680
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Overview—gold nanoparticles-based sensitive nanosensors in mycotoxins detection

ORCID Icon, , , &
Pages 11734-11749 | Published online: 02 Aug 2022

References

  • Abhijith, K. S., K. V. Ragavan, and M. S. Thakur. 2013. Gold nanoparticles enhanced chemiluminescence – A novel approach for sensitive determination of aflatoxin-B1. Analytical Methods 5 (18):4838–45. doi: 10.1039/c3ay40694f.
  • Abnous, K., N. M. Danesh, M. Ramezani, M. Alibolandi, M. A. Nameghi, T. S. Zavvar, and S. M. Taghdisi. 2021. A novel colorimetric aptasensor for ultrasensitive detection of aflatoxin M-1 based on the combination of CRISPR-Cas12a, rolling circle amplification and catalytic activity of gold nanoparticles. Analytica Chimica Acta 1165:338549. doi: 10.1016/j.aca.2021.338549.
  • Bartosh, A. V., A. E. Urusov, A. V. Petrakova, H. Kuang, A. V. Zherdev, and B. B. Dzantiev. 2020. Highly sensitive lateral flow test with indirect labelling for zearalenone in baby food. Food and Agricultural Immunology 31 (1):653–66. doi: 10.1080/09540105.2020.1750570.
  • Bazin, I., N. Andreotti, A. I. H. Hassine, M. De Waard, J. M. Sabatier, and C. Gonzalez. 2013. Peptide binding to ochratoxin A mycotoxin: A new approach in conception of biosensors. Biosensors & Bioelectronics 40 (1):240–6. doi: 10.1016/j.bios.2012.07.031.
  • Cao, D., Y. Xu, Z. Tu, J. Fu, Y. Li, and X. Wang. 2016. Prokaryotic expression, purification and bioactivity analysis of nanobody against AFB_1. Food and Fermentation Industries 42 (5):19–24.
  • Chen, P., C. Li, X. Ma, Z. Wang, and Y. Zhang. 2022. A surface-enhanced Raman scattering aptasensor for ratiometric detection of aflatoxin B1 based on graphene oxide-Au@Ag core-shell nanoparticles complex. Food Control 134. doi: 10.1016/j.foodcont.2021.108748.
  • Chen, W., F. Cai, Q. Wu, Y. Wu, B. Yao, and J. Xu. 2020. Prediction, evaluation, confirmation, and elimination of matrix effects for lateral flow test strip based rapid and on-site detection of aflatoxin B1 in tea soups. Food Chemistry 328. doi: 10.1016/j.foodchem.2020.127081.
  • Chen, X., Y. Huang, N. Duan, S. Wu, Y. Xia, X. Ma, C. Zhu, Y. Jiang, and Z. Wang. 2014. Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide. Journal of Agricultural and Food Chemistry 62 (42):10368–74. doi: 10.1021/jf5032058.
  • Chen, X., Y. Liang, W. Zhang, Y. Leng, and Y. Xiong. 2018. A colorimetric immunoassay based on glucose oxidase-induced AuNP aggregation for the detection of fumonisin B-1. Talanta 186:29–35. doi: 10.1016/j.talanta.2018.04.018.
  • Chen, X., X. Miao, T. Ma, Y. Leng, L. Hao, H. Duan, J. Yuan, Y. Li, X. Huang, and Y. Xiong. 2021. Gold nanobeads with enhanced absorbance for improved sensitivity in competitive lateral flow immunoassays. Foods 10 (7):1488. doi: 10.3390/foods10071488.
  • Chen, X. J., Y. K. Huang, N. Duan, S. J. Wu, X. Y. Ma, Y. Xia, C. Q. Zhu, Y. Jiang, and Z. P. Wang. 2013. Selection and identification of ssDNA aptamers recognizing zearalenone. Analytical and Bioanalytical Chemistry 405 (20):6573–81. doi: 10.1007/s00216-013-7085-9.
  • Cheng, H., Y. Chen, Y. Yang, X. Chen, X. Guo, and A. Du. 2015. Characterization of anti-citrinin specific ScFvs selected from non-immunized mouse splenocytes by eukaryotic ribosome display. Plos One 10 (7):e0131482. doi: 10.1371/journal.pone.0131482.
  • Choi, G. H., D. H. Lee, W. K. Min, Y. J. Cho, D. H. Kweon, D. H. Son, K. Park, and J. H. Seo. 2004. Cloning, expression, and characterization of single-chain variable fragment antibody against mycotoxin deoxynivalenol in recombinant Escherichia coli. Protein Expression and Purification 35 (1):84–92. doi: 10.1016/j.pep.2003.12.008.
  • Chotchuang, T., W. Cheewasedtham, T. J. Jayeoye, and T. Rujiralai. 2019. Colorimetric determination of fumonisin B1 based on the aggregation of cysteamine-functionalized gold nanoparticles induced by a product of its hydrolysis. Microchimica Acta 186 (9) doi: 10.1007/s00604-019-3778-x.
  • Cruz-Aguado, J. A., and G. Penner. 2008. Determination of ochratoxin a with a DNA aptamer. Journal of Agricultural and Food Chemistry 56 (22):10456–61. doi: 10.1021/jf801957h.
  • Doyle, P. J., M. Arbabi-Ghahroudi, N. Gaudette, G. Furzer, M. E. Savard, S. Gleddie, M. D. McLean, C. R. Mackenzie, and J. C. Hall. 2008. Cloning, expression, and characterization of a single-domain antibody fragment with affinity for 15-acetyl-deoxynivalenol. Molecular Immunology 45 (14):3703–13. doi: 10.1016/j.molimm.2008.06.005.
  • Fang, B., S. Xu, Y. Huang, F. Su, Z. Huang, H. Fang, J. Peng, Y. Xiong, and W. Lai. 2020. Gold nanorods etching-based plasmonic immunoassay for qualitative and quantitative detection of aflatoxin M1 in milk. Food Chemistry 329:127160. doi: 10.1016/j.foodchem.2020.127160.
