60
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advancements in Fluorometric and Colorimetric Detection of Cd2+ Using Organic Chemosensors: A Review (2019–2024)

, , , , & ORCID Icon

References

  • Brown, J. N.; Peake, B. M. Sources of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Urban Stormwater Runoff. Sci Total Environ. 2006, 359, 145–155. DOI: 10.1016/J.SCITOTENV.2005.05.016.
  • Zhang, Q.; Wang, C. Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution. A Review, Water. Air. Soil Pollut. 2020, 231, 1–13. DOI: 10.1007/S11270-020-04728-2/METRICS.
  • Kumar, S.; Prasad, S.; Yadav, K. K.; Shrivastava, M.; Gupta, N.; Nagar, S.; Bach, Q. V.; Kamyab, H.; Khan, S. A.; Yadav, S.; Malav, L. C. Hazardous Heavy Metals Contamination of Vegetables and Food Chain: Role of Sustainable Remediation approaches - A Review. Environ Res. 2019, 179, 108792. DOI: 10.1016/J.ENVRES.2019.108792.
  • Bakulski, K. M.; Seo, Y. A.; Hickman, R. C.; Brandt, D.; Vadari, H. S.; Hu, H.; Park, S. K. Heavy Metals Exposure and Alzheimer’s Disease and Related Dementias. J. Alzheimers Dis. 2020, 76, 1215–1242. DOI: 10.3233/JAD-200282.
  • Huat, T. J.; Camats-Perna, J.; Newcombe, E. A.; Valmas, N.; Kitazawa, M.; Medeiros, R. Metal Toxicity Links to Alzheimer’s Disease and Neuroinflammation. J. Mol Biol. 2019, 431, 1843–1868. DOI: 10.1016/J.JMB.2019.01.018.
  • Rana, S. V. S. Perspectives in Endocrine Toxicity of Heavy metals - A Review, Biol. Biol Trace Elem Res. 2014, 160, 1–14. DOI: 10.1007/S12011-014-0023-7/METRICS.
  • Balabanič, D.; Rupnik, M.; Klemenčič, A. K. Negative Impact of Endocrine-Disrupting Compounds on Human Reproductive Health. Reprod Fertil Dev. 2011, 23, 403–416. DOI: 10.1071/RD09300.
  • Ali, F. E. M., Badran, K. S. A., Baraka, M. A., Althagafy, H. S..; Hassanein, E. H. M.. Mechanism and Impact of Heavy Metal-Aluminum (Al) Toxicity on Male Reproduction: Therapeutic Approaches with Some Phytochemicals. Life Sci. 2024, 340, 122461. DOI: 10.1016/J.LFS.2024.122461.
  • Ferreira, C. S.; Ribeiro, Y. M.; Moreira, D. P.; Paschoalini, A. L.; Bazzoli, N.; Rizzo, E. Reproductive Toxicity Induced by Lead Exposure: Effects on Gametogenesis and Sex Steroid Signaling in Teleost Fish. Chemosphere. 2023, 340, 139896. DOI: 10.1016/J.CHEMOSPHERE.2023.139896.
  • Wrzecińska, M.; Kowalczyk, A.; Cwynar, P.; Czerniawska-Piątkowska, E. Disorders of the Reproductive Health of Cattle as a Response to Exposure to Toxic Metals. Biology. 2021, 10, 882. DOI: 10.3390/BIOLOGY10090882.
  • Al-Saidi, H. M.; Khan, S. A Review on Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Ag(I). Crit Rev Anal Chem. 2022, 52, 1–27. DOI: 10.1080/10408347.2022.2133561.
  • Gan, Y.; Huang, X.; Li, S.; Liu, N.; Li, Y. C.; Freidenreich, A.; Wang, W.; Wang, R.; Dai, J. Source Quantification and Potential Risk of Mercury, Cadmium, Arsenic, Lead, and Chromium in Farmland Soils of Yellow River Delta. J. Clean. Prod. 2019, 221, 98–107. DOI: 10.1016/j.jclepro.2019.02.157.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metal Toxicity and the Environment. EXS. 2012, 101, 133–164. DOI: 10.1007/978-3-7643-8340-4_6/COVER.
