitive Non-Enzymatic Glucose Sensor Based on CuS Nanosheets Modified Cu2O/CuO Nanowire Arrays. Electrochim. Acta 2020, 334, 135630. DOI: 10.1016/j.electacta.2020.135630.
  • Yu, C.; Cui, J.; Wang, Y.; Zheng, H.; Zhang, J.; Shu, X.; Liu, J.; Zhang, Y.; Wu, Y. Porous HKUST-1 Derived CuO/Cu2O Shell Wrapped Cu(OH)2 Derived CuO/Cu2O Core Nanowire Arrays for Electrochemical Nonenzymatic Glucose Sensors with Ultrahigh Sensitivity. Appl. Surf. Sci. 2018, 439, 11–17. DOI: 10.1016/j.apsusc.2018.01.067.
  • Cheng, X.; Zhang, J.; Chang, H.; Luo, L.; Nie, F.; Feng, X. High Performance Cu/Cu(2)O Nanohybrid Electrocatalyst for Nonenzymatic Glucose Detection. J. Mater. Chem. B 2016, 4, 4652–4656. DOI: 10.1039/c6tb01158f.
  • Liao, Y.; Du, Q.; Sun, S.; Shi, N.; Yin, G.; Huang, Z.; Liao, X. Quasi-Aligned Cu(2)S/Cu(OH)(2)Nanorod Arrays Anchored on Cu Foam as Self-Supported Electrode for Non-Enzymatic Glucose Detection. Nanotechnology 2022, 33. DOI: 10.1088/1361-6528/ac75f7.
  • Li, Y.; Fu, J.; Chen, R.; Huang, M.; Gao, B.; Huo, K.; Wang, L.; Chu, P. K. Core–Shell TiC/C Nanofiber Arrays Decorated with Copper Nanoparticles for High Performance Non-Enzymatic Glucose Sensing. Sens. Actuators B 2014, 192, 474–479. DOI: 10.1016/j.snb.2013.11.014.
  • Khan, A. Y.; Bandyopadhyaya, R. Highly Sensitive Non-Enzymatic Glucose Sensor with Copper Oxide Nanoparticle Impregnated Mesoporous Silica. J. Porous Mater. 2021, 28, 1097–1104. DOI: 10.1007/s10934-021-01064-6.
  • Xu, G.-R.; Ge, C.; Liu, D.; Jin, L.; Li, Y.-C.; Zhang, T.-H.; Rahman, M. M.; Li, X.-B.; Kim, W. In-Situ Electrochemical Deposition of Dendritic Cu-Cu2S Nanocomposites onto Glassy Carbon Electrode for Sensitive and Non-Enzymatic Detection of Glucose. Electroanal. Chem. 2019, 847, 113177. DOI: 10.1016/j.jelechem.2019.05.059.
  • Shakiba, M.; Afsharpour, M. Novel graphenic-SiC Nanotubes (g-SiCNT) and Cu-Doped g-SiCNT/CuO Composite as the Effective Nonenzymatic Glucose Sensors. Appl. Surf. Sci. 2022, 602, 154405. DOI: 10.1016/j.apsusc.2022.154405.
  • Anand, V. K.; Bukke, A.; Bhatt, K.; Kumar, S.; Sharma, S.; Goyal, R.; Virdi, G. S. Highly Sensitive and Reusable Cu + 2/Polyaniline/Reduced Graphene Oxide Nanocomposite Ink-Based Non-Enzymatic Glucose Sensor. Appl. Phys. A 2020, 126, DOI: 10.1007/s00339-020-03620-4.
  • Rasheed, M.; Saira, F.; Batool, Z.; Khan, H. M.; Yaseen, J.; Arshad, M.; Kalsoom, A.; Ahmed, H. E.; Ashiq, M. N. Facile Synthesis of a CuSe/PVP Nanocomposite for Ultrasensitive Non-Enzymatic Glucose Biosensing. RSC Adv. 2023, 13, 26755–26765. DOI: 10.1039/d3ra03175f.
  • Zheng, W.; Hu, L.; Lee, L. Y. S.; Wong, K.-Y. Copper Nanoparticles/Polyaniline/Graphene Composite as a Highly Sensitive Electrochemical Glucose Sensor. Electroanal. Chem. 2016, 781, 155–160. DOI: 10.1016/j.jelechem.2016.08.004.
  • Amirzadeh, Z.; Javadpour, S.; Shariat, M. H.; Knibbe, R. Non-Enzymatic Glucose Sensor Based on Copper Oxide and Multi-Wall Carbon Nanotubes Using PEDOT:PSS Matrix. Synth. Met. 2018, 245, 160–166. DOI: 10.1016/j.synthmet.2018.08.021.
  • Zhu, Q.; Hu, S.; Zhang, L.; Li, Y.; Carraro, C.; Maboudian, R.; Wei, W.; Liu, A.; Zhang, Y.; Liu, S. Reconstructing Hydrophobic ZIF-8 Crystal into Hydrophilic Hierarchically-Porous Nanoflowers as Catalyst Carrier for Nonenzymatic Glucose Sensing. Sens. Actuators B 2020, 313, 128031. DOI: 10.1016/j.snb.2020.128031.
  • Balasubramanian, P.; Velmurugan, M.; Chen, S.-M.; Hwa, K.-Y. Optimized Electrochemical Synthesis of Copper Nanoparticles Decorated Reduced Graphene Oxide: Application for Enzymeless Determination of Glucose in Human Blood. Electroanal. Chem. 2017, 807, 128–136. DOI: 10.1016/j.jelechem.2017.11.042.
  • Yang, Y.; Wang, Y.; Bao, X.; Li, H. Electrochemical Deposition of Ni Nanoparticles Decorated ZnO Hexagonal Prisms as an Effective Platform for Non-Enzymatic Detection of Glucose. Electroanal. Chem. 2016, 775, 163–170. DOI: 10.1016/j.jelechem.2016.04.041.
  • Mazaheri, M.; Aashuri, H.; Simchi, A. Three-Dimensional Hybrid Graphene/Nickel Electrodes on Zinc Oxide Nanorod Arrays as Non-Enzymatic Glucose Biosensors. Sens. Actuators B 2017, 251, 462–471. DOI: 10.1016/j.snb.2017.05.062.
  • Hussein, B. A.; Tsegaye, A. A.; Shifera, G.; M. Taddesse, A. A Sensitive Non-Enzymatic Electrochemical Glucose Sensor Based on a ZnO/Co3O4/Reduced Graphene Oxide Nanocomposite. Sens. Diagn. 2023, 2, 347–360. DOI: 10.1039/D2SD00183G.
  • Salarizadeh, N.; Habibi-Rezaei, M.; Zargar, S. J. NiO–MoO3 Nanocomposite: A Sensitive Non-Enzymatic Sensor for Glucose and Urea Monitoring. Mater. Chem. Phys. 2022, 281, 125870. DOI: 10.1016/j.matchemphys.2022.125870.
  • Lin, X.; Ni, Y.; Kokot, S. Electrochemical and Bio-Sensing Platform Based on a Novel 3D Cu Nano-Flowers/Layered MoS(2) Composite. Biosens. Bioelectron. 2016, 79, 685–692. DOI: 10.1016/j.bios.2015.12.072.
  • Chen, Y.; Zhang, H.; Xue, H.; Hu, X.; Wang, G.; Wang, C. Construction of a Non-Enzymatic Glucose Sensor Based on Copolymer P4VP-co-PAN and Fe2O3 Nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 35, 420–425. DOI: 10.1016/j.msec.2013.11.030.