  • Feng, W., L. Zhen-Feng, Y. Yuan-Yuan, W. De-Bin, N. Vasylieva, Z. Yu-Qi, C. Jun, W. Hong, S. Yu-Dong, X. Zhen-Lin, et al. 2020. Chemiluminescent enzyme immunoassay and bioluminescent enzyme immunoassay for tenuazonic acid mycotoxin by exploitation of nanobody and nanobody-nanoluciferase fusion. Analytical Chemistry 92 (17):11935–42. doi: 10.1021/acs.analchem.0c02338.
  • Gevaerd, A., C. E. Banks, M. F. Bergamini, and L. H. Marcolino-Junior. 2020. Nanomodified screen-printed electrode for direct determination of aflatoxin B-1 in malted barley samples. Sensors and Actuators B: Chemical 307:127547. doi: 10.1016/j.snb.2019.127547.
  • Hamami, M., A. Mars, and N. Raouafi. 2021. Biosensor based on antifouling PEG/Gold nanoparticles composite for sensitive detection of aflatoxin M1 in milk. Microchemical Journal 165:106102. doi: 10.1016/j.microc.2021.106102.
  • Han, Z., Z. Tang, K. Jiang, Q. Huang, J. Meng, D. Nie, and Z. Zhao. 2020. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS(2)-Au) for multiplex detection of mycotoxins. Biosensors and Bioelectronics 150:111894. doi: 10.1016/j.bios.2019.111894.
  • He, Q-h., and Y. Xu. 2018. Antibody developments and immunoassays for mycotoxins. Current Organic Chemistry 21 (26):2622–31. doi: 10.2174/1385272821666170427155731.
  • He, Q.-H., Y. Xu, Y.-H. Huang, R.-R. Liu, Z.-B. Huang, and Y.-P. Li. 2011. Phage-displayed peptides that mimic zearalenone and its application in immunoassay. Food Chemistry 126 (3):1312–5. doi: 10.1016/j.foodchem.2010.11.085.
  • He, T., Y. Wang, P. Li, Q. Zhang, J. Lei, Z. Zhang, X. Ding, H. Zhou, and W. Zhang. 2014. Nanobody-based enzyme immunoassay for aflatoxin in agro-products with high tolerance to cosolvent methanol. Analytical Chemistry 86 (17):8873–80. doi: 10.1021/ac502390c.
  • He, T., J. Zhu, Y. Nie, R. Hu, T. Wang, P. Li, Q. Zhang, and Y. Yang. 2018. Nanobody technology for mycotoxin detection in the field of food safety: Current status and prospects. Toxins (Basel) 10 (5):180. doi: 10.3390/toxins10050180.
  • He, Y., F. Tian, J. Zhou, Q. Zhao, R. Fu, and B. Jiao. 2020. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. Journal of Hazardous Materials 388:121758. doi: 10.1016/j.jhazmat.2019.121758.
  • He, Z-y., Q-h. He, Y. Xu, Y-p. Li, X. Liu, B. Chen, D. Lei, and C-h. Sun. 2013. Ochratoxin A mimotope from second-generation peptide library and its application in immunoassay. Analytical Chemistry 85 (21):10304–11. doi: 10.1021/ac402127t.
  • Hermann, T., and D. J. Patel. 2000. Adaptive recognition by nucleic acid aptamers. Science (New York, N.Y.) 287 (5454):820–5. doi: 10.1126/science.287.5454.820.
  • Heurich, M. 2008. Development of an affinity sensor for Ochratoxin A.
  • Hossain, M. Z., and C. M. Maragos. 2018. Gold nanoparticle-enhanced multiplexed imaging surface plasmon resonance (iSPR) detection of Fusarium mycotoxins in wheat. Biosensors and Bioelectronics 101:245–52. doi: 10.1016/j.bios.2017.10.033.
  • Hou, S-l., Z-e. Ma, H. Meng, Y. Xu, and Q-h. He. 2019. Ultrasensitive and green electrochemical immunosensor for mycotoxin ochratoxin A based on phage displayed mimotope peptide. Talanta 194:919–24. doi: 10.1016/j.talanta.2018.10.081.
  • Hou, S., J. Ma, Y. Cheng, H. Wang, J. Sun, and Y. Yan. 2020a. One-step rapid detection of fumonisin B-1, dexyonivalenol and zearalenone in grains. Food Control. 117:107107. doi: 10.1016/j.foodcont.2020.107107.
  • Hou, S., J. Ma, Y. Cheng, H. Wang, J. Sun, and Y. Yan. 2020b. Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B-1, dexyonivalenol, and zearalenone in grains. Food Control. 117107331. doi: 10.1016/j.foodcont.2020.:.
  • Hu, Z.-Q., H.-P. Li, J.-L. Liu, S. Xue, A.-D. Gong, J.-B. Zhang, and Y.-C. Liao. 2016. Production of a phage-displayed mouse ScFv antibody against fumonisin B1 and molecular docking analysis of their interactions. Biotechnology and Bioprocess Engineering 21 (1):134–43. doi: 10.1007/s12257-015-0495-0.
  • Hu, Z.-Q., H.-P. Li, P. Wu, Y.-B. Li, Z.-Q. Zhou, J.-B. Zhang, J.-L. Liu, and Y.-C. Liao. 2015. An affinity improved single-chain antibody from phage display of a library derived from monoclonal antibodies detects fumonisins by immunoassay. Analytica Chimica Acta 867:74–82. doi: 10.1016/j.aca.2015.02.014.
  • Huang, X., T. Huang, X. Li, and Z. Huang. 2020. Flower-like gold nanoparticles-based immunochromatographic test strip for rapid simultaneous detection of fumonisin B-1 and deoxynivalenol in Chinese traditional medicine. Journal of Pharmaceutical and Biomedical Analysis 177. doi: 10.1016/j.jpba.2019.112895.