  • Yang, L.; Zhang, Y.; Wang, F.; Luo, Z.; Guo, S.; Strähle, U. Toxicity of Mercury: Molecular Evidence. Chemosphere. 2020, 245, 125586. DOI: 10.1016/J.CHEMOSPHERE.2019.125586.
  • Carocci, A.; Rovito, N.; Sinicropi, M. S.; Genchi, G. Mercury Toxicity and Neurodegenerative Effects. Rev. Environ. Contam. Toxicol. 2014, 229, 1–18. DOI: 10.1007/978-3-319-03777-6_1/COVER.
  • Waalkes, M. P. Cadmium Carcinogenesis, Mutat. Mutat Res. 2003, 533, 107–120. DOI: 10.1016/J.MRFMMM.2003.07.011.
  • Wang, R.; Sang, P.; Guo, Y.; Jin, P.; Cheng, Y.; Yu, H.; Xie, Y.; Yao, W.; Qian, H. Cadmium in Food: Source, Distribution and Removal. Food Chem. 2023, 405, 134666. DOI: 10.1016/J.FOODCHEM.2022.134666.
  • Kubier, A.; Wilkin, R. T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl Geochem. 2019, 108, 1–16. DOI: 10.1016/J.APGEOCHEM.2019.104388.
  • Peana, M.; Pelucelli, A.; Chasapis, C. T.; Perlepes, S. P.; Bekiari, V.; Medici, S.; Zoroddu, M. A. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules. 2023, 13, 36. DOI: 10.3390/BIOM13010036/S1.
  • Cirovic, A.; Satarug, S. Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. Int J. Mol Sci. 2024, 25, 1851. DOI: 10.3390/IJMS25031851.
  • Satarug, S.; Vesey, D. A.; Gobe, G. C. Kidney Cadmium Toxicity, Diabetes and High Blood Pressure: The Perfect Storm. Tohoku J Exp Med. 2017, 241, 65–87. DOI: 10.1620/TJEM.241.65.
  • Fatima, G.; Raza, A. M.; Hadi, N.; Nigam, N.; Mahdi, A. A. Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian J. Clin Biochem. 2019, 34, 371–378. DOI: 10.1007/S12291-019-00839-8/METRICS.
  • Orisakwe, O. E. Lead and Cadmium in Public Health in Nigeria: Physicians Neglect and Pitfall in Patient Management, N. North Am J Med Sci. 2014, 6, 61. DOI: 10.4103/1947-2714.127740.
  • Purkayastha, D.; Mishra, U.; Biswas, S. A Comprehensive Review on Cd(II) Removal from Aqueous Solution. J. Water Process Eng. 2014, 2, 105–128. DOI: 10.1016/j.jwpe.2014.05.009.
  • Boevski, I.; Daskalova, N.; Havezov, I. Determination of Barium, Chromium, Cadmium, Manganese, Lead and Zinc in Atmospheric Particulate Matter by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Spectrochim. Acta Part B at. Spectrosc. 2000, 55, 1643–1657. DOI: 10.1016/S0584-8547(00)00265-2.
  • Thirumalai, M.; Kumar, S. N.; Prabhakaran, D.; Sivaraman, N.; Maheswari, M. A. Dynamically Modified C18 Silica Monolithic Column for the Rapid Determinations of Lead, Cadmium and Mercury Ions by Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr A. 2018, 1569, 62–69. DOI: 10.1016/J.CHROMA.2018.07.044.
  • Chen, K. L.; Jiang, S. J.; Chen, Y. L. Determining Lead, Cadmium and Mercury in Cosmetics Using Sweeping via Dynamic Chelation by Capillary Electrophoresis. Anal Bioanal Chem. 2017, 409, 2461–2469. DOI: 10.1007/S00216-017-0193-1.
  • Armstrong, K. C.; Tatum, C. E.; Dansby-Sparks, R. N.; Chambers, J. Q.; Xue, Z. L. Individual and Simultaneous Determination of Lead, Cadmium, and Zinc by Anodic Stripping Voltammetry at a Bismuth Bulk Electrode. Talanta. 2010, 82, 675–680. DOI: 10.1016/J.TALANTA.2010.05.031.
