268
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Assessment of the stability of compounds belonging to neglected phenolic classes and flavonoid sub-classes using reaction kinetic modeling

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 11802-11829 | Published online: 14 Jul 2022

References

  • Agcam, E., A. Akyildiz, and G. A. Evrendilek. 2014. Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chemistry 143:354–61. doi: 10.1016/j.foodchem.2013.07.115.
  • Alexander, L., D. De Beer, M. Muller, M. Van der Rijst, and E. Joubert. 2017. Modifying the sensory profile of green honeybush (Cyclopia maculata) herbal tea through steam treatment. LWT - Food Science and Technology 82:49–57. doi: 10.1016/j.lwt.2017.04.018.
  • Alexander, L., D. De Beer, M. Muller, M. Van der Rijst, and E. Joubert. 2018. Steam treatment of green Cyclopia longifolia - Delivering herbal tea infusions with a high bioactive content and improved aroma. South African Journal of Botany 114:316–22. doi: 10.1016/j.sajb.2017.11.013.
  • Alexander, L., D. De Beer, M. Muller, M. Van der Rijst, and E. Joubert. 2019a. Bitter profiling of phenolic fractions of green Cyclopia genistoides herbal tea. Food Chemistry 276:626–35. doi: 10.1016/j.foodchem.2018.10.030.
  • Alexander, L., D. De Beer, M. Muller, M. Van der Rijst, and E. Joubert. 2019b. Impact of steam treatment on shelf-life stability of a xanthone-rich green herbal tea (Cyclopia maculata Andrews Kies) - identifying quality changes during storage. Journal of the Science of Food and Agriculture 99 (3):1334–41. doi: 10.1002/jsfa.9308.
  • Alexander, L., D. De Beer, M. Muller, M. Van der Rijst, and E. Joubert. 2019c. Potential of benzophenones and flavanones to modulate the bitter intensity of Cyclopia genistoides herbal tea. Food Research International 125:108519. doi: 10.1016/j.foodres.2019.108519.
  • Alexander, L., E. I. Moelich, D. De Beer, M. Muller, B. Walczak, and E. Joubert. 2021. High-temperature oxidation reduces the bitterness of honeybush infusions depending on changes in phenolic composition. LWT - Food Science and Technology 139:110608.doi:10.1016/j.lwt.2020.110608.
  • Amarowicz, R., R. Carle, G. Dongowski, A. Durazzo, R. Galensa, D. Kammerer, G. Maiani, and M. K. Piskula. 2009. Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Molecular Nutrition & Food Research 53 (S2):S151–S183. doi: 10.1002/mnfr.200700486.
  • Amodio, M. L., A. Derossi, L. Mastrandrea, and G. Colelli. 2015. A study of the estimated shelf life of fresh rocket using a non-linear model. Journal of Food Engineering 150:19–28. doi: 10.1016/j.jfoodeng.2014.10.030.
  • Angulo-López, J. E., A. C. Flores-Gallegos, C. Torres-León, K. N. Ramírez-Guzmán, G. A. Martínez, and C. N. Aguilar. 2021. Guava (Psidium guajava L.) fruit and valorization of industrialization by-products. Processes 9 (6):1075. doi: 10.3390/pr9061075.
  • Arfaoui, L. 2021. Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules 26 (10):2959. doi: 10.3390/molecules26102959.
  • Barreca, D., E. Bellocco, C. Caristi, U. Leuzzi, and G. Gattuso. 2011. Kumquat (Fortunella japonica Swingle) juice: Flavonoid distribution and antioxidant properties. Food Research International 44 (7):2190–7. doi: 10.1016/j.foodres.2010.11.031.
  • Barreto, J. C., M. T. S. Trevisan, W. E. Hull, G. Erben, E. S. De Brito, B. Pfundstein, G. Würtele, B. Spiegelhalder, and R. W. Owen. 2008. Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). Journal of Agricultural and Food Chemistry 56 (14):5599–610. doi: 10.1021/jf800738r.
  • Beelders, T., D. De Beer, and E. Joubert. 2015. Thermal Degradation Kinetics Modeling of Benzophenones and Xanthones during High-Temperature Oxidation of Cyclopia genistoides (L.) Vent. Plant Material. Journal of Agricultural and Food Chemistry 63 (22):5518–27. doi:10.1021/acs.jafc.5b01657. PMID: 25969161
  • Beelders, T., D. De Beer, D. Ferreira, M. Kidd, and E. Joubert. 2017. Thermal stability of the functional ingredients, glucosylated benzophenones and xanthones of honeybush (Cyclopia genistoides), in an aqueous model solution. Food Chemistry 233:412–21. doi: 10.1016/j.foodchem.2017.04.083.
  • Beelders, T., D. De Beer, M. Kidd, and E. Joubert. 2018. Modeling of thermal degradation kinetics of the C-glucosyl xanthone mangiferin in an aqueous model solution as a function of pH and temperature and protective effect of honeybush extract matrix. Food Research International 103:103–9. doi: 10.1016/j.foodres.2017.10.020.
  • Bělehrádek, J. 1930. Temperature coefficients in biology. Biological Reviews 5:30–58.
  • Berardini, N., R. Fezer, J. Conrad, U. Beifuss, R. Carle, and A. Schieber. 2005a. Screening of mango (Mangifera indica L.) cultivars for their contents of flavonol O-and xanthone C-glycosides, anthocyanins, and pectin. Journal of Agricultural and Food Chemistry 53 (5):1563–70. doi: 10.1021/jf0484069.
