1,225
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Main flavor compounds and molecular regulation mechanisms in fruits and vegetables

, , & ORCID Icon
Pages 11859-11879 | Published online: 11 Jul 2022

References

  • Aharoni, A., A. P. Giri, F. Verstappen, C. M. Bertea, R. Sevenier, Z. Sun, M. A. Jongsma, W. Schwab, and H. J. Bouwmeester. 2004. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. The Plant Cell 16 (11):3110–31. doi: 10.1105/tpc.104.023895.
  • Akagi, T., A. Ikegami, T. Tsujimoto, S. Kobayashi, A. Sato, A. Kono, and K. Yonemori. 2009. DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiology 151 (4):2028–45. doi: 10.1104/pp.109.146985.
  • Akagi, T., A. Katayama-Ikegami, and K. Yonemori. 2011. Proanthocyanidin biosynthesis of persimmon (Diospyros kaki Thunb.) fruit. Scientia Horticulturae 130 (2):373–80. doi: 10.1016/j.scienta.2011.07.021.
  • Alasalvar, C., J. M. Grigor, D. Zhang, P. C. Quantick, and F. Shahidi. 2001. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. Journal of Agricultural and Food Chemistry 49 (3):1410–6. doi: 10.1021/jf000595h.
  • Alem, H., P. Rigou, R. Schneider, H. Ojeda, and L. Torregrosa. 2019. Impact of agronomic practices on grape aroma composition: a review. Journal of the Science of Food and Agriculture 99 (3):975–85. doi: 10.1002/jsfa.9327.
  • Almeida, J. R. M., E. D'Amico, A. Preuss, F. Carbone, C. H. R. de Vos, B. Deiml, F. Mourgues, G. Perrotta, T. C. Fischer, A. G. Bovy, et al. 2007. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria xananassa). Archives of Biochemistry and Biophysics 465 (1):61–71. doi: 10.1016/j.abb.2007.04.040.
  • Aprea, E., M. Charles, I. Endrizzi, M. L. Corollaro, E. Betta, F. Biasioli, and F. Gasperi. 2017. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds. Scientific Reports 7:44950. doi: 10.1038/srep44950.
  • Arce-Rodríguez, M. L., and N. Ochoa-Alejo. 2015. Silencing AT3 gene reduces the expression of pAmt, BCAT, Kas, and Acl genes involved in capsaicinoid biosynthesis in chili pepper fruits. Biologia Plantarum 59 (3):477–8. doi: 10.1007/s10535-015-0525-y.
  • Arce-Rodríguez, M. L., and N. Ochoa-Alejo. 2017. An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis. Plant Physiology 174 (3):1359–70. doi: 10.1104/pp.17.00506.
  • Aubert, C., S. Baumann, and H. Arguel. 2005. Optimization of the analysis of flavor volatile compounds by liquid-liquid microextraction (LLME). Application to the aroma analysis of melons, peaches, grapes, strawberries, and tomatoes. Journal of Agricultural and Food Chemistry 53 (23):8881–95. doi: 10.1021/jf0510541.
  • Aubert, C., and C. Milhet. 2007. Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. batsch). Food Chemistry 102 (1):375–84. doi: 10.1016/j.foodchem.2006.05.030.
  • Awika, J. M., and K. G. Duodu. 2017. Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: a review - sciencedirect. Journal of Functional Foods 38:686–97. doi: 10.1016/j.jff.2016.12.002.
  • Aza-González, C., H. G. Núñez-Palenius, and N. Ochoa-Alejo. 2011. Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Reports 30 (5):695–706. doi: 10.1007/s00299-010-0968-8.
  • Baldwin, E. A., J. W. Scott, C. K. Shewmaker, and W. Schuch. 2000. Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. HortScience 35 (6):1013–22. doi: 10.21273/HORTSCI.35.6.1013.
  • Baldwin, I. T., A. Kessler, and R. Halitschke. 2002. Volatile signaling in plant-plant-herbivore interactions: what is real? Current Opinion in Plant Biology 5 (4):351–4. doi: 10.1016/S1369-5266(02)00263-7.
  • Balkema-Boomstra, A. G., S. Zijlstra, F. W. Verstappen, H. Inggamer, P. E. Mercke, M. A. Jongsma, and H. J. Bouwmeester. 2003. Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.). Journal of Chemical Ecology 29 (1):225–35. doi: 10.1023/A:1021945101308.
  • Beaulieu, J. C., and C. C. Grimm. 2001. Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. Journal of Agricultural and Food Chemistry 49 (3):1345–52. doi: 10.1021/jf0005768.
  • Berger, R. G. 2007. Flavours and fragrances: chemistry, bioprocessing and sustainability. New York, NY: Springer. doi: 10.1007/978-3-540-49339-6.
  • Bin, W. L., J. Bai, and Y. Z. Fang. 2016. Difference in volatile profile between pericarp tissue and locular gel in tomato fruit. Journal of Integrative Agriculture 15 (12):2911–20. doi: 10.1016/S2095-3119(15)61324-7.