  • Roa, G.; Ramírez-Silva, M. T.; Romero-Romo, M. A.; Galicia, L. Determination of Lead and Cadmium Using a Polycyclodextrin-Modified Carbon Paste Electrode with Anodic Stripping Voltammetry. Anal Bioanal Chem. 2003, 377, 763–769. DOI: 10.1007/S00216-003-2126-4/METRICS.
  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Alhamami, M. A. M.; Mohammed, A. Y. A.; Algethami, J. S.; Al-Saidi, H. M.; Khan, S.; Alharthi, S. S. Highly Sensitive and Selective Schiff Base Chemosensor for Cu2+ and 2,4-D Detection: A Promising Analytical Approach. Microchem. J. 2024, 197, 109817. DOI: 10.1016/j.microc.2023.109817.
  • Mohammad Abu-Taweel, G.; Alharthi, S. S.; Al-Saidi, H. M.; Babalghith, A. O.; Ibrahim, M. M.; Khan, S. Heterocyclic Organic Compounds as a Fluorescent Chemosensor for Cell Imaging Applications: A Review. Crit Rev Anal Chem. 2023, 53, 1–16. DOI: 10.1080/10408347.2023.2186695.
  • Hashemian, H.; Ghaedi, M.; Dashtian, K.; Khan, S.; Mosleh, S.; Hajati, S.; Razmjoue, D. Highly Sensitive Fluorometric Ammonia Detection Utilizing Solenostemon Scutellarioides (L.) Extracts in MOF-Tragacanth Gum Hydrogel for Meat Spoilage Monitoring. Sensors Actuators B Chem. 2024, 406, 135354. DOI: 10.1016/j.snb.2024.135354.
  • Hashemian, H.; Ghaedi, M.; Dashtian, K.; Mosleh, S.; Hajati, S.; Razmjoue, D.; Khan, S. Cellulose Acetate/MOF Film-Based Colorimetric Ammonia Sensor for Non-Destructive Remote Monitoring of Meat Product Spoilage. Int J. Biol Macromol. 2023, 249, 126065. DOI: 10.1016/J.IJBIOMAC.2023.126065.
  • Sun, J.; Li, Y.; Shen, S.; Yan, Q.; Xia, G.; Wang, H. A Squaraine-Based Fluorescence Turn on Chemosensor with ICT Character for Highly Selective and Sensitive Detection of Al3+ in Aqueous Media and Its Application in Living Cell Imaging. Spectrochim Acta A Mol Biomol Spectrosc. 2020, 228, 117590. DOI: 10.1016/J.SAA.2019.117590.
  • Zhang, B.; Suo, Q.; Li, Q.; Hu, J.; Zhu, Y.; Gao, Y.; Wang, Y. Multiresponsive Chemosensors Based on Ferrocenylimidazo[4,5-b]Pyridines: Solvent-Dependent Selective Dual Sensing of Hg2+ and Pb2+. Tetrahedron. 2022, 120, 132878. DOI: 10.1016/j.tet.2022.132878.
  • dos Santos Carlos, F.; da Silva, L. A.; Zanlorenzi, C.; Souza Nunes, F. A Novel Macrocycle Acridine-Based Fluorescent Chemosensor for Selective Detection of Cd2+ in Brazilian Sugarcane Spirit and Tobacco Cigarette Smoke Extract. Inorganica Chim. Acta. 2020, 508, 119634. DOI: 10.1016/j.ica.2020.119634.
  • Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells. J. Am Chem Soc. 2007, 129, 1500–1501. DOI: 10.1021/JA0643319/SUPPL_FILE/JA0643319SI20061218_053451.PDF.
  • Tharmaraj, V.; Devi, S.; Pitchumani, K. An Intramolecular Charge Transfer (ICT) Based Chemosensor for Silver Ion Using 4-methoxy-N-((Thiophen-2-yl)Methyl)Benzenamine. Analyst. 2012, 137, 5320–5324. DOI: 10.1039/C2AN35721F.
  • Daly, B.; Ling, J.; De Silva, A. P. Current Developments in Fluorescent PET (Photoinduced Electron Transfer) Sensors and Switches. Chem Soc Rev. 2015, 44, 4203–4211. DOI: 10.1039/C4CS00334A.