  • Berardini, N., M. Knödler, A. Schieber, and R. Carle. 2005b. Utilization of mango peels as a source of pectin and polyphenolics. Innovative Food Science & Emerging Technologies 6 (4):442–52. doi: 10.1016/j.ifset.2005.06.004.
  • Bors, W., C. Michel, and S. Schikora. 1995. Interaction of flavonoids with ascorbate and determination of their univalent redox potentials: A pulse radiolysis study. Free Radical Biology and Medicine 19 (1):45–52. doi: 10.1016/0891-5849(95)00011-L.
  • Buchner, N., A. Krumbein, S. Rohn, and L. W. Kroh. 2006. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communications in Mass Spectrometry: RCM 20 (21):3229–35. doi: 10.1002/rcm.2720.
  • Canales, I., F. Borrego, and M. Lindley. 1993. Neohesperidin dihydrochalcone stability in aqueous buffer solutions. Journal of Food Science 58 (3):589–91. doi: 10.1111/j.1365-2621.1993.tb04330.x.
  • Capuano, E., T. Oliviero, and M. A. J. Van Boekel. 2018. Modeling food matrix effects on chemical reactivity: Challenges and perspectives. Critical Reviews in Food Science and Nutrition 58 (16):2814–28. doi: 10.1080/10408398.2017.1342595.
  • Chaaban, H., I. Ioannou, L. Chebil, M. Slimane, C. Gérardin, C. Paris, C. Charbonnel, L. Chekir, and M. Ghoul. 2017. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. Journal of Food Processing and Preservation 41 (5):e13203. doi: 10.1111/jfpp.13203.
  • Cheynier, V. 2005. Polyphenols in foods are more complex than often thought. The American Journal of Clinical Nutrition 81 (1 Suppl):223S–9S. doi: 10.1093/ajcn/81.1.223s.
  • Ciriminna, R., F. Meneguzzo, R. Delisi, and M. Pagliaro. 2017. Citric acid: Emerging applications of key biotechnology industrial product. Chemistry Central Journal 11:22. doi: 10.1186/s13065-017-0251-y.
  • Coiffard, C., L. Coiffard, F. Peigné, and Y. De Roeck-Holtzhauer. 1998. Effect of pH on neohesperidin dihydrochalcone thermostability in aqueous solutions. Analusis 26 (3):150–3. doi: 10.1051/analusis:1998126.
  • Cunha, L. M., F. A. R. Oliveira, and J. C. Oliveira. 1998. Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. Journal of Food Engineering 37 (2):175–91. doi: 10.1016/S0260-8774(98)00085-5.
  • Danton, O., L. Alexander, C. Hunlun, D. De Beer, M. Hamburger, and E. Joubert. 2018. Bitter taste impact and thermal conversion of a naringenin glycoside from Cyclopia genistoides. Journal of Natural Products 81 (12):2743–9. doi: 10.1021/acs.jnatprod.8b00710.
  • De Ancos, B., C. Sánchez-Moreno, L. Zacarías, M. J. Rodrigo, S. Sáyago Ayerdí, F. J. Blancas Benítez, J. A. Domínguez Avila, and G. A. González-Aguilar. 2018. Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products. Journal of Food Measurement and Characterization 12 (3):2145–57. doi: 10.1007/s11694-018-9830-4.
  • De Beer, D., E. Joubert, M. Viljoen, and M. Manley. 2012. Enhancing aspalathin stability in rooibos (Aspalathus linearis) ready-to-drink iced teas during storage: The role of nano-emulsification and beverage ingredients, citric and ascorbic acids. Journal of the Science of Food and Agriculture 92 (2):274–82. doi: 10.1002/jsfa.4571.
  • De Beer, D., C. J. Malherbe, T. Beelders, E. L. Willenburg, D. J. Brand, and E. Joubert. 2015. Isolation of aspalathin and nothofagin from rooibos (Aspalathus linearis) using high-performance countercurrent chromatography: Sample loading and compound stability considerations. Journal of Chromatography A 1381:29–36. doi: 10.1016/j.chroma.2014.12.078.
  • De Beer, D., C. E. Pauck, M. Aucamp, W. Liebenberg, N. Stieger, M. Van der Rijst, and E. Joubert. 2018. Phenolic and physicochemical stability of a functional beverage powder mixture during storage: Effect of the microencapsulant inulin and food ingredients. Journal of the Science of Food and Agriculture 98 (8):2925–34. doi: 10.1002/jsfa.8787.
  • De Beer, D., J. Tobin, B. Walczak, M. Van Der Rijst, and E. Joubert. 2019. Phenolic composition of rooibos changes during simulated fermentation: Effect of endogenous enzymes and fermentation temperature on reaction kinetics. Food Research International 121:185–96. doi: 10.1016/j.foodres.2019.03.041.
  • De Paepe, D., D. Valkenborg, K. Coudijzer, B. Noten, K. Servaes, M. De Loose, S. Voorspoels, L. Diels, and B. Van Droogenbroeck. 2014. Thermal degradation of cloudy apple juice phenolic constituents. Food Chemistry 162:176–85. doi: 10.1016/j.foodchem.2014.04.005.
  • Dhuique-Mayer, C., M. Tbatou, M. Carail, C. Caris-Veyrat, M. Dornier, and M. J. Amiot. 2007. Thermal degradation of antioxidant micronutrients in citrus juice: Kinetics and newly formed compounds. Journal of Agricultural and Food Chemistry 55 (10):4209–16. doi: 10.1021/jf0700529.
  • El-Awaad, I., M. Bocola, T. Beuerle, B. Liu, and L. Beerhues. 2016. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis. Nature Communications 7:11472. doi: 10.1038/ncomms11472.