  • Vennila, P.; Yoo, D. J.; Kim, A. R.; Kumar, G. G. Ni-Co/Fe3O4 Flower-like Nanocomposite for the Highly Sensitive and Selective Enzyme Free Glucose Sensor Applications. J. Alloys Compd. 2017, 703, 633–642. DOI: 10.1016/j.jallcom.2017.01.044.
  • Chen, S.; Liu, D.; Song, N.; Wang, C.; Lu, X. Promoting Non-Enzymatic Electrochemical Sensing Performance toward Glucose by the Integration of Conducting Polypyrrole with Metal-Organic Framework. Compos. Commun. 2022, 30, 101074. DOI: 10.1016/j.coco.2022.101074.
  • Kannan, P.; Maiyalagan, T.; Marsili, E.; Ghosh, S.; Niedziolka-Jönsson, J.; Jönsson-Niedziolka, M. Hierarchical 3-Dimensional Nickel-Iron Nanosheet Arrays on Carbon Fiber Paper as a Novel Electrode for Non-Enzymatic Glucose Sensing. Nanoscale 2016, 8, 843–855. DOI: 10.1039/c5nr06802a.
  • Chandrasekaran, N. I.; Matheswaran, M. Unique Nonenzymatic Glucose Sensor Using a Hollow-Shelled Triple Oxide Mn-Cu-Al Nanocomposite. ACS Omega 2020, 5, 23502–23509. DOI: 10.1021/acsomega.0c00417.
  • Xu, J.; Xu, N.; Zhang, X.; Xu, P.; Gao, B.; Peng, X.; Mooni, S.; Li, Y.; Fu, J.; Huo, K. Phase Separation Induced Rhizobia-like Ni Nanoparticles and TiO2 Nanowires Composite Arrays for Enzyme-Free Glucose Sensor. Sens. Actuators B 2017, 244, 38–46. DOI: 10.1016/j.snb.2016.12.088.
  • Chen, J.; Liu, C.; Huang, Y. T.; Lee, H.; Feng, S. P. Study of the Growth Mechanisms of Nanoporous Ag Flowers for Non-Enzymatic Glucose Detection. Nanotechnology 2018, 29, 505501. DOI: 10.1088/1361-6528/aae363.
  • Gao, X.; Lin, H.; Li, P.; Chen, W. Self‐Assembly of Ag6 Clusters into Nanowires for Nonenzymatic Electrochemical Sensing of Glucose. Part Part Syst. Charact. 2018, 35, DOI: 10.1002/ppsc.201800040.
  • Wang, J.; Wang, M.; Guan, J.; Wang, C.; Wang, G. Construction of a Non-Enzymatic Sensor Based on the Poly(o-Phenylenediamine)/Ag-NPs Composites for Detecting Glucose in Blood. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 844–851. DOI: 10.1016/j.msec.2016.10.080.
  • Xu, L.; Ma, J.; Zhou, N.; Guo, P.; Wang, G.; Su, C. Well-Dispersed Poly(m-Phenylenediamine)/Silver Composite for Non-Enzymatic Amperometric Glucose Sensor Applied in a Special Alkaline Environment. Ionics 2017, 24, 2795–2805. DOI: 10.1007/s11581-017-2405-2.
  • Liu, J.-P.; Zhang, H.-Y.; Wang, J. Synthesis of PPy/BioHAP/AgHg Microstructures and Their Applications in Non-Enzymatic Sensing of Glucose. J. Inorg Organomet Polym. 2018, 29, 423–428. DOI: 10.1007/s10904-018-1012-7.
  • Bai, X.; Yang, Z. Synthesis of Ag/Co3O4 for High Sensitive Non-Enzymatic Glucose Sensor through Synergy of Surface/Interface Engineering. J. Electrochem. Soc. 2021, 168, 107508. DOI: 10.1149/1945-7111/ac2d3d.
  • Ngo, Y.-L. T.; Hoa, L. T.; Chung, J. S.; Hur, S. H. Multi-Dimensional Ag/NiO/Reduced Graphene Oxide Nanostructures for a Highly Sensitive Non-Enzymatic Glucose Sensor. J. Alloys Compd. 2017, 712, 742–751. DOI: 10.1016/j.jallcom.2017.04.131.
  • Baghayeri, M.; Amiri, A.; Farhadi, S. Development of Non-Enzymatic Glucose Sensor Based on Efficient Loading Ag Nanoparticles on Functionalized Carbon Nanotubes. Sens. Actuators B 2016, 225, 354–362. DOI: 10.1016/j.snb.2015.11.003.
  • Zheng, B.; Liu, G.; Yao, A.; Xiao, Y.; Du, J.; Guo, Y.; Xiao, D.; Hu, Q.; Choi, M. M. F. A Sensitive AgNPs/CuO Nanofibers Non-Enzymatic Glucose Sensor Based on Electrospinning Technology. Sens. Actuators B 2014, 195, 431–438. DOI: 10.1016/j.snb.2014.01.046.
  • Liu, S.; Liu, B.; Gong, C.; Li, Z. A Nanoporous Cu-Ag Thin Film at the Cu-Ag-Zn Alloy Surface by Spontaneous Dissolution of Zn and Cu in Different Degrees as a Highly Sensitive Non-Enzymatic Glucose Sensor. Electrochim. Acta 2019, 320, 134599. DOI: 10.1016/j.electacta.2019.134599.
  • Li, H.; Guo, C. Y.; Xu, C. L. A Highly Sensitive Non-Enzymatic Glucose Sensor Based on Bimetallic Cu-Ag Superstructures. Biosens. Bioelectron. 2015, 63, 339–346. DOI: 10.1016/j.bios.2014.07.061.
  • Usman, M.; Pan, L.; Farid, A.; Khan, A. S.; Yongpeng, Z.; Khan, M. A.; Hashim, M. Carbon Nanocoils-Nickel Foam Decorated with Silver Nanoparticles/Sheets Using a Novel Stirring Assisted Electrodeposition Technique for Non-Enzymatic Glucose Sensor. Carbon 2020, 157, 761–766. DOI: 10.1016/j.carbon.2019.10.069.
  • Usman, M.; Pan, L.; Farid, A.; Riaz, S.; Khan, A. S.; Peng, Z. Y.; Khan, M. A. Ultra-Fast and Highly Sensitive Enzyme-Free Glucose Sensor Based on 3D Vertically Aligned Silver Nanoplates on Nickel Foam-Graphene Substrate. Electroanal. Chem. 2019, 848, 113342. DOI: 10.1016/j.jelechem.2019.113342.
  • Liu, P.; Zhang, M.; Xie, S.; Wang, S.; Cheng, W.; Cheng, F. Non-Enzymatic Glucose Biosensor Based on Palladium-Copper Oxide Nanocomposites Synthesized via Galvanic Replacement Reaction. Sens. Actuators B 2017, 253, 552–558. DOI: 10.1016/j.snb.2017.07.010.
  • Li, X.; Du, X. Molybdenum Disulfide Nanosheets Supported Au-Pd Bimetallic Nanoparticles for Non-Enzymatic Electrochemical Sensing of Hydrogen Peroxide and Glucose. Sens. Actuators B 2017, 239, 536–543. DOI: 10.1016/j.snb.2016.08.048.
  • Lamiri, L.; Belgherbi, O.; Dehchar, C.; Laidoudi, S.; Tounsi, A.; Nessark, B.; Habelhames, F.; Hamam, A.; Gourari, B. Performance of Polybithiophene-Palladium Particles Modified Electrode for Non-Enzymatic Glucose Detection. Synth. Met. 2020, 266, 116437. DOI: 10.1016/j.synthmet.2020.116437.