  • Huang, Z. P., J. He, Y. Y. Li, C. J. Wu, L. Q. You, H. L. Wei, K. Li, and S. S. Zhang. 2019. Preparation of dummy molecularly imprinted polymers for extraction of Zearalenone in grain samples. Journal of Chromatography. A 1602:11–8. doi: 10.1016/j.chroma.2019.05.022.
  • Jalalian, S. H., P. Lavaee, M. Ramezani, N. M. Danesh, M. Alibolandi, K. Abnous, and S. M. Taghdisi. 2021. An optical aptasensor for aflatoxin M1 detection based on target-induced protection of gold nanoparticles against salt-induced aggregation and silica nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 246:119062. doi: 10.1016/j.saa.2020.119062.
  • Ji, Y., Q. He, Y. Xu, Z. Tu, H. Yang, Y. Qiu, X. Wang, and Y. Liu. 2016. Phage displayed anti-idiotypic nanobody mediated immuno-PCR for sensitive and environmentally friendly detection of mycotoxin ochratoxin A. Analytical Methods 8 (43):7824–31. doi: 10.1039/C6AY01264G.
  • Jiang, D., D. Wei, H. Li, L. Wang, N. Jiang, Y. Li, and M. Wang. 2021. Natural occurrence of Alternaria mycotoxins in wheat and potential of reducing associated risks using magnolol. Journal of the Science of Food and Agriculture 101 (7):3071–7. doi: 10.1002/jsfa.10901.
  • Jiang, F., P. Li, C. Zong, and H. Yang. 2020. Surface-plasmon-coupled chemiluminescence amplification of silver nanoparticles modified immunosensor for high-throughput ultrasensitive detection of multiple mycotoxins. Analytica Chimica Acta 1114:58–65. doi: 10.1016/j.aca.2020.03.052.
  • Jiang, Q., J. Wu, K. Yao, Y. Yin, M. M. Gong, C. Yang, and F. Lin. 2019. Paper-based microfluidic device (DON-Chip) for rapid and low-cost deoxynivalenol quantification in food, feed, and feed ingredients. ACS Sensors 4 (11):3072–9. doi: 10.1021/acssensors.9b01895.
  • Jiao, S., J. Liu, J. Sun, Y. Chang, S. Wang, S. Dai, R. Xu, M. Dou, Q. Li, J. Wang, et al. 2022. A highly sensitive and reproducible multiplex mycotoxin SERS array based on AuNPs-loaded inverse opal silica photonic crystal microsphere. Sensors and Actuators B: Chemical 355:131245. doi: 10.1016/j.snb.2021.131245.
  • Jie, M., S. Yu, F. Yu, L. Liu, L. He, Y. Li, H. Zhang, L. Qu, P. d B. Harrington, and Y. Wu. 2018. An ultrasensitive chemiluminescence immunoassay for fumonisin B-1 detection in cereals based on gold-coated magnetic nanoparticles. Journal of the Science of Food and Agriculture 98 (9):3384–90. doi: 10.1002/jsfa.8849.
  • Kasoju, A., N. S. Shrikrishna, D. Shahdeo, A. A. Khan, A. M. Alanazi, and S. Gandhi. 2020. Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay. RSC Advances 10 (20):11843–50. doi: 10.1039/D0RA00062K.
  • Lauer, B., I. Ottleben, H. J. Jacobsen, and T. Reinard. 2005. Production of a single-chain variable fragment antibody against fumonisin B1. Journal of Agricultural and Food Chemistry 53 (4):899–904. doi: 10.1021/jf048651s.
  • Lerdsri, J., W. Chananchana, J. Upan, T. Sridara, and J. Jakmunee. 2020. Label-free colorimetric aptasensor for rapid detection of aflatoxin B1 by utilizing cationic perylene probe and localized surface plasmon resonance of gold nanoparticles. Sensors and Actuators B: Chemical 320:128356. doi: 10.1016/j.snb.2020.128356.
  • Lerdsri, J., J. Soongsong, P. Laolue, and J. Jakmunee. 2021. Reliable colorimetric aptasensor exploiting 72-Mers ssDNA and gold nanoprobes for highly sensitive detection of aflatoxin M1 in milk. Journal of Food Composition and Analysis 102:103992. doi: 10.1016/j.jfca.2021.103992.
  • Li, B., Y. Zhang, X. Ren, H. Ma, D. Wu, and Q. Wei. 2021. No-wash point-of-care biosensing assay for rapid and sensitive detection of aflatoxin B1. Talanta 235.122772. doi: 10.1016/j.talanta.2021.:.
  • Liao, J.-Y., and H. Li. 2010. Lateral flow immunodipstick for visual detection of aflatoxin B-1 in food using immuno-nanoparticles composed of a silver core and a gold shell. Microchimica Acta 171 (3-4):289–95. doi: 10.1007/s00604-010-0431-0.
  • Lin, B., P. Kannan, B. Qiu, Z. Lin, and L. Guo. 2020. On-spot surface enhanced Raman scattering detection of Aflatoxin B-1 in peanut extracts using gold nanobipyramids evenly trapped into the AAO nanoholes. Food Chemistry 307:125528. doi: 10.1016/j.foodchem.2019.125528.
  • Liu, A., Y. Ye, W. Chen, X. Wang, and F. Chen. 2015. Expression of V-H-linker-V-L orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B-1 in Escherichia coli. Journal of Industrial Microbiology & Biotechnology 42 (2):255–62. doi: 10.1007/s10295-014-1570-9.
  • Liu, B., J. Peng, Q. Wu, Y. Zhao, H. Shang, and S. Wang. 2022. A novel screening on the specific peptide by molecular simulation and development of the electrochemical immunosensor for aflatoxin B1 in grains. Food Chemistry 372:131322. doi: 10.1016/j.foodchem.2021.131322.
  • Liu, R., R. Shi, W. Zou, W. Chen, X. Yin, F. Zhao, and Z. Yang. 2020a. Highly sensitive phage-magnetic-chemiluminescent enzyme immunoassay for determination of zearalenone. Food Chemistry 325:126905. doi: 10.1016/j.foodchem.2020.126905.