  • El-Seedi, H., M. El-Barbary, D. El-Ghorab, L. Bohlin, A.-K. Borg-Karlson, U. Goransson, and R. Verpoorte. 2010. Recent insights into the biosynthesis and biological activities of natural xanthones. Current Medicinal Chemistry 17 (9):854–901. doi: 10.2174/092986710790712147.
  • Ferreira, L. M. B., M. Kobelnik, L. O. Regasini, L. A. Dutra, V. da Silva Bolzani, and C. A. Ribeiro. 2017. Synthesis and evaluation of the thermal behavior of flavonoids: Thermal decomposition of flavanone and 6-hydroxyflavanone. Journal of Thermal Analysis and Calorimetry 127 (2):1605–10. doi: 10.1007/s10973-016-5896-6.
  • Garg, A., S. Garg, L. J. D. D. Zaneveld, and A. K. Singla. 2001. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytotherapy Research: PTR 15 (8):655–69. doi: 10.1002/ptr.1074.
  • Giuffrè, A. M., C. Zappia, and M. Capocasale. 2017. Physicochemical stability of blood orange juice during frozen storage. International Journal of Food Properties 20:1930–43. doi: 10.1080/10942912.2017.1359184.
  • He, J., and M. M. Giusti. 2010. Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1:163–87. doi: 10.1146/annurev.food.080708.100754.
  • Heinrich, T., I. Willenberg, and M. A. Glomb. 2012. Chemistry of color formation during rooibos fermentation. Journal of Agricultural and Food Chemistry 60 (20):5221–8. doi: 10.1021/jf300170j.
  • Heras-Ramírez, M. E., A. Quintero-Ramos, A. A. Camacho-Dávila, J. Barnard, R. Talamás-Abbud, J. V. Torres-Muñoz, and E. Salas-Muñoz. 2012. Effect of blanching and drying temperature on polyphenolic compound stability and antioxidant capacity of apple pomace. Food and Bioprocess Technology 5 (6):2201–10. doi: 10.1007/s11947-011-0583-x.
  • Horowitz, R. M., and B. Gentili. 1963. Dihydrochalcone derivatives and their use as sweetening agents. U.S. Patent 3,087,821.
  • Human, C., D. De Beer, M. Aucamp, I. J. Marx, C. J. Malherbe, M. Viljoen-Bloom, M. Van der Rijst, and E. Joubert. 2020. Preparation of rooibos extract-chitosan microparticles: Physicochemical characterisation and stability of aspalathin during accelerated storage. LWT - Food Science and Technology 117:108653. doi: 10.1016/j.lwt.2019.108653.
  • Human, C., O. Danton, D. De Beer, T. Maruyama, L. Alexander, C. Malherbe, M. Hamburger, and E. Joubert. 2021a. Identification of a novel di-C-glycosyl dihydrochalcone and the thermal stability of polyphenols in model ready-to-drink beverage solutions with Cyclopia subternata extract as functional ingredient. Food Chemistry 351:129273. doi: 10.1016/j.foodchem.2021.129273.
  • Human, C., D. De Beer, M. Muller, M. Van der Rijst, M. Aucamp, A. Tredoux, A. De Villiers, and E. Joubert. 2021b. Shelf-life stability of ready-to-use green rooibos iced tea powder—Assessment of physical, chemical, and sensory properties. Molecules 26 (17):5260. doi: 10.3390/molecules26175260.
  • Igual, M., E. García-Martínez, M. M. Camacho, and N. Martínez-Navarrete. 2011. Changes in flavonoid content of grapefruit juice caused by thermal treatment and storage. Innovative Food Science & Emerging Technologies 12 (2):153–62. doi: 10.1016/j.ifset.2010.12.010.
  • Imran, M., M. S. Arshad, M. S. Butt, J.-H. Kwon, M. U. Arshad, and M. T. Sultan. 2017. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids in Health and Disease 16 (1):84. doi: 10.1186/s12944-017-0449-y.
  • Inglett, G. E., L. Krbechek, B. Dowling, and R. Wagner. 1969. Dihydrochalcone sweeteners - sensory and stability evaluation. Journal of Food Science 34 (1):101–4. doi: 10.1111/j.1365-2621.1969.tb14371.x.
  • Ioannou, I., I. Hafsa, S. Hamdi, C. Charbonnel, and M. Ghoul. 2012. Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. Journal of Food Engineering 111 (2):208–17. doi: 10.1016/j.jfoodeng.2012.02.006.
  • Ioannou, I., A. Kriznik, L. Chekir, and M. Ghoul. 2019. Effect of the processing temperature on the degradation of food flavonoids: Kinetic and calorimetric studies on model solutions. Journal of Food Engineering and Technology 8 (2):91–102. doi: 10.32732/jfet.2019.8.2.91.
  • Ioannou, I., L. Chekir, and M. Ghoul. 2020. Effect of heat treatment and light exposure on the antioxidant activity of flavonoids. Processes 8 (9):1078. doi: 10.3390/pr8091078.
  • Jangra, A., M. K. Arora, A. Kisku, and S. Sharma. 2021. The multifaceted role of mangiferin in health and diseases: A review. Advances in Traditional Medicine 21 (4):619–43. doi: 10.1007/s13596-020-00471-5.
  • Johnson, R., D. De Beer, P. Dludla, D. Ferreira, C. J. F. Muller, and E. Joubert. 2018. Aspalathin from rooibos (Aspalathus linearis): A bioactive C-glucosyl dihydrochalcone with potential to target the metabolic syndrome. Planta Medica 84 (9–10):568–83. doi: 10.1055/s-0044-100622.