  • Huang, B.; Wang, Y.; Lu, Z.; Du, H.; Ye, J. One Pot Synthesis of Palladium-Cobalt Nanoparticles over Carbon Nanotubes as a Sensitive Non-Enzymatic Sensor for Glucose and Hydrogen Peroxide Detection. Sens. Actuators B 2017, 252, 1016–1025. DOI: 10.1016/j.snb.2017.06.038.
  • Hong, B.-D.; Hunag, K.-L.; Chen, H.-R.; Lee, C.-L. Effect of Defective Graphene Flake for Catalysts of Supported Pd Nanocubes toward Glucose Oxidation Reaction in Alkaline Medium. J. Electrochem. Soc. 2016, 163, H731–H737. DOI: 10.1149/2.0141609jes.
  • Promsuwan, K.; Kachatong, N.; Limbut, W. Simple Flow Injection System for Non-Enzymatic Glucose Sensing Based on an Electrode Modified with Palladium Nanoparticles-Graphene Nanoplatelets/Mullti-Walled Carbon Nanotubes. Electrochim. Acta 2019, 320, 134621. DOI: 10.1016/j.electacta.2019.134621.
  • Ma, J.; Chen, Y.; Chen, L.; Wang, L. Ternary Pd–Ni–P Nanoparticle-Based Nonenzymatic Glucose Sensor with Greatly Enhanced Sensitivity Achieved through Active-Site Engineering. Nano Res. 2017, 10, 2712–2720. DOI: 10.1007/s12274-017-1474-x.
  • Yang, C.; Cui, X.; Wang, K.; Cao, Y.; Wang, C.; Hu, X. A Non-Enzymatic Glucose Sensor Based on Pd-Fe/Ti Nanocomposites. Int. J. Electrochem. Sci. 2017, 12, 5492–5502. DOI: 10.20964/2017.06.55.
  • Chen, X.; Li, G.; Zhang, G.; Hou, K.; Pan, H.; Du, M. Self-Assembly of Palladium Nanoparticles on Functional TiO2 Nanotubes for a Nonenzymatic Glucose Sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 323–328. DOI: 10.1016/j.msec.2016.01.068.
  • Wu, Q.; Sheng, Q.; Zheng, J. Nonenzymatic Sensing of Glucose Using a Glassy Carbon Electrode Modified with Halloysite Nanotubes Heavily Loaded with Palladium Nanoparticles. Electroanal. Chem. 2016, 762, 51–58. DOI: 10.1016/j.jelechem.2015.12.030.
  • Haghighi, B.; Karimi, B.; Tavahodi, M.; Behzadneia, H. Fabrication of a Nonenzymatic Glucose Sensor Using Pd-Nanoparticles Decorated Ionic Liquid Derived Fibrillated Mesoporous Carbon. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 52, 219–224. DOI: 10.1016/j.msec.2015.03.045.
  • Singh, B.; Bhardwaj, N.; Jain, V. K.; Bhatia, V. Palladium Nanoparticles Decorated Electrostatically Functionalized MWCNTs as a Non Enzymatic Glucose Sensor. Sens. Actuators, A 2014, 220, 126–133. DOI: 10.1016/j.sna.2014.09.030.
  • Hosseini, H.; Rezaei, S. J. T.; Rahmani, P.; Sharifi, R.; Nabid, M. R.; Bagheri, A. Nonenzymatic Glucose and Hydrogen Peroxide Sensors Based on Catalytic Properties of Palladium Nanoparticles/Poly(3,4-Ethylenedioxythiophene) Nanofibers. Sens. Actuators B 2014, 195, 85–91. DOI: 10.1016/j.snb.2014.01.015.
  • Chen, Z.; Zhao, B.; Fu, X.-Z.; Sun, R.; Wong, C.-P. CuO Nanorods Supported Pd Nanoparticles as High Performance Electrocatalysts for Glucose Detection. Electroanal. Chem. 2017, 807, 220–227. DOI: 10.1016/j.jelechem.2017.11.041.
  • An, S.; Shang, N.; Chen, B.; Kang, Y.; Su, M.; Wang, C.; Zhang, Y. Co-Ni Layered Double Hydroxides Wrapped on Leaf-Shaped Copper Oxide Hybrids for Non-Enzymatic Detection of Glucose. J. Colloid Interface Sci. 2021, 592, 205–214. DOI: 10.1016/j.jcis.2021.02.046.
  • Shen, M.; Li, W.; Chen, L.; Chen, Y.; Ren, S.; Han, D. NiCo-LDH Nanoflake Arrays-Supported Au Nanoparticles on Copper Foam as a Highly Sensitive Electrochemical Non-Enzymatic Glucose Sensor. Anal. Chim. Acta 2021, 1177, 338787. DOI: 10.1016/j.aca.2021.338787.
  • Sun, F.; Wang, X.; You, Z.; Xia, H.; Wang, S.; Jia, C.; Zhou, Y.; Zhang, J. Sandwich Structure Confined Gold as Highly Sensitive and Stable Electrochemical Non-Enzymatic Glucose Sensor with Low Oxidation Potential. J. Mater. Sci. Technol. 2022, 123, 113–122. DOI: 10.1016/j.jmst.2022.01.014.
  • Lu, Y.; Jiang, B.; Fang, L.; Fan, S.; Wu, F.; Hu, B.; Meng, F. Highly Sensitive Nonenzymatic Glucose Sensor Based on 3D Ultrathin NiFe Layered Double Hydroxide Nanosheets. Electroanalysis 2017, 29, 1755–1761. DOI: 10.1002/elan.201700025.
  • Wang, F.; Zhang, Y.; Liang, W.; Chen, L.; Li, Y.; He, X. Non-Enzymatic Glucose Sensor with High Sensitivity Based on Cu-Al Layered Double Hydroxides. Sens. Actuators B 2018, 273, 41–47. DOI: 10.1016/j.snb.2018.06.038.
  • Xu, J.; Qiao, X.; Arsalan, M.; Cheng, N.; Cao, W.; Yue, T.; Sheng, Q.; Zheng, J. Preparation of One Dimensional Silver Nanowire/Nickel-Cobalt Layered Double Hydroxide and Its Electrocatalysis of Glucose. Electroanal. Chem. 2018, 823, 315–321. DOI: 10.1016/j.jelechem.2018.06.028.
  • Chandrasekaran, N. I.; Manickam, M. A Sensitive and Selective Non-Enzymatic Glucose Sensor with Hollow Ni-Al-Mn Layered Triple Hydroxide Nanocomposites Modified Ni Foam. Sens. Actuators B 2019, 288, 188–194. DOI: 10.1016/j.snb.2019.02.102.
  • Zhao, Y.; Jiang, Y.; Mo, Y.; Zhai, Y.; Liu, J.; Strzelecki, A. C.; Guo, X.; Shan, C. Boosting Electrochemical Catalysis and Nonenzymatic Sensing toward Glucose by Single-Atom Pt Supported on Cu@CuO Core-Shell Nanowires. Small 2023, 19, e2207240. DOI: 10.1002/smll.202207240.
  • Long, B.; Zhao, Y.; Cao, P.; Wei, W.; Mo, Y.; Liu, J.; Sun, C. J.; Guo, X.; Shan, C.; Zeng, M. H. Single-Atom Pt Boosting Electrochemical Nonenzymatic Glucose Sensing on Ni(OH)(2)/N-Doped Graphene. Anal. Chem. 2022, 94, 1919–1924. DOI: 10.1021/acs.analchem.1c04912.