  • Bo-Feng, D. U., L. I. Da, S. Y. Xiao, S. Q. Chen, and Z. H. Ding. 2019. Comprehensive evaluation of aroma quality of different pepper based on hs-spme-gc-ms and principal component analysis. Food Research and Development 40 (7):157–163. doi: 10.3969/iissn1005-6521201907025.
  • Braun, D. M., L. Wang, and Y. L. Ruan. 2014. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. Journal of Experimental Botany 65 (7):1713–35. 65. doi: 10.1093/jxb/ert416.
  • Butelli, E., C. Licciardello, C. Ramadugu, M. Durand-Hulak, A. Celant, G. Reforgiato Recupero, Y. Froelicher, and C. Martin. 2019. Noemi controls production of flavonoid pigments and fruit acidity and illustrates the domestication routes of modern citrus varieties. Current Biology: CB 29 (1):158–64.e2. doi: 10.1016/j.cub.2018.11.040.
  • Ca, C. G. 2010. Flavour volatile production and regulation in fruit.
  • Campbell, S. M., C. A. Sims, L. M. Bartoshuk, T. A. Colquhoun, M. L. Schwieterman, and K. M. Folta. 2020. Manipulation of sensory characteristics and volatile compounds in strawberry fruit through the use of isolated wavelengths of light. Journal of Food Science 85 (3):771–80. doi: 10.1111/1750-3841.15044.
  • Cane, D. E. 1999. Sesquiterpene biosynthesis: cyclization mechanisms. In Comprehensive Natural Products Chemistry: Isoprenoids Including Carotenoids and Steroids 2:155–200. doi: 10.1016/B978-0-08-091283-7.00039-4.
  • Cao, K., X. Yang, Y. Li, G. Zhu, W. Fang, C. Chen, X. Wang, J. Wu, and L. Wang. 2021. New high-quality peach (Prunus persica L. Batsch) genome assembly to analyze the molecular evolutionary mechanism of volatile compounds in peach fruits. The Plant Journal: For Cell and Molecular Biology 108 (1):281–95. doi: 10.1111/tpj.15439.
  • Carrari, F., and A. R. Fernie. 2006. Metabolic regulation underlying tomato fruit development. Journal of Experimental Botany 57 (9):1883–97. doi: 10.1093/jxb/erj020.
  • Catarina, B., C. G. Ana, S. Branca, and R. S. Luís. 2020. Peach (Prunus Persica): phytochemicals and health benefits. Food Reviews International 2:1–32. doi: 10.1080/87559129.2020.1837861.
  • Chen, F. X., X. H. Liu, H. Y. Lin, and L. Chen. 2004. Determination of the organic acids from the fruit and leaf of loquat by ion-exchange chromatography. Journal of Fujian Agricultural University 33:195–9.
  • Chen, F. X., X. H. Liu, and L. S. Chen. 2008. Organic acid composition in the pulp of loquat (Eriobotrya japonica Lindl.) and distribution in fruits. Journal of Tropical and Subtropical Botany 16:236–43.
  • Chen, J. C., M. H. Chiu, R. L. Nie, G. A. Cordell, and S. X. Qiu. 2005. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Natural Product Reports 22 (3):386–99. doi: 10.1039/b418841c.
  • Chen, L. Q., X. Q. Qu, B. H. Hou, D. Sosso, S. Osorio, A. R. Fernie, and W. B. Frommer. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science (New York, N.Y.) 335 (6065):207–11. doi: 10.1126/science.1213351.
  • Chen, M. D., B. Wang, J. T. Liu, X. R. Ye, M. J. Zeng, H. S. Zhu, and Q. F. Wen. 2020. Volatile components in flesh of five pumpkin varieties. Journal of Tropical and Subtropical Botany 28 (6):101-111. doi: 10.11926/jtsb.4226.
  • Cheng, H., J. L. Chen, X. Z. Zhou, R. R. Chen, D. H. Liu, and X. Q. Ye. 2016. Research progress in the analysis and synthesis of fruit aroma compounds. Journal of Chinese Institute of Food Science and Technology 16 (1):221–228. doi: 10.16429/j.1009-7848.2016.01.029.
  • Chong, J., M. C. Piron, S. Meyer, D. Merdinoglu, C. Bertsch, and P. Mestre. 2014. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany 65 (22):6589–601. doi: 6589-601. doi: 10.1093/jxb/eru375.
  • Chun-Yan, W. U., H. E. Qi-Wei, and T. Y. Song. 2012. GC-MS analysis of volatile components in non-heading chinese cabbage. Food Science 33:259-263.
  • Cohen, S., M. Itkin, Y. Yeselson, G. Tzuri, V. Portnoy, R. Harel-Baja, S. Lev, U. Sa'ar, R. Davidovitz-Rikanati, N. Baranes, et al. 2014. The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Communications 5:4026. doi: 10.1038/ncomms5026.