  • Joubert, E. 1996. HPLC quantification of the dihydrochalcones, aspalathin and nothofagin in rooibos tea (Aspalathus linearis) as affected by processing. Food Chemistry 55 (4):403–11. doi: 10.1016/0308-8146(95)00166-2.
  • Joubert, E., and D. De Beer. 2011. Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. South African Journal of Botany 77 (4):869–86. doi: 10.1016/j.sajb.2011.07.004.
  • Joubert, E, and D. De Beer. 2014. Antioxidants of rooibos beverages: Role of plant composition and processing. In Processing and impact on antioxidants in beverages, ed. V. Preedy, 131–44. San Diego: Academic Press. doi: 10.1016/B978-0-12-404738-9.00014-3.
  • Joubert, E., D. De Beer, C. J. Malherbe, M. Muller, A. Louw, and W. C. A. Gelderblom. 2019. Formal honeybush tea industry reaches 20-year milestone – progress of product research targeting phenolic composition, quality and bioactivity. South African Journal of Botany 127:58–79. doi: 10.1016/j.sajb.2019.08.027.
  • Joubert, E., E. S. Richards, J. D. V. der Merwe, D. De Beer, M. Manley, and W. C. A. Gelderblom. 2008. Effect of species variation and processing on phenolic composition and in vitro antioxidant activity of aqueous extracts of Cyclopia spp. (honeybush tea). Journal of Agricultural and Food Chemistry 56 (3):954–63. doi: 10.1021/jf072904a.
  • Joubert, E., M. Viljoen, D. De Beer, and M. Manley. 2009. Effect of Heat on Aspalathin, Iso-orientin, and Orientin Contents and Color of Fermented Rooibos (Aspalathus linearis) Iced Tea. Journal of Agricultural and Food Chemistry 57 (10):4204–11. doi:10.1021/jf9005033.
  • Joubert, E., M. Viljoen, D. De Beer, C. J. Malherbe, D. J. Brand, and M. Manley. 2010. Use of green rooibos (Aspalathus linearis) extract and water-soluble nanomicelles of green rooibos extract encapsulated with ascorbic acid for enhanced aspalathin content in ready-to-drink iced teas. Journal of Agricultural and Food Chemistry 58 (20):10965–71. doi: 10.1021/jf103552f.
  • Jujun, P., K. Pootakham, Y. Pongpaibul, P. Tharavichitkul, and C. Ampasavate. 2009. HPLC determination of mangostin and its application to storage stability study. Chiang Mai University Journal of Natural Sciences 8:43–53.
  • Khan, M. K., and O. Dangles. 2014. A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis 33 (1):85–104. doi: 10.1016/j.jfca.2013.11.004.
  • Khurana, R. K., S. Kaur, J. Kaur, and B. Singh. 2017. Elucidation of stress-induced degradation products of mangiferin: Method development and validation. Biomedical Chromatography 31 (8):e3935. doi: 10.1002/bmc.3935.
  • Koch, I. S., N. Muller, D. De Beer, T. Naes, and E. Joubert. 2013. Impact of steam pasteurization on the sensory profile and phenolic composition of rooibos (Aspalathus linearis) herbal tea infusions. Food Research International 53 (2):704–12. doi: 10.1016/j.foodres.2012.10.017.
  • Kokotkiewicz, A., M. Luczkiewicz, P. Sowinski, D. Glod, K. Gorynski, and A. Bucinski. 2012. Isolation and structure elucidation of phenolic compounds from Cyclopia subternata Vogel (honeybush) intact plant and in vitro cultures. Food Chemistry 133 (4):1373–82. doi: 10.1016/j.foodchem.2012.01.114.
  • Krafczyk, N., and M. A. Glomb. 2008. Characterization of phenolic compounds in rooibos tea. Journal of Agricultural and Food Chemistry 56 (9):3368–76. doi: 10.1021/jf703701n.
  • Krafczyk, N., T. Heinrich, A. Porzel, and M. A. Glomb. 2009. Oxidation of the dihydrochalcone aspalathin leads to dimerization. Journal of Agricultural and Food Chemistry 57 (15):6838–43. doi: 10.1021/jf901614y.
  • Ku, S.-K., S. Kwak, Y. Kim, and J.-S. Bae. 2015. Aspalathin and nothofagin from rooibos (Aspalathus linearis) inhibits high glucose-induced inflammation in vitro and in vivo. Inflammation 38 (1):445–55. doi: 10.1007/s10753-014-0049-1.
  • Lavelli, V., and S. Corti. 2011. Phloridzin and other phytochemicals in apple pomace: Stability evaluation upon dehydration and storage of dried product. Food Chemistry 129 (4):1578–83. doi: 10.1016/j.foodchem.2011.06.011.
  • Lavelli, V., and C. Vantaggi. 2009. Rate of antioxidant degradation and color variations in dehydrated apples as related to water activity. Journal of Agricultural and Food Chemistry 57 (11):4733–8. doi: 10.1021/jf900176v.
  • Lee, M. K., H. W. Kim, S. H. Lee, Y. J. Kim, G. Asamenew, J. Choi, J. W. Lee, H. A. Jung, S. M. Yoo, and J. B. Kim. 2019. Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. European Food Research and Technology 245 (5):997–1010. doi: 10.1007/s00217-018-3201-6.
  • Lemańska, K., H. Szymusiak, B. Tyrakowska, R. Zieliński, A. E. M. F. Soffers, and I. M. C. M. Rietjens. 2001. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radical Biology & Medicine 31 (7):869–81. doi: 10.1016/S0891-5849(01)00638-4.