  • Song, Y.; He, T.; Zhang, Y.; Yin, C.; Chen, Y.; Liu, Q.; Zhang, Y.; Chen, S. Cobalt Single Atom Sites in Carbon Aerogels for Ultrasensitive Enzyme-Free Electrochemical Detection of Glucose. Electroanal. Chem. 2022, 906, 116024. DOI: 10.1016/j.jelechem.2022.116024.
  • Zhao, P.; Sun, X.; Hao, S.; Zhang, Y.; Chen, J.; Zhang, H.; Dong, S. Glucose Oxidase-like Rhodium Single-Atom Nanozymes: A Mimic Platform for Biometabolism and Electrometabolism of Glucose Oxidation at Neutral pH. ACS Energy Lett. 2023, 8, 1697–1704. DOI: 10.1021/acsenergylett.3c00444.
  • Han, A.; Zhang, Z.; Yang, J.; Wang, D.; Li, Y. Carbon-Supported Single-Atom Catalysts for Formic Acid Oxidation and Oxygen Reduction Reactions. Small 2021, 17, e2004500. DOI: 10.1002/smll.202004500.
  • Shishegari, N.; Sabahi, A.; Manteghi, F.; Ghaffarinejad, A.; Tehrani, Z. Non-Enzymatic Sensor Based on Nitrogen-Doped Graphene Modified with Pd Nano-Particles and NiAl Layered Double Hydroxide for Glucose Determination in Blood. Electroanal. Chem. 2020, 871, 114285. DOI: 10.1016/j.jelechem.2020.114285.
  • Yin, H.; Bai, X.; Yang, Z. Activating Ni Nanoparticles into Ni Single Atoms by N Doping for High-Performance Electrochemical Sensing of Glucose. Chem. Eng. J. 2023, 478, 147510. DOI: 10.1016/j.cej.2023.147510.
  • Long, B.; Cao, P.; Zhao, Y.; Fu, Q.; Mo, Y.; Zhai, Y.; Liu, J.; Lyu, X.; Li, T.; Guo, X.; et al. Pt1/Ni6Co1 Layered Double Hydroxides/N-Doped Graphene for Electrochemical Non-Enzymatic Glucose Sensing by Synergistic Enhancement of Single Atoms and Doping. Nano Res. 2022, 16, 318–324. DOI: 10.1007/s12274-022-4801-9.
  • Shim, K.; Lee, W.-C.; Park, M.-S.; Shahabuddin, M.; Yamauchi, Y.; Hossain, M. S. A.; Shim, Y.-B.; Kim, J. H. Au Decorated Core-Shell Structured Au@Pt for the Glucose Oxidation Reaction. Sens. Actuators B 2019, 278, 88–96. DOI: 10.1016/j.snb.2018.09.048.
  • Mei, H.; Wu, W.; Yu, B.; Li, Y.; Wu, H.; Wang, S.; Xia, Q. Non-Enzymatic Sensing of Glucose at Neutral pH Values Using a Glassy Carbon Electrode Modified with Carbon Supported Co@Pt Core-Shell Nanoparticles. Microchim. Acta 2015, 182, 1869–1875. DOI: 10.1007/s00604-015-1524-6.
  • Wang, S.-S.; Wu, C.-W.; Chen, P.-Y.; Lee, C.-L. Preferential Deposition of Gold and Platinum Atom on Palladium Nanocube as Catalysts for Oxidizing Glucose in the Phosphate-Buffered Solution. Electroanal. Chem. 2023, 930, 117142. DOI: 10.1016/j.jelechem.2023.117142.
  • Wu, Y.-S.; Wu, Z.-W.; Lee, C.-L. Concave Pd Core/Island Pt Shell Nanoparticles: Synthesis and Their Promising Activities toward Neutral Glucose Oxidation. Sens. Actuators B 2019, 281, 1–7. DOI: 10.1016/j.snb.2018.10.042.
  • Wang, S.-S.; Qiu, W.-J.; Wang, T.-P.; Lee, C.-L. Tuning Structures of Pt Shells on Pd Nanocubes as Neutral Glucose Oxidation Catalysts and Sensors. Appl. Surf. Sci. 2022, 605, 154670. DOI: 10.1016/j.apsusc.2022.154670.
  • Wang, R.; Liang, X.; Liu, H.; Cui, L.; Zhang, X.; Liu, C. Non-Enzymatic Electrochemical Glucose Sensor Based on Monodispersed Stone-like PtNi Alloy Nanoparticles. Microchim. Acta 2018, 185, 339. DOI: 10.1007/s00604-018-2866-7.
  • Li, M.; Dong, P.; Zhang, Y. Facile Design and Synthesis of Ultrafine FeCo Nanocrystallines Coupled with Porous Carbon Nanosheets as High Efficiency Non-Enzymatic Glucose Sensor. J. Alloys Compd. 2019, 810, 151927. DOI: 10.1016/j.jallcom.2019.151927.
  • Coyle, V. E.; Oppedisano, D. K. J.; Jones, L. A.; Kandjani, A. E.; Sabri, Y. M.; Bhargava, S. K. Hydrogen Bubble Templated Growth of Honeycomb-Like Au-Pt Alloy Films for Non-Enzymatic Glucose Sensing. J. Electrochem. Soc. 2016, 163, B689–B695. DOI: 10.1149/2.0301614jes.
  • Han, W.; Zhang, X.; Wang, R.; Bai, T.; Liu, H.; Cui, L.; Liu, J.; Liang, X. Non-Enzymatic Electrochemical Glucose Sensor Based on Pt2Pd1 Alloy Nanocrystals with High-Index Facets. J. Alloys Compd. 2023, 936, 168287. DOI: 10.1016/j.jallcom.2022.168287.
  • Ngamaroonchote, A.; Sanguansap, Y.; Wutikhun, T.; Karn-Orachai, K. Highly Branched Gold-Copper Nanostructures for Non-Enzymatic Specific Detection of Glucose and Hydrogen Peroxide. Mikrochim. Acta 2020, 187, 559. DOI: 10.1007/s00604-020-04542-x.
  • Zhao, T.; Li, W.; Shang, R.; Lei, Y.; Liu, Y.; Ma, C. Experimental and Theoretical Study on One-Step Synthesis of AuAg Alloy Nanoparticle Catalytic Layer as Highly Stable Non-Enzymatic Glucose Sensing Interface. Electroanal. Chem. 2023, 950, 117898. DOI: 10.1016/j.jelechem.2023.117898.
  • Yuan, M.; Liu, A.; Zhao, M.; Dong, W.; Zhao, T.; Wang, J.; Tang, W. Bimetallic PdCu Nanoparticle Decorated Three-Dimensional Graphene Hydrogel for Non-Enzymatic Amperometric Glucose Sensor. Sens. Actuators B 2014, 190, 707–714. DOI: 10.1016/j.snb.2013.09.054.
  • Lee, W. C.; Kim, K. B.; Gurudatt, N. G.; Hussain, K. K.; Choi, C. S.; Park, D. S.; Shim, Y. B. Comparison of Enzymatic and Non-Enzymatic Glucose Sensors Based on Hierarchical Au-Ni Alloy with Conductive Polymer. Biosens. Bioelectron. 2019, 130, 48–54. DOI: 10.1016/j.bios.2019.01.028.
  • Liu, T.; Li, M.; Bo, X.; Zhou, M. Comparison Study toward the Influence of the Second Metals Doping on the Oxygen Evolution Activity of Cobalt Nitrides. ACS Sustainable Chem. Eng. 2018, 6, 11457–11465. DOI: 10.1021/acssuschemeng.8b01510.
  • Xue, Z.; Jia, L.; Zhu, R.-R.; Du, L.; Zhao, Q.-H. High-Performance Non-Enzymatic Glucose Electrochemical Sensor Constructed by Transition Nickel Modified Ni@Cu-MOF. Electroanal. Chem. 2020, 858, 113783. DOI: 10.1016/j.jelechem.2019.113783.