  • Dickinson, J. R., S. J. Harrison, J. A. Dickinson, and M. J. Hewlins. 2000. An investigation of the metabolism of isoleucine to active amyl alcohol in Saccharomyces cerevisiae. The Journal of Biological Chemistry 275 (15):10937–42. doi: 10.1074/jbc.275.15.10937.
  • Ding, F. 2009. Detection and evaluation of several bitter substances in citrus. Wuhan: Huazhong Agricultural University. doi: 10.7666/d.Y1995972.
  • Drewnowski, A. 2001. The science and complexity of bitter taste. Nutrition Reviews 59 (6):163–9. doi: 10.1111/j.1753-4887.2001.tb07007.x.
  • Duan, Y., F. Eduardo Melo Santiago, A. Rodrigues Dos Reis, M. A. de Figueiredo, S. Zhou, T. W. Thannhauser, and L. Li. 2021. Genotypic variation of flavonols and antioxidant capacity in broccoli. Food Chemistry 338:127997. doi: 10.1016/j.foodchem.2020.127997.
  • Dudareva, N., S. Andersson, I. Orlova, N. Gatto, M. Reichelt, D. Rhodes, W. Boland, and J. Gershenzon. 2005. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proceedings of the National Academy of Sciences of the United States of America 102 (3):933–8. doi: 10.1073/pnas.0407360102.
  • Durak, A., I. Kowalska, and U. Gawlik-dziki. 2018. UPLC-MS method for determination of phenolic compounds in chili as a coffee supplement and their impact of phytochemicals interactions on antioxidant activity in vitro. Acta Chromatographica 30 (1):66. doi: 10.1556/1326.2016.00173.
  • Eduardo, I., G. Chietera, D. Bassi, L. Rossini, and A. Vecchietti. 2010. Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agriculture 90 (7):1146–54. doi: 10.1002/jsfa.3932.
  • El Hadi, M. A., F. J. Zhang, F. F. Wu, C. H. Zhou, and J. Tao. 2013. Advances in fruit aroma volatile research. Molecules (Basel, Switzerland) 18 (7):8200–29. doi: 10.3390/molecules18078200.
  • Eisenreich, W., F. Rohdich, and A. Bacher. 2001. Deoxyxylulose phosphate pathway to terpenoids. Trends in Plant Science 6 (2):78–84. doi: 10.1016/S1360-1385(00)01812-4.
  • Eisenreich, W., A. Bacher, D. Arigoni, and F. Rohdich. 2004. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cellular and Molecular Life Sciences: CMLS 61 (12):1401–26. doi: 10.1007/s00018-004-3381-z.
  • Eom, J. S., S. B. Choi, J. M. Ward, and J. S. Jeon. 2012. The mechanism of phloem loading in rice (Oryza sativa). Molecules and Cells 33 (5):431–8. doi: 10.1007/s10059-012-0071-9.
  • Espino-Díaz, M., D. R. Sepúlveda, G. González-Aguilar, and G. I. Olivas. 2016. Biochemistry of apple aroma: a review. Food Technology and Biotechnology 54 (4):375–97. doi: 10.17113/ftb.54.04.16.4248.
  • Fait, A., K. Hanhineva, R. Beleggia, N. Dai, I. Rogachev, V. J. Nikiforova, A. R. Fernie, and A. Aharoni. 2008. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiology 148 (2):730–50. doi: 10.1104/pp.108.120691.
  • Ferreres, F., P. Valentão, R. Llorach, C. Pinheiro, L. Cardoso, J. A. Pereira, C. Sousa, R. M. Seabra, and P. B. Andrade. 2005. Phenolic compounds in external leaves of tronchuda cabbage (Brassica oleracea L. var. costata DC). Journal of Agricultural and Food Chemistry 53 (8):2901–7. doi: 10.1021/jf040441s.
  • Flamini, G., M. Tebano, and P. L. Cioni. 2007. Volatiles emission patterns of different plant organs and pollen of Citrus limon. Analytica Chimica Acta 589 (1):120–4. doi: 10.1016/j.aca.2007.02.053.
  • Friedman, M. 2002. Tomato glycoalkaloids: role in the plant and in the diet. Journal of Agricultural and Food Chemistry 50 (21):5751–80. doi: 10.1021/jf020560c.
  • Gamlath, C. B., A. Gunatilaka, K. A. Alvi, and S. Balasubramaniam. 1988. Cucurbitacins of colocynthis vulgaris. Phytochemistry 27 (10):3225–9. doi: 10.1016/0031-9422(88)80031-1.
  • Gao, H. Y., S. G. Wang, X. J. Liao, and X. S. Hu. 2004. Study on determination and correlation of soluble sugars and organic acids in peer juice from different cultivars. Acta Agriculturae Boreali—Sinica 19:102–7.
  • Gao, Y., M. Wang, N. Jiang, Y. Wang, and X. Feng. 2019. Use of ultra-performance liquid chromatography-tandem mass spectrometry on sweet cherries to determine phenolic compounds in peel and flesh. Journal of the Science of Food and Agriculture 99 (7):3555–62. doi: 10.1002/jsfa.9576.