  • Levenspiel, O. 1999. Chemical reaction engineering. Industrial & Engineering Chemistry Research 38 (11):4140–3. doi: 10.1021/ie990488g.
  • Li, W., Y. Li, J. Bi, Q. Ji, X. Zhao, Q. Zheng, S. Tan, and X. Gao. 2020. Effect of hot air drying on the polyphenol profile of Hongjv (Citrus reticulata Blanco, CV. Hongjv) peel: A multivariate analysis. Journal of Food Biochemistry 44 (5):e13174. doi: 10.1111/jfbc.13174.
  • Liao, M.-L., and P. A. Seib. 1988. Chemistry of L-ascorbic acid related to foods. Food Chemistry 30 (4):289–312. doi: 10.1016/0308-8146(88)90115-X.
  • Ling, B., J. Tang, F. Kong, E. J. Mitcham, and S. Wang. 2015. Kinetics of food quality changes during thermal processing: A review. Food and Bioprocess Technology 8 (2):343–58. doi: 10.1007/s11947-014-1398-3.
  • Liu, H.-Y., Y. Liu, Y.-H. Mai, H. Guo, X.-Q. He, Y. Xia, H. Li, Q.-G. Zhuang, and R.-Y. Gan. 2021. Phenolic content, main flavonoids, and antioxidant capacity of instant sweet tea (Lithocarpus litseifolius [Hance] Chun) prepared with different raw materials and drying methods. Foods 10 (8):1930. doi: 10.3390/foods10081930.
  • Lou, S.-N, and C.-T. Ho. 2017. Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin. Journal of Food and Drug Analysis 25 (1):162–75. doi:10.1016/j.jfda.2016.10.024.
  • Lou, S.-N., H.-P. Hsieh, C.-T. Ho, L.-H A. Ferng, and Y.-C. Chang. 2015. Enhancing the antioxidant activity of immature calamondin by heat treatment. International Journal of Food Science & Technology 50 (5):1166–73. doi: 10.1111/ijfs.12741.
  • Lou, S. N., M. W. Yu, and C. T. Ho. 2012. Tyrosinase inhibitory components of immature calamondin peel. Food Chemistry 135 (3):1091–6. doi: 10.1016/j.foodchem.2012.05.062.
  • Lu, Q., L. Li, S. Xue, D. Yang, and S. Wang. 2019. Stability of flavonoid, carotenoid, soluble sugar and vitamin C in ‘Cara Cara’ juice during storage. Foods 8 (9):417. doi: 10.3390/foods8090417.
  • Lu, Q., Y. Peng, C. Zhu, and S. Pan. 2018. Effect of thermal treatment on carotenoids, flavonoids and ascorbic acid in juice of orange cv. Cara Cara. Food Chemistry 265:39–48. doi: 10.1016/j.foodchem.2018.05.072.
  • Marais, C., W. Janse van Rensburg, D. Ferreira, and J. A. Steenkamp. 2000. (S)- and (R)-eriodictyol-6-C-β-D-glucopyranoside, novel keys to the fermentation of rooibos (Aspalathus linearis). Phytochemistry 55 (1):43–9. doi: 10.1016/S0031-9422(00)00182-5.
  • Masibo, M., and Q. He. 2008. Major mango polyphenols and their potential significance to human health. Comprehensive Reviews in Food Science and Food Safety 7 (4):309–19. doi: 10.1111/j.1541-4337.2008.00047.x.
  • Mei, S., H. Ma, and X. Chen. 2021. Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food and Chemical Toxicology 149:111997. doi: 10.1016/j.fct.2021.111997.
  • Miller, N., C. J. Malherbe, W. Gerber, J. H. Hamman, M. Van Der Rijst, M. Aucamp, E. Joubert, M. VanderRijst, M. Aucamp, and E. Joubert. 2021. Physicochemical stability of enriched phenolic fractions of Cyclopia genistoides and ex vivo bi-directional permeability of major xanthones and benzophenones. Planta Medica 87 (4):325–35. doi: 10.1055/a-1265-1945.
  • Miller, N., A. Petrus, E. I. Moelich, M. Muller, D. De Beer, M. Van der Rijst, and E. Joubert. 2022. Heat treatment improves the sensory properties of the ultrafiltration by‐product of honeybush (Cyclopia genistoides) extract. Journal of the Science of Food and Agriculture 102 (3):1047–55. doi:10.1002/jsfa.11440.
  • Monteiro, Â., S. Colomban, H. G. Azinheira, L. Guerra-Guimarães, M. Do Céu Silva, L. Navarini, and M. Resmini. 2019. Dietary antioxidants in coffee leaves: Impact of botanical origin and maturity on chlorogenic acids and xanthones. Antioxidants 9 (1):6. doi: 10.3390/antiox9010006.
  • Montijano, H, and F. Borrego. 1999. Hydrolysis of the intense sweetener neohesperidin dihydrochalcone in water–organic solvent mixtures. International Journal of Food Science & Technology 34 (3):291–4. doi:10.1046/j.1365-2621.1999.00259.x.
  • Montijano, H., M. D. Coll, and F. Borrego. 1996. Assessment of neohesperidine DC stability during pasteurization of juice-based drinks. International Journal of Food Science & Technology 31 (5):397–401. doi: 10.1046/j.1365-2621.1996.00354.x.
  • Montijano, H., F. A. Tomás-Barberán, and F. Borrego. 1995. Stability of the intense sweetener neohesperidine DC during yogurt manufacture and storage. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 201 (6):541–3. doi: 10.1007/BF01201580.