  • Liu, R., L. Xu, X. Qiu, X. Chen, S. Deng, W. Lai, and Y. Xu. 2012. An immunoassay for determining aflatoxin b1 using a recombinant phage as a nontoxic coating conjugate. Journal of Food Safety 32 (3):318–25. doi: 10.1111/j.1745-4565.2012.00383.x.
  • Liu, R. R., Z. Yu, Q. H. He, and Y. Xu. 2007. An immunoassay for ochratoxin A without the mycotoxin. Food Control. 18 (7):872–7. doi: 10.1016/j.foodcont.2006.05.002.
  • Liu, X., Y. Xu, Q-h. He, Z-y. He, and Z-p. Xiong. 2013. Application of mimotope peptides of fumonisin B-1 in Peptide ELISA. Journal of Agricultural and Food Chemistry 61 (20):4765–70. doi: 10.1021/jf400056p.
  • Liu, X., Y. Xu, Y. H. Xiong, Z. Tu, Y. P. Li, Z. Y. He, Y. L. Qiu, J. H. Fu, S. J. Gee, and B. D. Hammock. 2014. VHH phage-based competitive real-time immuno-polymerase chain reaction for ultrasensitive detection of ochratoxin A in cereal. Analytical Chemistry 86 (15):7471–7. doi: 10.1021/ac501202d.
  • Liu, Z., Q. Hua, J. Wang, Z. Liang, J. Li, J. Wu, X. Shen, H. Lei, and X. Li. 2020b. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosensors and Bioelectronics 158:112178. doi: 10.1016/j.bios.2020.112178.
  • Ma, L., L. Bai, M. Zhao, J. Zhou, Y. Chen, and Z. Mu. 2019. An electrochemical aptasensor for highly sensitive detection of zearalenone based on PEI-MoS2-MWCNTs nanocomposite for signal enhancement. Analytica Chimica Acta 1060:71–8. doi: 10.1016/j.aca.2019.02.012.
  • Ma, X., W. Wang, X. Chen, Y. Xia, S. Wu, N. Duan, and Z. Wang. 2014. Selection, identification, and application of Aflatoxin B1 aptamer. European Food Research and Technology 238 (6):919–25. doi: 10.1007/s00217-014-2176-1.
  • Maragos, C. M., L. Li, and D. Chen. 2012. Production and characterization of a single chain variable fragment (scFv) against the mycotoxin deoxynivalenol. Food and Agricultural Immunology 23 (1):51–67. doi: 10.1080/09540105.2011.598921.
  • McKeague, M., C. R. Bradley, A. De Girolamo, A. Visconti, J. D. Miller, and M. C. Derosa. 2010. Screening and initial binding assessment of fumonisin b(1) aptamers. International Journal of Molecular Sciences 11 (12):4864–81. doi: 10.3390/ijms11124864.
  • McKeague, M., R. Velu, K. Hill, V. Bardoczy, T. Meszaros, and M. C. DeRosa. 2014. Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins 6 (8):2435–52. doi: 10.3390/toxins6082435.
  • Min, W.-K., S.-G. Kim, and J.-H. Seo. 2015. Affinity maturation of single-chain variable fragment specific for aflatoxin B-1 using yeast surface display. Food Chemistry 188:604–11. doi: 10.1016/j.foodchem.2015.04.117.
  • Min, W.-K., K.-I. Na, J.-H. Yoon, Y.-J. Heo, D. Lee, S.-G. Kim, and J.-H. Seo. 2016. Affinity improvement by fine tuning of single-chain variable fragment against aflatoxin B-1. Food Chemistry 209:312–7. doi: 10.1016/j.foodchem.2016.04.085.
  • Min, W. K., D. H. Kweon, K. Park, Y. C. Park, and J. H. Seo. 2011. Characterisation of monoclonal antibody against aflatoxin B-1 produced in hybridoma 2C12 and its single-chain variable fragment expressed in recombinant Escherichia coli. Food Chemistry 126 (3):1316–23. doi: 10.1016/j.foodchem.2010.11.088.
  • Miron-Merida, V. A., Y. Gonzalez-Espinosa, M. Collado-Gonzalez, Y. Y. Gong, Y. Guo, and F. M. Goycoolea. 2021. Aptamer-target-gold nanoparticle conjugates for the quantification of fumonisin B1. Biosensors 11 (1):18. doi: 10.3390/bios11010018.
  • Moghaddam, A., I. Lobersli, K. Gebhardt, M. Braunagel, and O. J. Marvik. 2001. Selection and characterisation of recombinant single-chain antibodies to the hapten Aflatoxin-B1 from naive recombinant antibody libraries. Journal of Immunological Methods 254 (1–2):169–81. doi: 10.1016/S0022-1759(01)00413-6.
  • Mousivand, M., K. Bagherzadeh, L. Anfossi, and M. Javan-Nikkhah. 2022. Key criteria for engineering mycotoxin binding aptamers via computational simulations: Aflatoxin B1 as a case study. Biotechnology Journal 17 (2):2100280. doi: 10.1002/biot.202100280.
  • Munawar, H., A. H. M. Safaryan, A. De Girolamo, A. Garcia-Cruz, P. Marote, K. Karim, V. Lippolis, M. Pascale, and S. A. Piletsky. 2019. Determination of Fumonisin B1 in maize using molecularly imprinted polymer nanoparticles-based assay. Food Chemistry 298:125044. doi: 10.1016/j.foodchem.2019.125044.
  • Na, K. I., S. J. Kim, D. S. Choi, W. K. Min, S. G. Kim, and J. H. Seo. 2019. Extracellular production of functional single-chain variable fragment against aflatoxin B-1 using Escherichia coli. Letters in Applied Microbiology 68 (3):241–7. doi: 10.1111/lam.13110.
  • Pan, D., G. Li, H. Hu, H. Xue, M. Zhang, M. Zhu, X. Gong, Y. Zhang, Y. Wan, and Y. Shen. 2018. Direct immunoassay for facile and sensitive detection of small molecule aflatoxin B-1 based on nanobody. Chemistry (Weinheim an Der Bergstrasse, Germany) 24 (39):9869–76. doi: 10.1002/chem.201801202.