  • Garcia, C. V., S. Y. Quek, R. J. Stevenson, and R. A. Winz. 2012. Kiwifruit flavour: a review. Trends in Food Science & Technology 24 (2):82–91. doi: 10.1016/j.tifs.2011.08.012.
  • Goff, S. A., and H. J. Klee. 2006. Plant volatile compounds: sensory cues for health and nutritional value. Science (New York, N.Y.) 311 (5762):815–9. doi: 10.1126/science.1112614.
  • Granot, D., R. David-Schwartz, and G. Kelly. 2013. Hexose kinases and their role in sugar-sensing and plant development. Frontiers in Plant Science 4:44. doi: 10.3389/fpls.2013.00044.
  • Guillet, C., D. Just, N. Bénard, A. Destrac-Irvine, P. Baldet, M. Hernould, M. Causse, P. Raymond, and C. Rothan. 2002. A fruit-specific phospho enolpyruvate carboxylase is related to rapid growth of tomato fruit. Planta 214 (5):717–26. doi: 10.1007/s00425-001-0687-z.
  • Han, K., S. Jang, J. H. Lee, D. G. Lee, J. K. Kwon, and B. C. Kang. 2019. A MYB transcription factor is a candidate to control pungency in capsicum annuum. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 132 (4):1235–46. doi: 10.1007/s00122-018-03275-z.
  • Harker, F. R., K. B. Marsh, H. Young, S. H. Murray, F. A. Gunson, and S. B. Walker. 2002. Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharvest Biology and Technology 24 (3):241–50. doi: 10.1016/S0925-5214(01)00157-0.
  • Hellín, P., A. Manso, P. Flores, and J. Fenoll. 2010. Evolution of aroma and phenolic compounds during ripening of 'superior seedless' grapes. Journal of Agricultural and Food Chemistry 58 (10):6334–40. doi: 10.1021/jf100448k.
  • He, Z., W. Li, X. Lin, P. Wei, D. Su, and L. Zhuang. 2005. Organic acids metabolism of loquat fruit during maturity and storage. Journal of Fruit Science 22:23–6. doi: 10.13925/j.cnki.gsxb.2005.01.006.
  • Huang, G. 2009. Determination of main bitter substance in guanxi pomelo by high-performance liquid chromatographic. Journal of Chinese Institute of Food Science and Technology 9:214-219. doi: 10.16429/j.1009-7848.2009.01.026.
  • Ikegami, A., S. Eguchi, A. Kitajima, I. Kentaro, and Y. Keizo. 2007. Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Science 172 (5):1037–47. doi: 10.1016/j.plantsci.2007.02.010.
  • Ikegaya, A., T. Toyoizumi, S. Ohba, T. Nakajima, T. Kawata, S. Ito, and E. Arai. 2019. Effects of distribution of sugars and organic acids on the taste of strawberries. Food Science & Nutrition 7 (7):2419–26. doi: 10.1002/fsn3.1109.
  • Itkin, M., I. Rogachev, N. Alkan, T. Rosenberg, S. Malitsky, L. Masini, S. Meir, Y. Iijima, K. Aoki, R. de Vos, et al. 2011. Glycoalkaloid metabolism1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. The Plant Cell 23 (12):4507–25. doi: 10.1105/tpc.111.088732.
  • Itkin, M., U. Heinig, O. Tzfadia, A. J. Bhide, B. Shinde, P. D. Cardenas, S. E. Bocobza, T. Unger, S. Malitsky, R. Finkers, et al. 2013. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science (New York, N.Y.) 341 (6142):175–9. doi: 10.1126/science.1240230.
  • Jaeger, S. R., Z. Andani, I. N. Wakeling, and H. J. H. Macfie. 1998. Consumer preferences for fresh and aged apples: a cross-cultural comparison. Food Quality and Preference 9 (5):355–66. doi: 10.1016/S0950-3293(98)00031-7.
  • Muhammad Jawad, U., L. Gao, H. Gebremeskel, L. B. Safdar, P. Yuan, S. Zhao, L. Xuqiang, H. Nan, Z. Hongju, and W. Liu. 2020. Expression pattern of sugars and organic acids regulatory genes during watermelon fruit development. Scientia Horticulturae 265:109102. doi: 10.1016/j.scienta.2019.109102.
  • Jia, D., F. Shen, Y. Wang, T. Wu, X. Xu, X. Zhang, and Z. Han. 2018. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII. The Plant Journal: For Cell and Molecular Biology 95 (3):427–43. doi: 10.1111/tpj.13957.
  • Jian, W., H. Cao, S. Yuan, Y. Liu, J. Lu, W. Lu, N. Li, J. Wang, J. Zou, N. Tang, et al. 2019. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Horticulture Research 6:22. doi: 10.1038/s41438-018-0098-y.
  • Jiang, C. C., Z. Z. Fang, D. R. Zhou, S. L. Pan, and X. F. Ye. 2019. Changes in secondary metabolites, organic acids and soluble sugars during the development of plum fruit cv. 'Furongli' (Prunus salicina Lindl). Journal of the Science of Food and Agriculture 99 (3):1010–9. doi: 10.1002/jsfa.9265.