  • Montijano, H., F. A. Tomás-Barberán, and F. Borrego. 1997. Accelerated kinetics study of neohesperidine DC hydrolysis under conditions relevant to high-temperature-processed dairy products. Zeitschrift für Lebensmitteluntersuchung und -Forschung A 204 (3):180–4. doi: 10.1007/s002170050058.
  • Moon, J.-K., H. S. Yoo, and T. Shibamoto. 2009. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: Correlation with coffee acidity. Journal of Agricultural and Food Chemistry 57 (12):5365–9. doi: 10.1021/jf900012b.
  • Morozkina, S. N., T. H. Nhung Vu, Y. E. Generalova, P. P. Snetkov, and M. V. Uspenskaya. 2021. Mangiferin as new potential anti-cancer agent and mangiferin-integrated polymer systems—A novel research direction. Biomolecules 11 (1):79. doi: 10.3390/biom11010079.
  • Muller, C. J. F., E. Joubert, N. Chellan, Y. Miura, and K. Yagasaki. 2021. New insights into the efficacy of aspalathin and other related phytochemicals in type 2 diabetes—A review. International Journal of Molecular Sciences 23 (1):356. doi: 10.3390/ijms23010356.
  • Neveu, V., J. Perez-Jiménez, F. Vos, V. Crespy, L. Du Chaffaut, L. Mennen, C. Knox, R. Eisner, J. Cruz, D. Wishart, et al. 2010. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database: The Journal of Biological Databases and Curation 2010:bap024. doi: 10.1093/database/bap024.
  • Niederberger, K. E., D. R. Tennant, and P. Bellion. 2020. Dietary intake of phloridzin from natural occurrence in foods. The British Journal of Nutrition 123 (8):942–50. doi: 10.1017/S0007114520000033.
  • Nogata, Y., K. Sakamoto, H. Shiratsuchi, T. Ishii, M. Yano, and H. Ohta. 2006. Flavonoid composition of fruit tissues of Citrus species. Bioscience, Biotechnology, and Biochemistry 70 (1):178–92. doi: 10.1271/bbb.70.178.
  • Oms-Oliu, G., I. Odriozola-Serrano, R. Soliva-Fortuny, and O. Martín-Belloso. 2009. Use of Weibull distribution for describing kinetics of antioxidant potential changes in fresh-cut watermelon. Journal of Food Engineering 95 (1):99–105. doi: 10.1016/j.jfoodeng.2009.04.016.
  • Pandey, K. B., and S. I. Rizvi. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity 2 (5):270–8. doi: 10.4161/oxim.2.5.9498.
  • Patras, A., N. P. Brunton, C. O’Donnell, and B. K. Tiwari. 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology 21 (1):3–11. doi: 10.1016/j.tifs.2009.07.004.
  • Peleg, M., and M. B. Cole. 1998. Reinterpretation of microbial survival curves. Critical Reviews in Food Science and Nutrition 38 (5):353–80. doi: 10.1080/10408699891274246.
  • Peleg, M., A. D. Kim, and M. D. Normand. 2015. Predicting anthocyanins’ isothermal and non-isothermal degradation with the endpoints method. Food Chemistry 187:537–44. doi: 10.1016/j.foodchem.2015.04.091.
  • Peleg, M., M. D. Normand, and M. G. Corradini. 2012. The Arrhenius equation revisited. Critical Reviews in Food Science and Nutrition 52 (9):830–51. doi: 10.1080/10408398.2012.667460.
  • Peleg, M., M. D. Normand, and M. G. Corradini. 2017. A new look at kinetics in relation to food storage. Annual Review of Food Science and Technology 8:135–53. doi: 10.1146/annurev-food-030216-025915.
  • Piccinelli, A. L., L. Campone, F. Dal Piaz, O. Cuesta-Rubio, and L. Rastrelli. 2009. Fragmentation pathways of polycyclic polyisoprenylated benzophenones and degradation profile of nemorosone by multiple-stage tandem mass spectrometry. Journal of the American Society for Mass Spectrometry 20 (9):1688–98. doi: 10.1016/j.jasms.2009.05.004.
  • Plaza, L., C. Sánchez-Moreno, B. De Ancos, P. Elez-Martínez, O. Martín-Belloso, and M. P. Cano. 2011. Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT - Food Science and Technology 44 (4):834–9. doi: 10.1016/j.lwt.2010.12.013.
  • Ribas-Agustí, A., O. Martín-Belloso, R. Soliva-Fortuny, and P. Elez-Martínez. 2018. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition 58 (15):2531–48. doi: 10.1080/10408398.2017.1331200.
  • Rojas-Garbanzo, C., J. Winter, M. L. Montero, B. F. Zimmermann, and A. Schieber. 2019. Characterization of phytochemicals in Costa Rican guava (Psidium friedrichsthalianum -Nied.) fruit and stability of main compounds during juice processing - (U)HPLC-DAD-ESI-TQD-MSn. Journal of Food Composition and Analysis 75:26–42. doi: 10.1016/j.jfca.2018.09.012.
  • Roowi, S., A. Crozier, Z. Hussin, and Z. A. Rahman. 2016. On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in selected tropical citrus. Journal of Tropical Agriculture and Food Science 44:81–94. doi: 10.1002/mnfr.200400064.
  • Rothwell, J. A., A. Medina‐Remón, J. Pérez‐Jiménez, V. Neveu, V. Knaze, N. Slimani, and A. Scalbert. 2015. Effects of food processing on polyphenol contents: A systematic analysis using Phenol‐Explorer data. Molecular Nutrition & Food Research 59 (1):160–70. doi: 10.1002/mnfr.201400494.