  • Gupta, A.; Kumar, N. A Review of Mechanisms for Fluorescent ‘“Turn-on”’ Probes to Detect Al3+ Ions. RSC Adv. 2016, 6, 106413–106434. DOI: 10.1039/C6RA23682K.
  • Pal, A.; Karmakar, M.; Bhatta, S. R.; Thakur, A. A Detailed Insight into Anion Sensing Based on Intramolecular Charge Transfer (ICT) Mechanism: A Comprehensive Review of the Years 2016 to 2021. Coord. Chem. Rev. 2021, 448, 214167. DOI: 10.1016/j.ccr.2021.214167.
  • Zhu, M.; Fan, F.; Zhao, Z.; Wu, X.; Wang, L.; Na, R.; Wang, Y. An ICT-Based Ratiometric Fluorescent Probe for Cysteine and Its Application in Biological Issues. J. Mol. Liq. 2019, 296, 111832. DOI: 10.1016/j.molliq.2019.111832.
  • Rai, R.; Bhandari, R.; Kaleem, M.; Rai, N.; Gautam, V.; Misra, A. A Simple TICT/ICT Based Molecular Probe Exhibiting Ratiometric Fluorescence Turn-On Response in Selective Detection of Cu2+. J. Photochem. Photobiol. A Chem. 2023, 441, 114696. DOI: 10.1016/j.jphotochem.2023.114696.
  • Zheng, Y.; Wu, S.; Bing, Y.; Li, H.; Liu, X.; Li, W.; Zou, X.; Qu, Z. A Simple ICT-Based Fluorescent Probe for HOCl and Bioimaging Applications. Biosensors. 2023, 13, 744. DOI: 10.3390/BIOS13070744/S1.
  • Liu, H.; Cui, S.; Shi, F.; Pu, S. A Diarylethene Based Multi-Functional Sensor for Fluorescent Detection of Cd2+ and Colorimetric Detection of Cu2+. Dye. Pigment. 2019, 161, 34–43. DOI: 10.1016/j.dyepig.2018.09.030.
  • Pham, T. C.; Kim, Y. K.; Park, J. B.; Jeon, S.; Ahn, J.; Yim, Y.; Yoon, J.; Lee, S. A Selective Colorimetric and Fluorometric Chemosensor Based on Conjugated Polydiacetylenes for Cadmium Ion Detection. ChemPhotoChem 2019, 3, 1133–1137. DOI: 10.1002/cptc.201900165.
  • Wang, P.; Zhou, D.; Chen, B. A Fluorescent Dansyl-Based Peptide Probe for Highly Selective and Sensitive Detect Cd2+ Ions and Its Application in Living Cell Imaging. Spectrochim Acta A Mol Biomol Spectrosc. 2019, 207, 276–283. DOI: 10.1016/J.SAA.2018.09.029.
  • Qiu, S.; Lu, M.; Cui, S.; Wang, Z.; Pu, S. A Bifunctional Sensor Based on Diarylethene for the Colorimetric Recognition of Cu 2+ and Fluorescence Detection of Cd 2+. RSC Adv. 2019, 9, 29141–29148. DOI: 10.1039/C9RA04965G.
  • Wang, P.; Duan, L.; Liao, Y. A Retrievable and Highly Selective Peptide-Based Fluorescent Probe for Detection of Cd2+ and Cys in Aqueous Solutions and Live Cells. Microchem. J. 2019, 146, 818–827. DOI: 10.1016/j.microc.2019.02.004.
  • Ravichandiran, P.; Boguszewska-Czubara, A.; Masłyk, M.; Bella, A. P.; Johnson, P. M.; Subramaniyan, S. A.; Shim, K. S.; Yoo, D. J. A Phenoxazine-Based Fluorescent Chemosensor for Dual Channel Detection of Cd2+ and CN − Ions and Its Application to Bio-Imaging in Live Cells and Zebrafish. Dye. Pigment. 2020, 172, 107828. DOI: 10.1016/j.dyepig.2019.107828.
  • Celestina, J. J.; Tharmaraj, P.; Sheela, C. D. Greener Development of Highly Selective Turn-on Fluorogenic Chemo Sensor for Cd2+ - Cell Imaging and Test Strips Studies. Opt. Mater. 2020, 109, 110176. DOI: 10.1016/j.optmat.2020.110176.