  • Ji-Hua, X. U., Z. Y. Zhao, L. C. Wang, H. Gao, Z. Z. Liu, and H. K. Fan. 2011. Selection of factors for apple fruit quality evaluation. Agricultural Research in the Arid Areas 29:275–280.
  • Jun-Xia, W. U., and H. X. Zhao. 2010. Determination of cucurbitacin b in cucumis Melo L. by HPLC. Chemistry and Bioengineering 27:97–99.
  • Katz, E., K. H. Boo, H. Y. Kim, R. A. Eigenheer, B. S. Phinney, V. Shulaev, F. Negre-Zakharov, A. Sadka, and E. Blumwald. 2011. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. Journal of Experimental Botany 62 (15):5367–84. doi: 10.1093/jxb/err197.
  • Kala, A., and J. Prakash. 2006. The comparative evaluation of the nutrient composition and sensory attributes of four vegetables cooked by different methods. International Journal of Food Science and Technology 41 (2):163–71. doi: 10.1111/j.1365-2621.2005.01043.x.
  • Kelebek, H., and S. Selli. 2011. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. Journal of the Science of Food and Agriculture 91 (10):1855–62. doi: 10.1002/jsfa.4396.
  • Keyhaninejad, N., J. Curry, J. Romero, and M. A. O'Connell. 2014. Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in capsicum fruit. Plant Science: An International Journal of Experimental Plant Biology 215-216:59–68. doi: 10.1016/j.plantsci.2013.10.013.
  • Klee, H. J. 2010. Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. The New Phytologist 187 (1):44–56. doi: 10.1111/j.1469-8137.2010.03281.x.
  • Klee, H. J., and D. M. Tieman. 2018. The genetics of fruit flavour preferences. Nature Reviews. Genetics 19 (6):347–56. doi: 10.1038/s41576-018-0002-5.
  • Kim, S., M. Park, S.-I. Yeom, Y.-M. Kim, J. M. Lee, H.-A. Lee, E. Seo, J. Choi, K. Cheong, K.-T. Kim, et al. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics 46 (3):270–8. doi: 10.1038/ng.2877.
  • Koeda, S., K. Sato, H. Saito, A. J. Nagano, M. Yasugi, H. Kudoh, and Y. Tanaka. 2019. Mutation in the putative ketoacyl-acp reductase cakr1 induces loss of pungency in capsicum. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 132 (1):65–80. doi: 10.1007/s00122-018-3195-2.
  • Kozukue, N., J.-S. Han, E. Kozukue, S.-J. Lee, J.-A. Kim, K.-R. Lee, C. E. Levin, and M. Friedman. 2005. Analysis of eight capsaicinoids in peppers and pepper-containing foods by high-performance liquid chromatography and liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry 53 (23):9172–81. doi: 10.1021/jf050469j.
  • Ku, Y. S., M. S. Ng, S. S. Cheng, A. W. Lo, Z. Xiao, T. S. Shin, G. Chung, and H. M. Lam. 2020. Understanding the composition, biosynthesis, accumulation and transport of flavonoids in crops for the promotion of crops as healthy sources of flavonoids for human consumption. Nutrients 12 (6):1717. doi: 10.3390/nu12061717.
  • Kun Fan, X., M. L. Wang, and A. I. Xi Zhen. 2009. Changes of main aromatic compounds and fatty acids contents of cucumber fruits during development in solar-greenhouse. Acta Botanica Boreali-Occidentalia Sinica 29:390–6.
  • Lang, Y., H. Kisaka, R. Sugiyama, K. Nomura, A. Morita, T. Watanabe, Y. Tanaka, S. Yazawa, and T. Miwa. 2009. Functional loss of pamt results in biosynthesis of capsinoids, capsaicinoid analogs, in capsicum annuum cv. CH-19 sweet. The Plant Journal 59 (6):953–61. doi: 10.1111/j.1365-313X.2009.03921.x.
  • Laule, O., A. Fürholz, H. S. Chang, T. Zhu, X. Wang, P. B. Heifetz, W. Gruissem, and M. Lange. 2003. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 100 (11):6866–71. doi: 10.1073/pnas.1031755100.
  • Leete, E., and M. Louden. 1968. Biosynthesis of capsaicin and dihydrocapsaicin in Capsicum frutescens. Journal of the American Chemical Society 90 (24):6837–41. doi: 10.1021/ja01026a049.
  • Lei, J., Z. Zhu, B. Sun, G. Chen, and B. Cao. 2018. Progress in biosynthesis of capsaicinoids and its molecular mechanism. Acta Horticulturae Sinica 45 (9):1739–1749. doi: 10.16420/j.issn.0513-353x.2018-0237.
  • Lelario, F., S. De Maria, A. R. Rivelli, D. Russo, L. Milella, S. A. Bufo, and L. Scrano. 2019. A complete survey of glycoalkaloids using LC-FTICR-MS and IRMPD in a commercial variety and a local landrace of eggplant (Solanum melongena L.) and their anticholinesterase and antioxidant activities. Toxins (Basel) 11 (4):230. doi: 10.3390/toxins11040230.