  • Rothwell, J. A., J. Perez-Jimenez, V. Neveu, A. Medina-Remón, N. M’hiri, P. García-Lobato, C. Manach, C. Knox, R. Eisner, D. S. Wishart, et al. 2013. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database: The Journal of Biological Databases and Curation 2013:bat070. doi: 10.1093/database/bat070.
  • Sánchez-Moreno, C. C. C., L. L. Plaza, P. Elez-Martínez, B. B. De Ancos, O. Martín-Belloso, and M. P. Cano. 2005. Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry 53 (11):4403–9. doi: 10.1021/jf048839b.
  • Santhirasegaram, V., Z. Razali, D. S. George, and C. Somasundram. 2015. Effects of thermal and non-thermal processing on phenolic compounds, antioxidant activity and sensory attributes of Chokanan mango (Mangifera indica L.) juice. Food and Bioprocess Technology 8 (11):2256–67. doi: 10.1007/s11947-015-1576-y.
  • Scalbert, A., I. T. Johnson, and M. Saltmarsh. 2005. Polyphenols: Antioxidants and beyond. The American Journal of Clinical Nutrition 81 (1 Suppl):215S–217. doi: 10.1093/ajcn/81.1.215S.
  • Schulze, A. E., T. Beelders, I. S. Koch, L. M. Erasmus, D. De Beer, and E. Joubert. 2015. Honeybush herbal teas (Cyclopia spp.) contribute to high levels of dietary exposure to xanthones, benzophenones, dihydrochalcones and other bioactive phenolics. Journal of Food Composition and Analysis 44:139–48. doi:10.1016/j.jfca.2015.08.002.
  • Schulze, A. E., D. De Beer, S. E. Mazibuko, C. J. F. Muller, C. Roux, E. L. Willenburg, N. Nyunaï, J. Louw, M. Manley, and E. Joubert. 2016. Assessing similarity analysis of chromatographic fingerprints of Cyclopia subternata extracts as potential screening tool for in vitro glucose utilisation. Analytical and Bioanalytical Chemistry 408 (2):639–49. doi: 10.1007/s00216-015-9147-7.
  • Silalai, N., T. Sirilert, Y. H. Roos, N. Potes, and S. Devahastin. 2016. Role of solids composition on α-relaxation behavior, molecular structure and stability of spray-dried xanthones encapsulation systems around glass transition. Journal of Food Engineering 174:85–91. doi: 10.1016/j.jfoodeng.2015.11.022.
  • Slimestad, R., T. Fossen, and M. J. Verheul. 2008. The flavonoids of tomatoes. Journal of Agricultural and Food Chemistry 56 (7):2436–41. doi: 10.1021/jf073434n.
  • Snijman, P. W., S. Swanevelder, E. Joubert, I. R. Green, and W. C. A. Gelderblom. 2007. The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): Some dose-response effects on mutagen activation-flavonoid interactions. Mutation Research 631 (2):111–23. doi: 10.1016/j.mrgentox.2007.03.009.
  • Snijman, P. W., E. Joubert, D. Ferreira, X.-C. Li, Y. Ding, I. R. Green, and W. C. A. Gelderblom. 2009. Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavones in relation to other rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and Trolox. Journal of Agricultural and Food Chemistry 57 (15):6678–84. doi: 10.1021/jf901417k.
  • Stander, M. A., B.-E. Van Wyk, M. J. C. Taylor, and H. S. Long. 2017. Analysis of phenolic compounds in rooibos tea (Aspalathus linearis) with a comparison of flavonoid-based compounds in natural populations of plants from different regions. Journal of Agricultural and Food Chemistry 65 (47):10270–81. doi: 10.1021/acs.jafc.7b03942.
  • Stompor, M., D. Broda, and A. Bajek-Bil. 2019. Dihydrochalcones: Methods of acquisition and pharmacological properties—A first systematic review. Molecules 24 (24):4468. doi: 10.3390/molecules24244468.
  • Sun, C. 2009. Improving powder flow properties of citric acid by crystal hydration. Journal of Pharmaceutical Sciences 98 (5):1744–9. doi: 10.1002/jps.21554.
  • Suvarnakuta, P., C. Chaweerungrat, and S. Devahastin. 2011. Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chemistry 125 (1):240–7. doi: 10.1016/j.foodchem.2010.09.015.
  • Tanaka, T., Y. Matsuo, and I. Kouno. 2009. Chemistry of secondary polyphenols produced during processing of tea and selected foods. International Journal of Molecular Sciences 11 (1):14–40. doi: 10.3390/ijms11010014.
  • Teixeira, M., C. M. M. Afonso, M. M. M. M. Pinto, and C. M. Barbosa. 2003. A validated HPLC method for the assay of xanthone and 3-methoxyxanthone in PLGA nanocapsules. Journal of Chromatographic Science 41 (7):371–6. doi: 10.1093/chromsci/41.7.371.
  • Tomás-Barberán, F. A., and M. N. Clifford. 2000. Flavanones, chalcones and dihydrochalcones – nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture 80 (7):1073–80. doi: 10.1002/(SICI)1097-0010(20000515)80:7<1073::AID-JSFA568>3.0.CO;2-B.
  • Tomás-Barberán, F. A., F. Borrego, F. Ferreres, and M. G. Lindley. 1995. Stability of the intense sweetener neohesperidine dihydrochalcone in blackcurrant jams. Food Chemistry 52 (3):263–5. doi: 10.1016/0308-8146(95)92821-Z.