  • Pang, Q., Y. Chen, H. Mukhtar, J. Xiong, X. Wang, T. Xu, B. D. Hammock, and J. Wang. 2022. Camelization of a murine single-domain antibody against aflatoxin B-1 and its antigen-binding analysis. Mycotoxin Research 38 (1):51–60. doi: 10.1007/s12550-021-00433-z.
  • Parker, C. 2008. Development of an affinity sensor for the detection of Aflatoxin M1 in milk. Cranfield University.
  • Pascale, M., A. De Girolamo, A. Visconti, N. Magan, I. Chianella, E. V. Piletska, and S. A. Piletsky. 2008. Use of itaconic acid-based polymers for solid-phase extraction of deoxynivalenol and application to pasta analysis. Analytica Chimica Acta 609 (2):131–8. doi: 10.1016/j.aca.2008.01.004.
  • Pei, F., S. Feng, Y. Wu, X. Lv, H. Wang, S.-M. Chen, Q. Hao, Y. Cao, W. Lei, and Z. Tong. 2021. Label-free photoelectrochemical immunosensor for aflatoxin B1 detection based on the Z-scheme heterojunction of g-C3N4/Au/WO3. Biosensors and Bioelectronics 189:113373. doi: 10.1016/j.bios.2021.113373.
  • Pei, K., Y. Xiong, B. Xu, K. Wu, X. Li, H. Jiang, and Y. Xiong. 2018. Colorimetric ELISA for ochratoxin A detection based on the urease-induced metallization of gold nanoflowers. Sensors and Actuators B: Chemical 262:102–9. doi: 10.1016/j.snb.2018.01.193.
  • Peltomaa, R., I. Agudo-Maestro, V. Mas, R. Barderas, E. Benito-Pena, and M. C. Moreno-Bondi. 2019. Development and comparison of mimotope-based immunoassays for the analysis of fumonisin B-1. Analytical and Bioanalytical Chemistry 411 (26):6801–11. doi: 10.1007/s00216-019-02068-7.
  • Peltomaa, R., E. Benito-Peña, R. Barderas, U. Sauer, M. González Andrade, and M. C. Moreno-Bondi. 2017. Microarray-based immunoassay with synthetic mimotopes for the detection of fumonisin B-1. Analytical Chemistry 89 (11):6216–24. doi: 10.1021/acs.analchem.7b01178.
  • Qiu, Y. L., Q. H. He, Y. Xu, A. K. Bhunia, Z. Tu, B. Chen, and Y. Y. Liu. 2015. Deoxynivalenol-mimic nanobody isolated from a naive phage display nanobody library and its application in immunoassay. Analytica Chimica Acta 887:201–8. doi: 10.1016/j.aca.2015.06.033.
  • Rahmani, H. R., M. Adabi, K. P. Bagheri, and G. Karim. 2021. Development of electrochemical aptasensor based on gold nanoparticles and electrospun carbon nanofibers for the detection of aflatoxin M1 in milk. Journal of Food Measurement and Characterization 15 (2):1826–33. doi: 10.1007/s11694-020-00780-y.
  • Rangnoi, K., K. Choowongkomon, R. O’Kennedy, F. Rüker, and M. Yamabhai. 2018. Enhancement and analysis of human antiaflatoxin B1 (AFB1) scFv antibody-ligand interaction using chain shuffling. Journal of Agricultural and Food Chemistry 66 (22):5713–22. doi: 10.1021/acs.jafc.8b01141.
  • Rangnoi, K., N. Jaruseranee, R. O’Kennedy, P. Pansri, and M. Yamabhai. 2011. One-step detection of aflatoxin-B-1 using scFv-alkaline phosphatase-fusion selected from human phage display antibody library. Molecular Biotechnology 49 (3):240–9. doi: 10.1007/s12033-011-9398-2.
  • Ren, W. J., Y. Xu, Z. B. Huang, Y. P. Li, Z. Tu, L. Zou, Q. H. He, J. H. Fu, S. W. Liu, and B. D. Hammock. 2020. Single-chain variable fragment antibody-based immunochromatographic strip for rapid detection of fumonisin B-1 in maize samples. Food Chemistry 319:126546. doi: 10.1016/j.foodchem.2020.126546.
  • Ruscito, A., M. Smith, D. N. Goudreau, and M. C. DeRosa. 2016. Current status and future prospects for aptamer-based mycotoxin detection. Journal of AOAC International 99 (4):865–77. doi: 10.5740/jaoacint.16-0114.
  • Schatzmayr, G., and E. Streit. 2013. Global occurrence of mycotoxins in the food and feed chain: Facts and figures. World Mycotoxin Journal 6 (3):213–22. doi: 10.3920/WMJ2013.1572.
  • Setlem, K., B. Mondal, S. Ramlal, and J. Kingston. 2016. Immuno affinity SELEX for simple, rapid, and cost-effective aptamer enrichment and identification against aflatoxin B1. Frontiers in Microbiology 7 doi: 10.3389/fmicb.2016.01909.
  • Sheini, A. 2020. Colorimetric aggregation assay based on array of gold and silver nanoparticles for simultaneous analysis of aflatoxins, ochratoxin and zearalenone by using chemometric analysis and paper based analytical devices. Microchimica Acta 187 (3) doi: 10.1007/s00604-020-4147-5.
  • Shu, M., Y. Xu, J-x. Dong, C. Zhong, B. D. Hammock, W-j. Wang, and G-p. Wu. 2019. Development of a noncompetitive idiometric nanobodies phage immumoassay for the determination of fumonisin B-1. Food and Agricultural Immunology 30 (1):510–21. doi: 10.1080/09540105.2019.1604637.
  • Shu, M., Y. Xu, D. Wang, X. Liu, Y. Li, Q. He, Z. Tu, Y. Qiu, Y. Ji, and X. Wang. 2015. Anti-idiotypic nanobody: A strategy for development of sensitive and green immunoassay for Fumonisin B-1. Talanta 143:388–93. doi: 10.1016/j.talanta.2015.05.010.