  • Liao, L., W. Zhang, B. Zhang, T. Fang, X.-F. Wang, Y. Cai, C. Ogutu, L. Gao, G. Chen, X. Nie, et al. 2021. Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant 14 (9):1454–71. doi: 10.1016/j.molp.2021.05.018.
  • Li, H. H. 2006. Research progress on vegetable quality. Northern Horticulture 2:55-56.
  • Li, J., M. Qin, X. Qiao, Y. Cheng, X. Li, H. Zhang, and J. Wu. 2017. A new insight into the evolution and functional divergence of SWEET transporters in chinese white pear (Pyrus bretschneideri). Plant & Cell Physiology 58 (4):839–50. doi: 10.1093/pcp/pcx025.
  • Li, J., T. Di, and J. Bai. 2019. Distribution of volatile compounds in different fruit structures in four tomato cultivars. Molecules 24 (14):2594. doi: 10.3390/molecules24142594.
  • Li, J. X., Y. J. Zhong, J. N. Luo, W. W. Wang, and H. X. Huang. 2018. Analysis of aroma compounds in xiangyu pumpkin using electronic nose and head space-solid phase microextraction/gas chromatography-mass spectrometry. Modern Food Science and Technology 34 (9):244–50. and 297. doi: 10.13982/j.mfst.1673-9078.2018.9.034.
  • Li, X., Y. Sun, X. Wang, X. Dong, T. Zhang, Y. Yang, and S. Chen. 2019. Relationship between key environmental factors and profiling of volatile compounds during cucumber fruit development under protected cultivation. Food Chemistry 290:308–15. doi: 10.1016/j.foodchem.2019.03.140.
  • Li, L., S. S. Zhou, and D. O. Food. 2014. The research about bitter phytochcmical and modifying bitterness. The Food Industry 35:221-225.
  • Li, X., W. Guo, J. Li, P. Yue, H. Bu, J. Jiang, W. Liu, Y. Xu, H. Yuan, T. Li, et al. 2020. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit. Plant Physiology 182 (4):2035–46. doi: 10.1104/pp.20.00002.
  • Li, X. Y., H. H. Tan, J. G. Fang, J. Han, and C. N. Song. 2011. Flavor compounds in fruits and research on them. Plant Physiology Journal Lant Physiology Journal 47:943–50. doi: 10.1016/j.foodchem.2019.03.140.
  • Liu, C. X., H. Q. Wei, and F. M. Qing. 2003. Study of flavor compounds of tomato and cucumber fruits. Journal of Shandong Agricultural University 34:193–8.
  • Liu, L., M. L. Ji, M. Chen, M. Y. Sun, X. L. Fu, L. Li, D. S. Gao, and C. Y. Zhu. 2016. The flavor and nutritional characteristic of four strawberry varieties cultured in soilless system. Food Science & Nutrition 4 (6):858–68. doi: 10.1002/fsn3.346.
  • Liu, M., A. Nauta, C. Francke, and R. J. Siezen. 2008. Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Applied and Environmental Microbiology 74 (15):4590–600. doi: 10.1128/AEM.00150-08.
  • Liu, Y., C. He, and H. Song. 2018. Comparison of fresh watermelon juice aroma characteristics of five varieties based on gas chromatography-olfactometry-mass spectrometry. Food Research International (Ottawa, Ont.) 107:119–29. doi: 10.1016/j.foodres.2018.02.022.
  • Liu, Y. M., W. U. Yong-Jun, Y. J. Wang, and X. Tang. 2013. Volatile flavor components analysis of fried pepper sauce in guizhou province. Food Science 34 (20):221–7. doi: 10.7506/spkx1002-6630-201320047.
  • Lončarić, A., T. Marček, D. Šubarić, A. Jozinović, J. Babić, B. Miličević, K. Sinković, D. Šubarić, and Đ. Ačkar. 2020. Comparative evaluation of bioactive compounds and volatile profile of white cabbages. Molecules 25 (16):3696. doi: 10.3390/molecules25163696.
  • Lü, J., X. Tao, G. Yao, S. Zhang, and H. Zhang. 2020. Transcriptome analysis of low- and high-sucrose pear cultivars identifies key regulators of sucrose biosynthesis in fruits. Plant & Cell Physiology 61 (8):1493–506. doi: 10.1093/pcp/pcaa068.
  • Ma, B., J. Chen, H. Zheng, T. Fang, C. Ogutu, S. Li, Y. Han, and B. Wu. 2015. Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chemistry 172:86–91. doi: 10.1016/j.foodchem.2014.09.032.
  • Ma, B., L. Liao, T. Fang, Q. Peng, C. Ogutu, H. Zhou, F. Ma, and Y. Han. 2019. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple. Plant Biotechnology Journal 17 (3):674–86. doi: 10.1111/pbi.13007.
  • Ma, Y. S. 2017. Biosynthesis, regulation and transportation of bitterness in cucumber [doctoral dissertation]. Chinese Academy of Agricultural Sciences.