  • Goodnight, L.; Butler, D.; Xia, T.; Ebrahimi, A. Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes. Biosensors (Basel) 2021, 11, DOI: 10.3390/bios11110409.
  • Shi, N.; Sun, S.; Zhang, B.; Du, Q.; Liao, Y.; Liao, X.; Yin, G.; Huang, Z.; Pu, X.; Chen, X. Co(OH)(2) Nanosheets Decorated Cu(OH)(2) Nanorods for Highly Sensitive Nonenzymatic Detection of Glucose. Nanotechnology 2020, 31, 325502. DOI: 10.1088/1361-6528/ab8c77.
  • Jia, H.; Chang, G.; Lei, M.; He, H.; Liu, X.; Shu, H.; Xia, T.; Su, J.; He, Y. Platinum Nanoparticles Decorated Dendrite-like Gold Nanostructure on Glassy Carbon Electrodes for Enhancing Electrocatalysis Performance to Glucose Oxidation. Appl. Surf. Sci. 2016, 384, 58–64. DOI: 10.1016/j.apsusc.2016.05.020.
  • Khairullina, E. M.; Tumkin, I. I.; Stupin, D. D.; Smikhovskaia, A. V.; Mereshchenko, A. S.; Lihachev, A. I.; Vasin, A. V.; Ryazantsev, M. N.; Panov, M. S. Laser-Assisted Surface Modification of Ni Microstructures with Au and Pt toward Cell Biocompatibility and High Enzyme-Free Glucose Sensing. ACS Omega 2021, 6, 18099–18109. DOI: 10.1021/acsomega.1c01880.
  • Pu, F.; Miao, H.; Lu, W.; Zhang, X.; Yang, Z.; Kong, C. High-Performance Non-Enzymatic Glucose Sensor Based on Flower-like Cu2O-Cu-Au Ternary Nanocomposites. Appl. Surf. Sci. 2022, 581, 152389. DOI: 10.1016/j.apsusc.2021.152389.
  • Lai, Q.; Niu, Q.; Zhang, C.; Reis, N. M.; Long, M.; Wang, F.; Liu, Z. Integrated Cu-Au Stereo Microelectrode Arrays and Microfluidic Channels for the Electrochemical Detection of Glucose. Food Chem. 2024, 432, 137229. DOI: 10.1016/j.foodchem.2023.137229.
  • Liu, Z.; Liu, W.; Huang, Y.; Zhang, H. Facile Fabrication of Free-Standing Cu2O–Au Nanocomposite on Cu Foil for High Performance Glucose Sensing. J. Alloys Compd. 2020, 848, 156532. DOI: 10.1016/j.jallcom.2020.156532.
  • Mishra, A. K.; Jarwal, D. K.; Mukherjee, B.; Kumar, A.; Ratan, S.; Tripathy, M. R.; Jit, S. Au Nanoparticles Modified CuO Nanowireelectrode Based Non-Enzymatic Glucose Detection with Improved Linearity. Sci. Rep. 2020, 10, 11451. DOI: 10.1038/s41598-020-67986-4.
  • Wang, Y.; Kong, J.; Xue, R.; Wang, J.; Gong, M.; Lin, X.; Zhang, L.; Wang, D. Highly Stable, Stretchable, and Transparent Electrodes Based on Dual-Headed Ag@Au Core-Sheath Nanomatchsticks for Non-Enzymatic Glucose Biosensor. Nano Res. 2022, 16, 1558–1567. DOI: 10.1007/s12274-022-4757-9.
  • Su, Y.; Guo, H.; Wang, Z.; Long, Y.; Li, W.; Tu, Y. Au@Cu2O Core-Shell Structure for High Sensitive Non-Enzymatic Glucose Sensor. Sens. Actuators B 2018, 255, 2510–2519. DOI: 10.1016/j.snb.2017.09.056.
  • Siampour, H.; Abbasian, S.; Moshaii, A.; Amirsoleimani, A. R. Stable, Reproducible, and Binder-Free Gold/Copper Core-Shell Nanostructures for High-Sensitive Non-Enzymatic Glucose Detection. Sci. Rep. 2022, 12, 18945. DOI: 10.1038/s41598-022-23504-2.
  • Tang, Y.; Liu, Q.; Jiang, Z.; Yang, X.; Wei, M.; Zhang, M. Nonenzymatic Glucose Sensor Based on Icosahedron AuPd@CuO Core Shell Nanoparticles and MWCNT. Sens. Actuators B 2017, 251, 1096–1103. DOI: 10.1016/j.snb.2017.05.090.
  • Dayakar, T.; Venkateswara Rao, K.; Park, J.; Krishna, P.; Swaroopa, P.; Ji, Y. Biosynthesis of Ag@CuO Core–Shell Nanostructures for Non-Enzymatic Glucose Sensing Using Screen-Printed Electrode. J. Mater. Sci.: Mater. Electron. 2019, 30, 9725–9734. DOI: 10.1007/s10854-019-01307-y.
  • T, D.; K, V. R.; M, V.; K, B.; B, C.; K, R. R. Novel Synthesis and Characterization of Ag@TiO2 Core Shell Nanostructure for Non-Enzymatic Glucose Sensor. Appl. Surf. Sci. 2018, 435, 216–224. DOI: 10.1016/j.apsusc.2017.11.077.
  • Zhao, Z.; Huang, Y.; Li, Q.; Mei, H.; Zhu, F.; Gong, W. Electrochemical Glucose Sensitive Device Based on Graphene Supported Co3O4@Ag NWs Core-Shell Nanostructures. Appl. Surf. Sci. 2021, 565, 150553. DOI: 10.1016/j.apsusc.2021.150553.
  • Farid, A.; Khan, A. S.; Javid, M.; Usman, M.; Khan, I. A.; Ahmad, A. U.; Fan, Z.; Khan, A. A.; Pan, L. Construction of a Binder-Free Non-Enzymatic Glucose Sensor Based on Cu@Ni Core-Shell Nanoparticles Anchored on 3D Chiral Carbon Nanocoils-Nickel Foam Hierarchical Scaffold. J. Colloid Interface Sci. 2022, 624, 320–337. DOI: 10.1016/j.jcis.2022.05.137.
  • Le, H. V.; Le, Q. T. Electrochemical Preparation of Polyaniline- Supported Cu-CuO Core-Shell on 316L Stainless Steel Electrodes for Nonenzymatic Glucose Sensor. Adv. Polym. Tech. 2020, 2020, 1–7. DOI: 10.1155/2020/6056919.
  • Wang, R.; Liu, X.; Zhao, Y.; Qin, J.; Xu, H.; Dong, L.; Gao, S.; Zhong, L. Novel Electrochemical Non-Enzymatic Glucose Sensor Based on 3D Au@Pt Core–Shell Nanoparticles Decorated Graphene Oxide/Multi-Walled Carbon Nanotubes Composite. Microchem. J. 2022, 174, 107061. DOI: 10.1016/j.microc.2021.107061.
  • Naik, K. K.; Gangan, A.; Chakraborty, B.; Rout, C. S. Superior Non-Enzymatic Glucose Sensing Properties of Ag-/Au-NiCo(2)O(4) Nanosheets with Insight from Electronic Structure Simulations. Analyst 2018, 143, 571–579. DOI: 10.1039/c7an01354j.