  • Souliere, M. F., A. Haller, R. Rieder, and R. Micura. 2011. A powerful approach for the selection of 2-aminopurine substitution sites to investigate RNA folding. Journal of the American Chemical Society 133 (40):16161–7. doi: 10.1021/ja2063583.
  • Stoltenburg, R., C. Reinemann, and B. Strehlitz. 2007. SELEX–A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomolecular Engineering 24 (4):381–403. doi: 10.1016/j.bioeng.2007.06.001.
  • Subak, H., G. Selvolini, M. Macchiagodena, D. Ozkan-Ariksoysal, M. Pagliai, P. Procacci, and G. Marrazza. 2021. Mycotoxins aptasensing: From molecular docking to electrochemical detection of deoxynivalenol. Bioelectrochemistry 138:107691. doi: 10.1016/j.bioelechem.2020.107691.
  • Sun, C., X. Liao, P. Huang, G. Shan, X. Ma, L. Fu, L. Zhou, and W. Kong. 2020. A self-assembled electrochemical immunosensor for ultra-sensitive detection of ochratoxin A in medicinal and edible malt. Food Chemistry 315:126289. doi: 10.1016/j.foodchem.2020.126289.
  • Sun, S., R. Zhao, S. Feng, and Y. Xie. 2018. Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Microchimica Acta 185 (12) doi: 10.1007/s00604-018-3078-x.
  • Szlag, V. M., R. S. Rodriguez, S. Jung, M. R. Bourgeois, S. Bryson, A. Purchel, G. C. Schatz, C. L. Haynes, and T. M. Reineke. 2019. Optimizing linear polymer affinity agent properties for surface-enhanced Raman scattering detection of aflatoxin B1. Molecular Systems Design & Engineering 4 (5):1019–31. doi: 10.1039/C9ME00032A.
  • Taghdisi, S. M., N. M. Danesh, M. Ramezani, A. S. Emrani, and K. Abnous. 2018. Novel colorimetric aptasensor for zearalenone detection based on nontarget-induced aptamer walker, gold nanoparticles, and exonuclease-assisted recycling amplification. ACS Applied Materials & Interfaces 10 (15):12504–9. doi: 10.1021/acsami.8b02349.
  • Tang, D., J. C. Sauceda, Z. Lin, S. Ott, E. Basova, I. Goryacheva, S. Biselli, J. Lin, R. Niessner, and D. Knopp. 2009. Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B-2 in food. Biosensors & Bioelectronics 25 (2):514–8. doi: 10.1016/j.bios.2009.07.030.
  • Thirumala-Devi, K., J. S. Miller, G. Reddy, D. V. R. Reddy, and M. A. Mayo. 2001. Phage-displayed peptides that mimic aflatoxin B1 in serological reactivity. Journal of Applied Microbiology 90 (3):330–6. doi: 10.1046/j.1365-2672.2001.01249.x.
  • Tian, F., J. Zhou, R. Fu, Y. Cui, Q. Zhao, B. Jiao, and Y. He. 2020. Multicolor colorimetric detection of ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chemistry 320:126607. doi: 10.1016/j.foodchem.2020.126607.
  • Wang, D., Y. Xu, Z. Tu, H. Fu Jin, H. Xiong Yong, F. Feng, Y. Tao, and D. Lei. 2014a. Isolation and characterization of recombinant variable domain of heavy chain anti-idiotypic antibodies specific to aflatoxin B-1. Biomedical and Environmental Sciences : BES 27 (2):118–21. doi: 10.3967/bes2014.025.
  • Wang, F., Z.-F. Li, D.-B. Wan, N. Vasylieva, Y.-D. Shen, Z.-L. Xu, J.-Y. Yang, J. Gettemans, H. Wang, B. D. Hammock, et al. 2021. Enhanced non-toxic immunodetection of alternaria mycotoxin tenuazonic acid based on ferritin-displayed anti-idiotypic nanobody-nanoluciferase multimers. Journal of Agricultural and Food Chemistry 69 (16):4911–7. doi: 10.1021/acs.jafc.1c01128.
  • Wang, J., H. Mukhtar, L. Ma, Q. Pang, and X. Wang. 2018. VHH antibodies: Reagents for mycotoxin detection in food products. Sensors (Basel) 18 (2):485. doi: 10.3390/s18020485.
  • Wang, R., X. Gu, Z. Zhuang, Y. Zhong, H. Yang, and S. Wang. 2016a. Screening and molecular evolution of a single chain variable fragment antibody (scFv) against citreoviridin toxin. Journal of Agricultural and Food Chemistry 64 (40):7640–8. doi: 10.1021/acs.jafc.6b02637.
  • Wang, X., Q. He, Y. Xu, X. Liu, M. Shu, Z. Tu, Y. Li, W. Wang, and D. Cao. 2016b. Anti-idiotypic VHH phage display-mediated immuno-PCR for ultrasensitive determination of mycotoxin zearalenone in cereals. Talanta 147:410–5. doi: 10.1016/j.talanta.2015.09.072.
  • Wang, X., R. Niessner, and D. Knopp. 2015a. Controlled growth of immunogold for amplified optical detection of aflatoxin B1. The Analyst 140 (5):1453–8. doi: 10.1039/c4an02281e.
  • Wang, Y.-K., Y.-B. Shi, Q. Zou, J.-H. Sun, Z.-F. Chen, H-a. Wang, S.-Q. Li, and Y.-X. Yan. 2013a. Development of a rapid and simultaneous immunochromatographic assay for the determination of zearalenone and fumonisin B1 in corn, wheat and feedstuff samples. Food Control. 31 (1):180–8. doi: 10.1016/j.foodcont.2012.09.048.
  • Wang, Y.-K., Y.-X. Yan, W.-H. Ji, H-a. Wang, Q. Zou, and J.-H. Sun. 2013b. Novel Chemiluminescence immunoassay for the determination of zearalenone in food samples using gold nanoparticles labeled with streptavidin-horseradish peroxidase. Journal of Agricultural and Food Chemistry 61 (18):4250–6. doi: 10.1021/jf400731j.