  • Maldonado-Celis, M. E., E. M. Yahia, R. Bedoya, P. Landázuri, N. Loango, J. Aguillón, B. Restrepo, and J. C. Guerrero Ospina. 2019. Chemical composition of mango (Mangifera indica L.) fruit: nutritional and phytochemical compounds. Frontiers in Plant Science 10:1073. doi: 10.3389/fpls.2019.01073.
  • Marilley, L., and M. G. Casey. 2004. Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. International Journal of Food Microbiology 90 (2):139–59. doi: 10.1016/S0168-1605(03)00304-0.
  • Martina, M., Y. Tikunov, E. Portis, and A. G. Bovy. 2021. The genetic basis of tomato aroma. Genes (Basel) 12 (2):226. doi: 10.3390/genes12020226.
  • Martín-Pizarro, C., J. G. Vallarino, S. Osorio, V. Meco, M. Urrutia, J. Pillet, A. Casañal, C. Merchante, I. Amaya, L. Willmitzer, et al. 2021. The NAC transcription factor FaRIF controls fruit ripening in strawberry. The Plant Cell 33 (5):1574–93. doi: 10.1093/plcell/koab070.
  • Matich, A., and D. Rowan. 2007. Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry 55 (7):2727–35. doi: 10.1021/jf063018n.
  • Milner, S. E., N. P. Brunton, P. W. Jones, N. M. O'Brien, S. G. Collins, and A. R. Maguire. 2011. Bioactivities of glycoalkaloids and their aglycones from Solanum species. Journal of Agricultural and Food Chemistry 59 (8):3454–84. doi: 10.1021/jf200439q.
  • Mimmo, T., R. Tiziani, F. Valentinuzzi, L. Lucini, C. Nicoletto, P. Sambo, M. Scampicchio, Y. Pii, and S. Cesco. 2017. Selenium biofortification in Fragaria × ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic Profile. Frontiers in Plant Science 8:1887. doi: 10.3389/fpls.2017.01887.
  • Mizuno, H., S. Kasuga, and H. Kawahigashi. 2016. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnology for Biofuels 9:127. doi: 10.1186/s13068-016-0546-6.
  • Moing, A., C. Renaud, M. Gaudillère, P. Raymond, P. Roudeillac, and B. Denoyes-Rothan. 2001. Biochemical changes during fruit development of four strawberry cultivars. Journal of the American Society for Horticultural Science 126 (4):394–403. doi: 10.1023/A:1017950215034.
  • Montero, T. M., E. M. Mollá, R. M. Esteban, and F. J. López-Andréu. 1996. Quality attributes of strawberry during ripening. Scientia Horticulturae 65 (4):239–50. doi: 10.1016/0304-4238(96)00892-8.
  • Morgan, M. J., S. Osorio, B. Gehl, C. J. Baxter, N. J. Kruger, R. G. Ratcliffe, A. R. Fernie, and L. J. Sweetlove. 2013. Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiology 161 (1):397–407. doi: 10.1104/pp.112.209619.
  • Nieuwenhuizen, N. J., X. Chen, M. Y. Wang, A. J. Matich, R. L. Perez, A. C. Allan, S. A. Green, and R. G. Atkinson. 2015. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiology 167 (4):1243–58. doi: 10.1104/pp.114.254367.
  • Nishiyama, I., T. Fukuda, A. Shimohashi, and T. Oota. 2008. Sugar and organic acid composition in the fruit juice of different actinidia varieties. Food Science and Technology Research 14 (1):67–73. doi: 10.3136/fstr.14.67.
  • Ogata, A., A. Itai, M. Nishiyama, H. Ikeda, K. Kanahama, and Y. Kanayama. 2012. Analyses of early rough bark phenotype found in seedlings of a cross between the european pear 'bartlett' and the chinese pear 'yali. Scientia Horticulturae 148:1–8. doi: 10.1016/j.scienta.2012.09.010.
  • Ogawa, K., K. Murota, H. Shimura, M. Furuya, Y. Togawa, T. Matsumura, and C. Masuta. 2015. Evidence of capsaicin synthase activity of the pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper. BMC Plant Biology 15 (1):1–10. doi: 10.1186/s12870-015-0476-7.
  • Osorio, S. C. Muñoz, and V. Valpuesta. 2010. Physiology and biochemistry of fruit flfl avors. In Hui YH, editor. Handbook of fruit and vegetable flavors. Hoboken, NJ: John Wiley and Sons, Inc. 25–44.
  • Paola, C., A. Serena, F. Vincenzo, T. Luca, F. Luigi, and M. R. Ercolano. 2009. Use of network analysis to capture key traits affecting tomato organoleptic quality. Journal of Experimental Botany 60 (12):3379–86. doi: 10.1093/jxb/erp177.
  • Patil, G., B. Valliyodan, R. Deshmukh, S. Prince, B. Nicander, M. Zhao, H. Sonah, L. Song, L. Lin, J. Chaudhary, et al. 2015. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics 16 (1):520. doi: 10.1186/s12864-015-1730-y.