  • Peng, S.; Lv, J.; Liu, G.; Fan, C.; Pu, S. A Photochromic Diarylethene-Functionalized Fluorescent Probe for Cd2+ and Zn2+ Detections. Tetrahedron. 2020, 76, 131618. DOI: 10.1016/j.tet.2020.131618.
  • Krishnaveni, K.; Murugesan, S.; Siva, A. Fluorimetric and Colorimetric Detection of Multianalytes Zn2+/Cd2+/F − Ions via 5-Bromosalicyl Hydrazone Appended Pyrazole Receptor; Live Cell Imaging Analysis in HeLa Cells and Zebra Fish Embryos. Inorg. Chem. Commun. 2021, 132, 108843. DOI: 10.1016/j.inoche.2021.108843.
  • Mohanasundaram, D.; Bhaskar, R.; Gangatharan Vinoth Kumar, G.; Rajesh, J.; Rajagopal, G. A Quinoline Based Schiff Base as a Turn-on Fluorescence Chemosensor for Selective and Robust Detection of Cd2+ Ion in Semi-Aqueous Medium. Microchem. J. 2021, 164, 106030. DOI: 10.1016/j.microc.2021.106030.
  • Zhang, Y. P.; Niu, W. Y.; Ma, C. M.; Yang, Y. S.; Guo, H. C.; Xue, J. J. Fluorogenic Recognition of Zn2+, Cd2+ by a New Pyrazoline-Based Multi-Analyte Chemosensor and Its Application in Live Cell Imaging. Inorg. Chem. Commun. 2021, 130, 108735. DOI: 10.1016/j.inoche.2021.108735.
  • Li, N. N.; Xue, J.; Zhang, X.; Shi, N. N.; Liu, W. B.; Xue Wu, R.; Bin Fan, C.; Xu, C. G.; Bi, S. Y.; Fan, Y. H. A Novel Dimer-Induced AIE Material as a Nano-Sensor for Colormetric and Ratiometric Sensing of Erythromycin and Metal Ions (Zn2+, Cd2+ and Cu2+) with Different Dissociation and Re-Aggregation Processes and Cellular Imaging Applications. Dye. Pigment. 2021, 184, 108872. DOI: 10.1016/j.dyepig.2020.108872.
  • Purushothaman, P.; Karpagam, S. Thiophene-Appended Benzothiazole Compounds for Ratiometric Detection of Copper and Cadmium Ions with Comparative Density Functional Theory Studies and Their Application in Real-Time Samples. ACS Omega. 2022, 7, 41361–41369. DOI: 10.1021/ACSOMEGA.2C05157/ASSET/IMAGES/LARGE/AO2C05157_0012.JPEG.
  • Enbanathan, S.; Iyer, S. K. A Novel Phenanthridine and Terpyridine Based D-π-a Fluorescent Probe for the Ratiometric Detection of Cd2+ in Environmental Water Samples and Living Cells. Ecotoxicol Environ Saf. 2022, 247, 114272. DOI: 10.1016/J.ECOENV.2022.114272.
  • Ma, J.; Dong, Y.; Yu, Z.; Wu, Y.; Zhao, Z. A Pyridine Based Schiff Base as a Selective and Sensitive Fluorescent Probe for Cadmium Ions with “Turn-on” Fluorescence Responses. New J. Chem. 2022, 46, 3348–3357. DOI: 10.1039/D1NJ05919J.
  • Wang, Z.; Zheng, C.; Xu, D.; Liao, G.; Pu, S. A Fluorescent Sensor for Zn2+ and Cd2+ Based on a Diarylethene Derivative with an Indole-2-Methylhydrazone Moiety. J. Photochem. Photobiol. A Chem. 2022, 424, 113634. DOI: 10.1016/j.jphotochem.2021.113634.
  • Li, L.; Zhang, Y.; Yang, J.; Qu, W.; Cao, H. A Turn-on Fluorescent Sensor for Cd2+ and Sequential Detection of S2− Using the Quinolimide Scaffold. Tetrahedron. 2022, 121, 132917. DOI: 10.1016/j.tet.2022.132917.