  • Zhao, H.; Tang, L.; Zhou, M.; Li, K.; Hu, J.; Zhao, Y.; Cai, Z. One-Pot Solvothermal Synthesis of Lotus-Leaf like Ni7S6/CoNi2S4 Hybrid on Carbon Fabric toward Comprehensive High-Performance Flexible Non-Enzymatic Glucose Sensor and Supercapacitor. J. Mater. Chem. C 2022, 10, 2988–2997. DOI: 10.1039/D1TC04420F.
  • Amin, B. G.; Masud, J.; Nath, M. A Non-Enzymatic Glucose Sensor Based on a CoNi(2)Se(4)/rGO Nanocomposite with Ultrahigh Sensitivity at Low Working Potential. J. Mater. Chem. B 2019, 7, 2338–2348. DOI: 10.1039/c9tb00104b.
  • Zhang, C.; Li, F.; Huang, S.; Li, M.; Guo, T.; Mo, C.; Pang, X.; Chen, L.; Li, X. In-Situ Facile Preparation of Highly Efficient Copper/Nickel Bimetallic Nanocatalyst on Chemically Grafted Carbon Nanotubes for Nonenzymatic Sensing of Glucose. J. Colloid Interface Sci. 2019, 557, 825–836. DOI: 10.1016/j.jcis.2019.09.076.
  • Cheng, D.; Wang, T.; Zhang, G.; Wu, H.; Mei, H. A Novel Nonenzymatic Electrochemical Sensor Based on Double-Shelled CuCo2O4 Hollow Microspheres for Glucose and H2O2. J. Alloys Compd.. 2020, 819, 153014. DOI: 10.1016/j.jallcom.2019.153014.
  • Yang, J.; Ye, H.; Zhang, Z.; Zhao, F.; Zeng, B. Metal–Organic Framework Derived Hollow Polyhedron CuCo2O4 Functionalized Porous Graphene for Sensitive Glucose Sensing. Sens. Actuators B 2017, 242, 728–735. DOI: 10.1016/j.snb.2016.11.122.
  • Wang, L.; Zheng, Y.; Lu, X.; Li, Z.; Sun, L.; Song, Y. Dendritic Copper-Cobalt Nanostructures/Reduced Graphene Oxide-Chitosan Modified Glassy Carbon Electrode for Glucose Sensing. Sens. Actuators B 2014, 195, 1–7. DOI: 10.1016/j.snb.2014.01.007.
  • Xia, H.; Li, J.; Ma, L.; Liu, Q.; Wang, J. Electrospun Porous CuFe2O4 Nanotubes on Nickel Foam for Nonenzymatic Voltammetric Determination of Glucose and Hydrogen Peroxide. J. Alloys Compd. 2018, 739, 764–770. DOI: 10.1016/j.jallcom.2017.12.187.
  • Li, Z. H.; Zhao, X. L.; Jiang, X. C.; Wu, Y. H.; Chen, C.; Zhu, Z. G.; Marty, J. L.; Chen, Q. S. An Enhanced Nonenzymatic Electrochemical Glucose Sensor Based on Copper‐Palladium Nanoparticles Modified Glassy Carbon Electrodes. Electroanalysis 2018, 30, 1811–1819. DOI: 10.1002/elan.201800017.
  • Balamurugan, J.; Thanh, T. D.; Heo, S.-B.; Kim, N. H.; Lee, J. H. Novel Route to Synthesis of N-Doped Graphene/Cu–Ni Oxide Composite for High Electrochemical Performance. Carbon 2015, 94, 962–970. DOI: 10.1016/j.carbon.2015.07.087.
  • Chang, Y.-J.; Dou, J.-M.; Yeh, S.-H. Effects of Nickel–Cobalt Material Properties on Glucose Catalysis. Microchem. J. 2022, 182, 107950. DOI: 10.1016/j.microc.2022.107950.
  • Ni, M.; Tan, M.; Pan, Y.; Zhu, C.; Du, H. Rapid Preparation of Self-Supported Nickel–Iron Oxide as a High-Performance Glucose Sensing Platform. J. Mater. Chem. C 2022, 10, 12883–12891. DOI: 10.1039/D2TC03176K.
  • Dong, M.; Hu, H.; Ding, S.; Wang, C.; Li, L. Fabrication of NiMn2O4 Nanosheets on Reduced Graphene Oxide for Non-Enzymatic Detection of Glucose. Mater. Technol. 2020, 36, 203–211. DOI: 10.1080/10667857.2020.1740861.
  • Zhang, J.; Yang, Y.; Zhang, Z.; Xu, X.; Wang, X. Rapid Synthesis of Mesoporous NixCo3 − x(PO4)2hollow Shells Showing Enhanced Electrocatalytic and Supercapacitor Performance. J. Mater. Chem. A 2014, 2, 20182–20188. DOI: 10.1039/C4TA05278A.
  • Bilal, S.; Ullah, W.; Ali Shah, A-u-H Polyaniline@CuNi Nanocomposite: A Highly Selective, Stable and Efficient Electrode Material for Binder Free Non-Enzymatic Glucose Sensor. Electrochim. Acta 2018, 284, 382–391. DOI: 10.1016/j.electacta.2018.07.165.
  • Shen, C.; Su, J.; Li, X.; Luo, J.; Yang, M. Electrochemical Sensing Platform Based on Pd–Au Bimetallic Cluster for Non-Enzymatic Detection of Glucose. Sens. Actuators B 2015, 209, 695–700. DOI: 10.1016/j.snb.2014.12.044.
  • Li, G.; Wang, C.; Chen, Y.; Liu, F.; Fan, H.; Yao, B.; Hao, J.; Yu, Y.; Wen, D. Dual Structural Design of Platinum-Nickel Hydrogels for Wearable Glucose Biosensing with Ultrahigh Stability. Small 2023, 19, e2206868. DOI: 10.1002/smll.202206868.
  • Wang, Q.; Jia, Q.; Hu, P.; Ji, L. Tunable Non-Enzymatic Glucose Electrochemical Sensing Based on the Ni/Co Bimetallic MOFs. Molecules 2023, 28, DOI: 10.3390/molecules28155649.
  • Du, Q.; Liao, Y.; Shi, N.; Sun, S.; Liao, X.; Yin, G.; Huang, Z.; Pu, X.; Wang, J. Facile Synthesis of Bimetallic Metal–Organic Frameworks on Nickel Foam for a High Performance Non-Enzymatic Glucose Sensor. Electroanal. Chem. 2022, 904, 115887. DOI: 10.1016/j.jelechem.2021.115887.
  • Yuan, M.; Wang, L.; Li, K.; Zhang, Q.; Li, Y.; Hou, C.; Wang, H. Non‐Enzyme Electrochemical Sensing Fabrics and Wearable Applications Based on Bimetallic NiCo‐MOFs. Electroanalysis 2023, 35, DOI: 10.1002/elan.202200556.
  • Zhang, L.; Ma, X.; Liang, H.; Lin, H.; Zhao, G. A Non-Enzymatic Glucose Sensor with Enhanced anti-Interference Ability Based on a MIL-53(NiFe) Metal-Organic Framework. J. Mater. Chem. B 2019, 7, 7006–7013. DOI: 10.1039/c9tb01832h.
  • Wei, Y.; Hui, Y.; Lu, X.; Liu, C.; Zhang, Y.; Fan, Y.; Chen, W. One-Pot Preparation of NiMn Layered Double hydroxide-MOF Material for Highly Sensitive Electrochemical Sensing of Glucose. Electroanal. Chem. 2023, 933, 117276. DOI: 10.1016/j.jelechem.2023.117276.