  • Wang, Y.-K., Y.-X. Yan, Z.-W. Mao, H-a. Wang, Q. Zou, Q.-W. Hao, W.-H. Ji, and J.-H. Sun. 2013c. Highly sensitive electrochemical immunoassay for zearalenone in grain and grain-based food. Microchimica Acta 180 (3–4):187–93. doi: 10.1007/s00604-012-0915-1.
  • Wang, Y.-K., Q. Zou, J.-H. Sun, H-a. Wang, X. Sun, Z.-F. Chen, and Y.-X. Yan. 2015b. Screening of single-stranded DNA (ssDNA) aptamers against a zearalenone monoclonal antibody and development of a ssDNA-based enzyme-linked oligonucleotide assay for determination of zearalenone in corn. Journal of Agricultural and Food Chemistry 63 (1):136–41. doi: 10.1021/jf503733g.
  • Wang, Y., X. Hu, Y. Pei, Y. Sun, F. Wang, C. Song, M. Yin, R. Deng, Z. Li, and G. Zhang. 2015c. Selection of phage-displayed minotopes of ochratoxin A and its detection in cereal by ELISA. Analytical Methods 7 (5):1849–54. doi: 10.1039/C4AY02290D.
  • Wang, Y. K., Y. C. Wang, H. A. Wang, W. H. Ji, J. H. Sun, and Y. X. Yan. 2014b. An immunomagnetic-bead-based enzyme-linked immunosorbent assay for sensitive quantification of fumonisin B1. Food Control. 40:41–5. doi: 10.1016/j.foodcont.2013.11.025.
  • Wang, Y. K., Y. X. Yan, S. Q. Li, H. A. Wang, W. H. Ji, and J. H. Sun. 2013d. Simultaneous quantitative determination of multiple mycotoxins in cereal and feedstuff samples by a suspension array immunoassay. Journal of Agricultural and Food Chemistry 61 (46):10948–53. doi: 10.1021/jf4036029.
  • Wei, M., L. Xin, S. Feng, and Y. Liu. 2020. Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Microchimica Acta 187 (2) doi: 10.1007/s00604-019-4089-y.
  • Wu, S., N. Duan, W. Zhang, S. Zhao, and Z. Wang. 2016. Screening and development of DNA aptamers as capture probes for colorimetric detection of patulin. Analytical Biochemistry 508:58–64. doi: 10.1016/j.ab.2016.05.024.
  • Wu, S., L. Liu, N. Duan, Q. Li, Y. Zhou, and Z. Wang. 2018. Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. Journal of Agricultural and Food Chemistry 66 (8):1949–54. doi: 10.1021/acs.jafc.7b05326.
  • Wu, Y., Y. Zhou, H. Huang, X. Chen, Y. Leng, W. Lai, X. Huang, and Y. Xiong. 2020. Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sensors and Actuators B: Chemical 316:128107. doi: 10.1016/j.snb.2020.128107.
  • Wu, Z., D.-W. Sun, H. Pu, Q. Wei, and X. Lin. 2022. Ti(3)C(2)Tx MXenes loaded with Au nanoparticle dimers as a surface-enhanced Raman scattering aptasensor for AFB1 detection. Food Chemistry 372:131293. doi: 10.1016/j.foodchem.2021.131293.
  • Xiao, Z.-L., Y.-L. Wang, Y.-D. Shen, Z.-L. Xu, J.-X. Dong, H. Wang, C. Situ, F. Wang, J.-Y. Yang, H.-T. Lei, et al. 2018. Specific monoclonal antibody-based enzyme immunoassay for sensitive and reliable detection of alternaria mycotoxin iso-tenuazonic acid in food products. Food Analytical Methods 11 (3):635–45. doi: 10.1007/s12161-017-1033-9.
  • Xing, K., J. Peng, W. Chen, B. Fang, D. Liu, S. Shan, G. Zhang, Y. Huang, and W. Lai. 2022. Development of a label-free plasmonic gold nanoparticles aggregates sensor on the basis of charge neutralization for the detection of zearalenone. Food Chemistry 370. doi: 10.1016/j.foodchem.2021.131365.
  • Xiong, L., X. Zhang, Y. Xu, Y. Li, D. Liu, Z. Tu, and Q. He. 2020. Anti-idiotypic VHH mediated environmentally friendly immunoassay for citrinin without mycotoxin. Food and Agricultural Immunology 31 (1):968–84. doi: 10.1080/09540105.2020.1795631.
  • Xiong, Y., K. Pei, Y. Q. Wu, H. Duan, W. H. Lai, and Y. H. Xiong. 2018. Plasmonic ELISA based on enzyme-assisted etching of Au nanorods for the highly sensitive detection of aflatoxin B-1 in corn samples. Sensors and Actuators B: Chemical 267:320–7. doi: 10.1016/j.snb.2018.04.027.
  • Xu, S., L. Guo, L. Chen, F. Luo, B. Qiu, and Z. Lin. 2020. Dark field microscope-based single nanoparticle identification coupled with statistical analysis for ultrasensitive biotoxin detection in complex sample matrix. Microchimica Acta 187 (7) doi: 10.1007/s00604-020-04386-5.
  • Xu, Y., B. Chen, Q-h. He, Y.-L. Qiu, X. Liu, Z-y. He, and Z-p. Xiong. 2014. New approach for development of sensitive and environmentally friendly immunoassay for mycotoxin fumonisin B-1 based on using peptide-MBP fusion protein as substitute for coating antigen. Analytical Chemistry 86 (16):8433–40. doi: 10.1021/ac502037w.
  • Xu, Y., H. W. Yang, Z. B. Huang, Y. P. Li, Q. H. He, Z. Tu, Y. W. Ji, and W. J. Ren. 2018. A peptide/maltose-binding protein fusion protein used to replace the traditional antigen for immunological detection of deoxynivalenol in food and feed. Food Chemistry 268:242–8. doi: 10.1016/j.foodchem.2018.06.096.