  • Dong, Y.; Ma, J.; Yu, Z.; Liu, X.; Zhao, Z. Highly Selective and Sensitive Fluorometric Probe for Cd2+ Ions Based on 4-(Quinolin-2-Ylmethylene)Aminoanisole Schiff Base. Inorganica Chim. Acta. 2022, 536, 120884. DOI: 10.1016/j.ica.2022.120884.
  • Yang, J. Y.; Han, J. H.; Bin Shang, Z.; Wang, Y.; Shuang, S. M. New Schiff Base Probe for the Fluorometric Turn-on Sensing of Cd2+ Ions and Bio-Imaging Application. J. Lumin 2022, 249, 119017. DOI: 10.1016/j.jlumin.2022.119017.
  • Zhang, Y.; Qu, W.; Yang, J.; Jia, L.; Li, L.; Cao, H.; Guo, X. Cd2+ and Zn2+ Fluorescence Turn-on Sensing and the Subsequent Detection of S2− by a Quinolimide-Based Sensor in Water and Living Cells with Application in the Combinational Logic Gate. Tetrahedron. 2022, 121, 132916. DOI: 10.1016/j.tet.2022.132916.
  • Jiang, H.; Chen, L.; Li, Z.; Li, J.; Ma, H.; Ning, L.; Li, N.; Liu, X. A Facile AIE Fluorescent Probe with Large Stokes Shift for the Detection of Cd2+ in Real Water Samples and Living Cells. J. Lumin. 2022, 243, 118672. DOI: 10.1016/j.jlumin.2021.118672.
  • Muralakar, P.; Ravi, S.; Gayathri, P.; Abraham, S.; Jebasingh, B.; Anthony, S. P.; Ebenezer, C.; Solomon, R. V. Highly Selective Turn-on Fluorescence Sensor for Cd2+ Ions by Tripodal Organic Ligand. J Fluoresc. 2023, 4, 1–12. DOI: 10.1007/S10895-023-03348-3.
  • Behura, R.; Mohanty, P.; Sahu, G.; Dash, P. P.; Behera, S.; Dinda, R.; Hota, P. R.; Sahoo, H.; Bhaskaran, R.; Barick, A. K.; et al. A Highly Selective Schiff Base Fluorescent Sensor for Zn2+, Cd2+ and Hg2+ Based on 2,4-Dinitrophenylhydrazine Derivative. Inorg. Chem. Commun. 2023, 154, 110959. DOI: 10.1016/j.inoche.2023.110959.
  • Divyashree, N. R.; Revanasiddappa, H. D.; Jayalakshmi, B.; Iqbal, M.; Amachawadi, R. G.; Shivamallu, C.; Prasad Kollur, S. ‘Turn-ON’ Furfurylamine-Based Fluorescent Sensor for Cd2+ Ion Detection and Its Application in Real Water Samples. Polyhedron. 2023, 238, 116411. DOI: 10.1016/j.poly.2023.116411.
  • Tian, G.; Han, Y. Z.; Yang, Q. 1, 10-phenanthroline Derivative as Colorimetric and Ratiometric Fluorescence Probe for Zn2+ and Cd2+. Results Chem. 2023, 5, 100899. DOI: 10.1016/j.rechem.2023.100899.
  • Barot, Y. B.; Anand, V.; Vyas, S.; Mishra, R. Paper-Based Device for Nanomolar Detection of Cd2+ Using AIEE-Active Imidazolium Ionic Liquid Functionalized Phenothiazine Based Schiff-Base. J. Mol. Liq. 2023, 376, 121490. DOI: 10.1016/j.molliq.2023.121490.
  • Enbanathan, S.; Munusamy, S.; Jothi, D.; Kumar, S. M.; Iyer, S. K. A Thiophene-Linked Terpyridine Based Phenanthridine Chemoreceptor for Cd2+ and Cr3+ Selective Ratiometric Fluorescence Detection in Environmental Water and Rice Samples. Anal Chim Acta. 2024, 1288, 342179. DOI: 10.1016/J.ACA.2023.342179.
  • Farhi, A.; Fatima, K.; Firdaus, F. Dual Fluorimetric Sensor for Tandem Detection of Cadmium and Cysteine: An Approach for Designing a Molecular Keypad Lock System. J Fluoresc. 2024, 34, 1–10. DOI: 10.1007/S10895-024-03588-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.