  • Qin, L.; He, L.; Zhao, J.; Zhao, B.; Yin, Y.; Yang, Y. Synthesis of Ni/Au Multilayer Nanowire Arrays for Ultrasensitive Non-Enzymatic Sensing of Glucose. Sens. Actuators B 2017, 240, 779–784. DOI: 10.1016/j.snb.2016.09.041.
  • Wang, L.; Zhuang, S.; Wang, L.; Wang, N.; Mo, H.; Tang, Y.; Chen, Y.; Sun, Y.; Wan, P. One Step Synthesis of Hierarchical Cu nanoparticles-Co(OH)2 Nanoflakes/Nifoam Electrode for Ultrasensitive Detection of Glucose. Appl. Surf. Sci. 2019, 467-468, 773–781. DOI: 10.1016/j.apsusc.2018.10.124.
  • Wang, L.; Xu, L.; Zhang, Y.; Yang, H.; Miao, L.; Peng, C.; Song, Y. Copper Oxide − Cobalt Nanostructures/Reduced Graphene Oxide/Biomass‐Derived Macroporous Carbon for Glucose Sensing. ChemElectroChem 2017, 5, 501–506. DOI: 10.1002/celc.201701062.
  • Shervedani, R. K.; Karevan, M.; Amini, A. Prickly Nickel Nanowires Grown on Cu Substrate as a Supersensitive Enzyme-Free Electrochemical Glucose Sensor. Sens. Actuators B 2014, 204, 783–790. DOI: 10.1016/j.snb.2014.08.033.
  • Chakraborty, P.; Dhar, S.; Debnath, K.; Majumder, T.; Mondal, S. P. Non-Enzymatic and Non-Invasive Glucose Detection Using Au Nanoparticle Decorated CuO Nanorods. Sens. Actuators B 2019, 283, 776–785. DOI: 10.1016/j.snb.2018.12.086.
  • Chen, J.; Zheng, J. A Highly Sensitive Non-Enzymatic Glucose Sensor Based on Tremella-like Ni(OH)2 and Au Nanohybrid Films. Electroanal. Chem. 2015, 749, 83–88. DOI: 10.1016/j.jelechem.2015.04.039.
  • Tee, S. Y.; Ye, E.; Pan, P. H.; Lee, C. J.; Hui, H. K.; Zhang, S. Y.; Koh, L. D.; Dong, Z.; Han, M. Y. Fabrication of Bimetallic Cu/Au Nanotubes and Their Sensitive, Selective, Reproducible and Reusable Electrochemical Sensing of Glucose. Nanoscale 2015, 7, 11190–11198. DOI: 10.1039/c5nr02399h.
  • Coyle, V. E.; Kandjani, A. E.; Field, M. R.; Hartley, P.; Chen, M.; Sabri, Y. M.; Bhargava, S. K. Co(3)O(4) Needles on Au Honeycomb as a Non-Invasive Electrochemical Biosensor for Glucose in Saliva. Biosens. Bioelectron. 2019, 141, 111479. DOI: 10.1016/j.bios.2019.111479.
  • Mishra, A. K.; Mukherjee, B.; Kumar, A.; Jarwal, D. K.; Ratan, S.; Kumar, C.; Jit, S. Superficial Fabrication of Gold Nanoparticles Modified CuO Nanowires Electrode for Non-Enzymatic Glucose Detection. RSC Adv. 2019, 9, 1772–1781. DOI: 10.1039/c8ra07516f.
  • Felix, S.; Grace, A. N.; Jayavel, R. Sensitive Electrochemical Detection of Glucose Based on Au-CuO Nanocomposites. J. Phys. Chem. Solids 2018, 122, 255–260. DOI: 10.1016/j.jpcs.2018.06.038.
  • Bao, J.; Qi, Y.; Huo, D.; Hou, J.; Geng, X.; Samalo, M.; Liu, Z.; Luo, H.; Yang, M.; Hou, C. A Sensitive and Selective Non-Enzymatic Glucose Sensor Based on AuNPs/CuO NWs-MoS2 Modified Electrode. J. Electrochem. Soc. 2019, 166, B1179–B1185. DOI: 10.1149/2.0241913jes.
  • Ghanbari, K.; Ahmadi, F. NiO Hedgehog-like Nanostructures/Au/Polyaniline Nanofibers/Reduced Graphene Oxide Nanocomposite with Electrocatalytic Activity for Non-Enzymatic Detection of Glucose. Anal. Biochem. 2017, 518, 143–153. DOI: 10.1016/j.ab.2016.11.020.
  • Poyraz, S.; Liu, Z.; Liu, Y.; Lu, N.; Kim, M. J.; Zhang, X. One-Step Synthesis and Characterization of Poly(o-Toluidine) Nanofiber/Metal Nanoparticle Composite Networks as Non-Enzymatic Glucose Sensors. Sens. Actuators B 2014, 201, 65–74. DOI: 10.1016/j.snb.2014.04.071.
  • Liu, G.; Zhao, J.; Qin, L.; Liu, S.; Zhang, Q.; Li, J. Synthesis of an Ordered Nanoporous Cu/Ni/Au Film for Sensitive Non-Enzymatic Glucose Sensing. RSC Adv. 2020, 10, 12883–12890. DOI: 10.1039/d0ra01224f.
  • Yao, K.; Dai, B.; Tan, X.; Ralchenko, V.; Yang, L.; Liu, B.; Su, Z.; Zhao, J.; Liu, K.; Han, J.; Zhu, J. Fabrication of Au/Ni/Boron-Doped Diamond Electrodes via Hydrogen Plasma Etching Graphite and Amorphous Boron for Efficient Non-Enzymatic Sensing of Glucose. Electroanal. Chem. 2020, 871, 114264. DOI: 10.1016/j.jelechem.2020.114264.
  • Huang, Y.; Han, Y.; Sun, J.; Zhang, Y.; Han, L. Dual Nanocatalysts co-Decorated Three-Dimensional, Laser-Induced Graphene Hybrid Nanomaterials Integrated with a Smartphone Portable Electrochemical System for Point-of-Care Non-Enzymatic Glucose Diagnosis. Mater. Today Chem. 2022, 24, 100895. DOI: 10.1016/j.mtchem.2022.100895.
  • Sedighi, A.; Montazer, M.; Mazinani, S. Synthesis of Wearable and Flexible NiP(0.1)-SnO(x)/PANI/CuO/Cotton towards a Non-Enzymatic Glucose Sensor. Biosens. Bioelectron. 2019, 135, 192–199. DOI: 10.1016/j.bios.2019.04.010.
  • Sun, S.; Shi, N.; Liao, X.; Zhang, B.; Yin, G.; Huang, Z.; Chen, X.; Pu, X. Facile Synthesis of CuO/Ni(OH)2 on Carbon Cloth for Non-Enzymatic Glucose Sensing. Appl. Surf. Sci. 2020, 529, 147067. DOI: 10.1016/j.apsusc.2020.147067.
  • Ayranci, R.; Demirkan, B.; Sen, B.; Şavk, A.; Ak, M.; Şen, F. Use of the Monodisperse Pt/Ni@rGO Nanocomposite Synthesized by Ultrasonic Hydroxide Assisted Reduction Method in Electrochemical Nonenzymatic Glucose Detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 951–956. DOI: 10.1016/j.msec.2019.02.040.
  • Wu, X.; Li, F.; Zhao, C.; Qian, X. One-Step Construction of Hierarchical Ni(OH)2/RGO/Cu2O on Cu Foil for Ultra-Sensitive Non-Enzymatic Glucose and Hydrogen Peroxide Detection. Sens. Actuators B 2018, 274, 163–171. DOI: 10.1016/j.snb.2018.07.141.