  • Yan, J., Q. Shi, K. You, Y. Li, and Q. He. 2019. Phage displayed mimotope peptide-based immunosensor for green and ultrasensitive detection of mycotoxin deoxynivalenol. Journal of Pharmaceutical and Biomedical Analysis 168:94–101. doi: 10.1016/j.jpba.2019.01.051.
  • Yin, M., X. Hu, Y. Sun, Y. Xing, G. Xing, Y. Wang, Q. Li, Y. Wang, R. Deng, and G. Zhang. 2020. Broad-spectrum detection of zeranol and its analogues by a colloidal gold-based lateral flow immunochromatographic assay in milk. Food Chemistry 321:126697. doi: 10.1016/j.foodchem.2020.126697.
  • You, K. H., X. E. Luo, W. J. Hu, Y. Xu, J. B. Guo, and Q. H. He. 2020. Environmental-friendly gold nanoparticle immunochromatographic assay for ochratoxin A based on biosynthetic mimetic mycotoxin-conjugates. World Mycotoxin Journal 13 (2):267–75. doi: 10.3920/WMJ2019.2511.
  • Yu, X., Y. Lin, X. Wang, L. Xu, Z. Wang, and F. Fu. 2018. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod. Microchimica Acta 185 (5) doi: 10.1007/s00604-018-2811-9.
  • Yu, Y., Y. Li, Q. Zhang, Y. Zha, S. Lu, Y. Yang, P. Li, and Y. Zhou. 2022. Colorimetric immunoassay via smartphone based on Mn2+-mediated aggregation of AuNPs for convenient detection of fumonisin B1. Food Control. 132:108481. doi: 10.1016/j.foodcont.2021.108481.
  • Yuan, Q. P., J. R. Clarke, H. R. Zhou, J. E. Linz, J. J. Pestka, and L. P. Hart. 1997. Molecular cloning, expression, and characterization of a functional single-chain Fv antibody to the mycotoxin zearalenone. Applied and Environmental Microbiology 63 (1):263–9. doi: 10.1128/aem.63.1.263-269.1997.
  • Yuan, Q. P., J. J. Pestka, B. M. Hespenheide, L. A. Kuhn, J. E. Linz, and L. P. Hart. 1999. Identification of mimotope peptides which bind to the mycotoxin deoxynivalenol-specific monoclonal antibody. Applied and Environmental Microbiology 65 (8):3279–86. doi: 10.1128/AEM.65.8.3279-3286.1999.
  • Zhang, W., S. Tang, Y. Jin, C. Yang, L. He, J. Wang, and Y. Chen. 2020. Multiplex SERS-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual Raman labels and triple test lines. Journal of Hazardous Materials 393. doi: 10.1016/j.jhazmat.2020.122348.
  • Zhao, F., Y. Tian, Q. Shen, R. Liu, R. Shi, H. Wang, and Z. Yang. 2019. A novel nanobody and mimotope based immunoassay for rapid analysis of aflatoxin B1. Talanta 195:55–61. doi: 10.1016/j.talanta.2018.11.013.
  • Zhong, H., C. Yu, R. Gao, J. Chen, Y. Yu, Y. Geng, Y. Wen, and J. He. 2019. A novel sandwich aptasensor for detecting T-2 toxin based on rGO-TEPA-Au@Pt nanorods with a dual signal amplification strategy. Biosensors and Bioelectronics 144:111635. doi: 10.1016/j.bios.2019.111635.
  • Zhou, H.-R., J. J. Pestka, and L. P. Hart. 1996. Molecular cloning and expression of recombinant phage antibody against fumonisin B-1. Journal of Food Protection 59 (11):1208–12. doi: 10.4315/0362-028x-59.11.1208.
  • Zhou, J., Y. Li, Z. Liu, W. Qian, Y. Chen, Y. Qi, and A. Wang. 2021. Induction of anti-Zearalenone immune response with mimotopes identified from a phage display peptide library. Toxicon : official Journal of the International Society on Toxinology 199:1–6. doi: 10.1016/j.toxicon.2021.05.010.
  • Zhou, Y., L. Ding, Y. Wu, X. Huang, W. Lai, and Y. Xiong. 2019. Emerging strategies to develop sensitive AuNP-based ICTS nanosensors. TrAC Trends in Analytical Chemistry 112:147–60. doi: 10.1016/j.trac.2019.01.006.
  • Zhou, Y., X. Huang, W. Zhang, Y. Ji, R. Chen, and Y. Xiong. 2018. Multi-branched gold nanoflower-embedded iron porphyrin for colorimetric immunosensor. Biosensors & Bioelectronics 102:9–16. doi: 10.1016/j.bios.2017.10.046.
  • Zhu, W., L. Li, Z. Zhou, X. Yang, N. Hao, Y. Guo, and K. Wang. 2020. A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chemistry 319:126544. doi: 10.1016/j.foodchem.2020.126544.
  • Zong, C., F. Jiang, X. Wang, P. Li, L. Xu, and H. Yang. 2021. Imaging sensor array coupled with dual-signal amplification strategy for ultrasensitive chemiluminescence immunoassay of multiple mycotoxins. Biosensors and Bioelectronics 177:112998. doi: 10.1016/j.bios.2021.112998.
  • Zou, L., Y. Xu, Y. P. Li, Q. H. He, B. Chen, and D. Wang. 2014. Development of a single-chain variable fragment antibody-based enzyme-linked immunosorbent assay for determination of fumonisin B-1 in corn samples. Journal of the Science of Food and Agriculture 94 (9):1865–71. doi: 10.1002/jsfa.6505.
  • Zou, X., C. Chen, X. Huang, X. Chen, L. Wang, and Y. Xiong. 2016. Phage-free peptide ELISA for ochratoxin A detection based on biotinylated mimotope as a competing antigen. Talanta 146:394–400. doi: 10.1016/j.talanta.2015.08.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.