  • Tomás-Barberán, F. A., C. García-Viguera, J. L. Nieto, F. Ferreres, and F. Tomás-Lorente. 1993. Dihydrochalcones from apple juices and jams. Food Chemistry 46:33–6. doi: 10.1016/0308-8146(93)90071-M.
  • Uckoo, R. M., G. K. Jayaprakasha, J. A. Somerville, V. M. Balasubramaniam, M. Pinarte, and B. S. Patil. 2013. High pressure processing controls microbial growth and minimally alters the levels of health promoting compounds in grapefruit (Citrus paradisi Macfad) juice. Innovative Food Science & Emerging Technologies 18:7–14. doi: 10.1016/j.ifset.2012.11.010.
  • Upadhyay, R., and L. J. Mohan Rao. 2013. An outlook on chlorogenic acids - Occurrence, chemistry, technology, and biological activities. Critical Reviews in Food Science and Nutrition 53 (9):968–84. doi: 10.1080/10408398.2011.576319.
  • Van Boekel, M. 1996. Statistical aspects of kinetic modeling for food science problems. Journal of Food Science 61 (3):477–86. doi: 10.1111/j.1365-2621.1996.tb13138.x.
  • Van Boekel, M. A. J. S. 2008. Kinetic modeling of food quality: A critical review. Comprehensive Reviews in Food Science and Food Safety 7 (1):144–58. doi: 10.1111/j.1541-4337.2007.00036.x.
  • Van Boekel, M. A. J. S. 2020. On the pros and cons of Bayesian kinetic modeling in food science. Trends in Food Science & Technology 99:181–93. doi: 10.1016/j.tifs.2020.02.027.
  • Van Boekel, M. A. J. S. 2021. Kinetics of heat-induced changes in foods: A workflow proposal. Journal of Food Engineering 306:110634. doi: 10.1016/j.jfoodeng.2021.110634.
  • Van der Sluis, A. A., M. Dekker, and M. A. J. S. Van Boekel. 2005. Activity and concentration of polyphenolic antioxidants in apple juice. 3. Stability during storage. Journal of Agricultural and Food Chemistry 53 (4):1073–80. doi: 10.1021/jf040270r.
  • Viraragavan, A., N. Hlengwa, D. De Beer, S. Riedel, N. Miller, S. Bowles, B. Walczak, C. Muller, and E. Joubert. 2020. Model development for predicting in vitro bio-capacity of green rooibos extract based on composition for application as screening tool in quality control. Food & Function 11 (4):3084–94. doi: 10.1039/C9FO02480H.
  • Vyas, A., K. Syeda, A. Ahmad, S. Padhye, and F. H. Sarkar. 2012. Perspectives on medicinal properties of mangiferin. Mini Reviews in Medicinal Chemistry 12 (5):412–25. doi: 10.2174/138955712800493870.
  • Walters, N. A., A. De Villiers, E. Joubert, and D. De Beer. 2017. Improved HPLC method for rooibos phenolics targeting changes due to fermentation. Journal of Food Composition and Analysis 55:20–9. doi:10.1016/j.jfca.2016.11.003.
  • Walters, N. A., A. De Villiers, E. Joubert, and D. De Beer. 2017. Phenolic profiling of rooibos using off-line comprehensive normal phase countercurrent chromatography×reversed phase liquid chromatography. Journal of Chromatography. A 1490:102–14. doi:10.1016/j.chroma.2017.02.021. 28236460
  • Wongwad, E., K. Ingkaninan, W. Wisuitiprot, B. Sritularak, and N. Waranuch. 2020. Thermal degradation kinetics and pH-rate profiles of iriflophenone 3,5-C-β-D-diglucoside, iriflophenone 3-C-β-D-glucoside and mangiferin in Aquilaria crassna leaf extract. Molecules 25 (21):4898. doi: 10.3390/molecules25214898.
  • Wu, S.-B., C. Long, and E. J. Kennelly. 2014. Structural diversity and bioactivities of natural benzophenones. Natural Product Reports 31 (9):1158–74. doi: 10.1039/c4np00027g.
  • Yodhnu, S., A. Sirikatitham, and C. Wattanapiromsakul. 2009. Validation of LC for the determination of α-mangostin in mangosteen peel extract: A tool for quality assessment of Garcinia mangostana L. Journal of Chromatographic Science 47 (3):185–9. doi: 10.1093/chromsci/47.3.185.
  • Yu, M. W., S. N. Lou, E. M. Chiu, and C. T. Ho. 2013. Antioxidant activity and effective compounds of immature calamondin peel. Food Chemistry 136 (3–4):1130–5. doi: 10.1016/j.foodchem.2012.09.088.
  • Zhang, H. Y., Y. M. Sun, and X. L. Wang. 2003. Substituent effects on O-H bond dissociation enthalpies and ionization potentials of catechols: A DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure-activity relationships for flavonoid antioxidants. Chemistry (Weinheim an Der Bergstrasse, Germany) 9 (2):502–8. doi: 10.1002/chem.200390052.
  • Zhang, L., Q. Q. Cao, D. Granato, Y. Q. Xu, and C. T. Ho. 2020. Association between chemistry and taste of tea: A review. Trends in Food Science & Technology 101:139–49. doi: 10.1016/j.tifs.2020.05.015.
  • Zhu, X., W. Ouyang, C. Pan, Z. Gao, Y. Han, M. Song, K. Feng, H. Xiao, and Y. Cao. 2019. Identification of a new benzophenone from Psidium guajava L. leaves and its antineoplastic effects on human colon cancer cells. Food & Function 10 (7):4189–98. doi: 10.1039/C9FO00569B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.