  • Amiripour, F.; Ghasemi, S.; Azizi, S. N. A Novel Non-Enzymatic Glucose Sensor Based on Gold-Nickel Bimetallic Nanoparticles Doped Aluminosilicate Framework Prepared from Agro-Waste Material. Appl. Surf. Sci. 2021, 537, 147827. DOI: 10.1016/j.apsusc.2020.147827.
  • Qu, K.; Wang, S.; He, W.; Yin, H.; Gong, J.; Wang, L.; Wu, S. Highly Efficient Glucose Oxidation Reaction on Pt/NiO/Carbon Nanorods for Application in Glucose Fuel Cells and Sensors. J. Electron. Mater 2023, 52, 3729–3741. DOI: 10.1007/s11664-023-10350-9.
  • Cao, W.; Guo, T.; Ding, Y.; Hu, Y.; Liu, D. Substantially Boosting the Performance of Non-Enzymatic Glucose Sensing: Introducing a Novel CuS Nanosheet Anchored on Hollow Ni(OH)2 Nanosphere. Appl. Surf. Sci. 2023, 634, 157650. DOI: 10.1016/j.apsusc.2023.157650.
  • Chen, H.; Sun, P.; Qiu, M.; Jiang, M.; Zhao, J.; Han, D.; Niu, L.; Cui, G. Co-P Decorated Nanoporous Copper Framework for High Performance Flexible Non-Enzymatic Glucose Sensors. Electroanal. Chem. 2019, 841, 119–128. DOI: 10.1016/j.jelechem.2019.04.036.
  • Eslami, R.; Azizi, N.; Ghaffarian, S. R.; Mehrvar, M.; Zarrin, H. Highly Sensitive and Selective Non-Enzymatic Measurement of Glucose Using Arraying of Two Separate Sweat Sensors at Physiological pH. Electrochim. Acta 2022, 404, 139749. DOI: 10.1016/j.electacta.2021.139749.
  • Cui, D.; Su, L.; Li, H.; Li, M.; Li, C.; Xu, S.; Qian, L.; Yang, B. Non-Enzymatic Glucose Sensor Based on Micro-/Nanostructured Cu/Ni Deposited on Graphene Sheets. Electroanal. Chem. 2019, 838, 154–162. DOI: 10.1016/j.jelechem.2019.03.005.
  • Zhang, L.; Ye, C.; Li, X.; Ding, Y.; Liang, H.; Zhao, G.; Wang, Y. A CuNi/C Nanosheet Array Based on a Metal-Organic Framework Derivate as a Supersensitive Non-Enzymatic Glucose Sensor. Nanomicro Lett 2018, 10, 28. DOI: 10.1007/s40820-017-0178-9.
  • Chen, C.; Zhong, Y.; Cheng, S.; Huanga, Y.; Li, T.; Shi, T.; Liao, G.; Tang, Z. In Situ Fabrication of Porous Nanostructures Derived from Bimetal-Organic Frameworks for Highly Sensitive Non-Enzymatic Glucose Sensors. J. Electrochem. Soc. 2020, 167. DOI: 10.1149/1945-7111/ab6b05.
  • Li, Q. F.; Chen, X.; Wang, H.; Liu, M.; Peng, H. L. Pt/MXene-Based Flexible Wearable Non-Enzymatic Electrochemical Sensor for Continuous Glucose Detection in Sweat. ACS Appl. Mater. Interfaces 2023, 15, 13290–13298. DOI: 10.1021/acsami.2c20543.
  • Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A. J.; Xie, H.; Moussy, F.; Milne, W. I. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene. Sensors (Basel) 2012, 12, 5996–6022. DOI: 10.3390/s120505996.
  • Zhang, X.; Chen, H. S.; Jiang, S. P.; Yang, P. W18O49/Crystalline g-C3N4 Layered Heterostructures with Full Solar Energy Harvesting towards Efficient H2O2 Generation and NO Conversion. Nano Energy 2024, 120, 109160. DOI: 10.1016/j.nanoen.2023.109160.
  • Zhang, X.; Matras-Postolek, K.; Yang, P. Heterojunction Nanoarchitectonics of WOx/Au-g-C3N4 with Efficient Photogenerated Carrier Separation and Transfer toward Improved NO and Benzene Conversion. Materi. Today Adv. 2023, 17, 100355. DOI: 10.1016/j.mtadv.2023.100355.
  • Zhang, X.; Matras-Postolek, K.; Yang, P.; Jiang, S. P. Pt Clusters in Carbon Network to Enhance Photocatalytic CO2 and Benzene Conversion of WOx/g-C3N4 Nanosheets. Carbon 2023, 214, 118337. DOI: 10.1016/j.carbon.2023.118337.
  • Zhang, X.; Yang, P.; Jiang, S. P. Horizontally Growth of WS2/WO3 Heterostructures on Crystalline g-C3N4 Nanosheets towards Enhanced Photo/Electrochemical Performance. J. Nanostruct. Chem. 2021, 11, 367–380. DOI: 10.1007/s40097-020-00373-7.
  • Zhang, X.; Zhu, K.; Xie, C.; Yang, P. Vertically Implanting MoSe2 Nanosheets on Superior Thin C-Doped g-C3N4 Nanosheets towards Interface-Enhanced Electrochemical Activities. Carbon 2024, 220, 118884. DOI: 10.1016/j.carbon.2024.118884.
  • Chiu, W.-T.; Chang, T.-F. M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Electrocatalytic Activity Enhancement of Au NPs-TiO2 Electrode via a Facile Redistribution Process towards the Non-Enzymatic Glucose Sensors. Sens. Actuators B 2020, 319, 128279. DOI: 10.1016/j.snb.2020.128279.
  • Yao, Y.; Li, Z.; Han, Y.; Xie, L.; Zhao, X.; Zhu, Z. Fabrication and Characterization of a MnO2/Ti3C2Tx Based Gas Sensor for Highly Sensitive and Selective Detection of Lung Cancer Marker Hexanal. Chem. Eng. J. 2023, 451, 139029. DOI: 10.1016/j.cej.2022.139029.
  • Shi, Z.; Wang, Z.; Li, K.; Wang, Y.; Li, Z.; Zhu, Z. MXene Fibers-Based Molecularly Imprinted Disposable Electrochemical Sensor for Sensitive and Selective Detection of Hydrocortisone. Talanta 2024, 266, 125100. DOI: 10.1016/j.talanta.2023.125100.
  • Zhu, Z. G.; Garcia-Gancedo, L.; Chen, C.; Zhu, X. R.; Xie, H. Q.; Flewitt, A. J.; Milne, W. I. Enzyme-Free Glucose Biosensor Based on Low Density CNT Forest Grown Directly on a Si/SiO2 Substrate. Sens. Actuators B 2013, 178, 586–592. DOI: 10.1016/j.snb.2012.12.112.
  • Sweetman, M. J.; Shearer, C. J.; Shapter, J. G.; Voelcker, N. H. Dual Silane Surface Functionalization for the Selective Attachment of Human Neuronal Cells to Porous Silicon. Langmuir 2011, 27, 9497–9503. DOI: 10.1021/la201760w.
  • Niu, X.; Lan, M.; Zhao, H.; Chen, C. Highly Sensitive and Selective Nonenzymatic Detection of Glucose Using Three-Dimensional Porous Nickel Nanostructures. Anal. Chem. 2013, 85, 3561–3569. DOI: 10.1021/ac3030976.
  • López, X.; Carbó, J. J.; Bo, C.; Poblet, J. M. Structure, Properties and Reactivity of Polyoxometalates: A Theoretical Perspective. Chem. Soc. Rev. 2012, 41, 7537–7571. DOI: 10.1039/c2cs35168d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.