  • Patrick, J. W., F. C. Botha, and R. G. Birch. 2013. Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnology Journal 11 (2):142–56. doi: 10.1111/pbi.12002.
  • Peter, C. H. H., and C.   A. Ilja. 2000. Flavonoids, flavones and flavonols-nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture 80 (7):1081–93. doi: 10.1002/(SICI)1097-0010(20000515)80:7<1081::AID-JSFA566>3.0.CO;2.
  • Peterson, J. J., G. R. Beecher, S. A. Bhagwat, J. T. Dwyer, S. E. Gebhardt, D. B. Haytowitz, and J. M. Holden. 2006. Flavanones in grapefruit, lemons, and limes: a compilation and review of the data from the analytical literature. Journal of Food Composition and Analysis 19:S74–S0. doi: 10.1016/j.jfca.2005.12.009.
  • Pinto, T., A. Aires, F. Cosme, E. Bacelar, M. C. Morais, I. Oliveira, J. Ferreira-Cardoso, R. Anjos, A. Vilela, and B. Gonçalves. 2021. Bioactive (Poly)phenols, volatile compounds from vegetables, medicinal and aromatic plants. Foods 10 (1):106. doi: 10.3390/foods10010106.
  • Popkin, B. M. 2015. Nutrition transition and the global diabetes epidemic. Current Diabetes Reports 15 (9):64. doi: 10.1007/s11892-015-0631-4.
  • Qiao, Y. 2008. Identification of aroma active compounds in citrus juice and their changes during processing and storage. Huazhong Agricultural University 4:173. doi: 10.7666/d.Y1812606.
  • Qili, L. I., J. Sun, Y. Shan, F. U. Fuhua, Y. Yang, and W. Liu. 2019. Suitability evaluation of different citrus varieties for whole fruit juice processing. Food Science 40 (37):36–44.
  • Raju, P. S., O. P. Chauhan, and A. S. Bawa. 2010. Handbook of Fruit and Vegetable Flavors.
  • Rambla, J. L., A. Medina, A. Fernández-Del-Carmen, W. Barrantes, S. Grandillo, M. Cammareri, G. López-Casado, G. Rodrigo, A. Alonso, S. García-Martínez, et al. 2017. Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany 68 (3):429–42. doi: 10.1093/jxb/erw455.
  • Rapparini, F, and Predieri, S. 2002. Volatile constituents of 'harrow' sweet pears by dynamic headspace technique. Acta Horticulturae 596:811–6. doi: 10.17660/ActaHortic.2002.596.140.
  • Reig, G., I. Iglesias, F. Gatius, and S. Alegre. 2013. Antioxidant capacity, quality, and anthocyanin and nutrient contents of several peach cultivars [Prunus persica (l.) batsch] grown in spain. Journal of Agricultural and Food Chemistry 61 (26):6344–57. doi: 10.1021/jf401183d.
  • Reineccius, G. A. 2006. Flavor chemistry and technology. Taylor and Francis.
  • Rennie, E. A., and R. Turgeon. 2009. A comprehensive picture of phloem loading strategies. Proceedings of the National Academy of Sciences of the United States of America 106 (33):14162–7. doi: 10.1073/pnas.0902279106.
  • Rickman, J. C., D. M. Barrett, and C. M. Bruhn. 2007. Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. Journal of the Science of Food and Agriculture 87 (6):930–44. doi: 10.1002/jsfa.2825.
  • Saha, B., M. P. Bucknall, J. Arcot, and R. Driscoll. 2018. Profile changes in banana flavour volatiles during low temperature drying. Food Research International (Ottawa, Ont.) 106:992–8. doi: 10.1016/j.foodres.2018.01.047.
  • Saidani, F., R. Giménez, C. Aubert, G. Chalot, J. A. Betran, and Y. Gogorcena. 2017. Phenolic, sugar and acid profiles and the antioxidant composition in the peel and pulp of peach fruits. Journal of Food Composition and Analysis 62:126–33. doi: 10.1016/j.jfca.2017.04.015.
  • Sanz, C, and A. G. Pérez. 2010. Plant metabolic pathways and flfl avor biosynthesis. In Hui YH, editor. Handbook of fruit and vegetable flavors. Hoboken, NJ: John Wiley and Sons, Inc, 129–55.
  • Sanz, M. L., M. Villamiel, and I. Martnez-Castro. 2004. Inositols and carbohydrates in different fresh fruit juices. Food Chemistry 87 (3):325–8. doi: 10.1016/j.foodchem.2003.12.001.
  • Sawai, S., K. Ohyama, S. Yasumoto, H. Seki, T. Sakuma, T. Yamamoto, Y. Takebayashi, M. Kojima, H. Sakakibara, T. Aoki, et al. 2014. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. The Plant Cell 26 (9):3763–74. doi: 10.1105/tpc.114.130096.
  • Schwab, W, and P. Schreier. 2002. Enzymic formation of flflavor volatiles from lipids. In Lipid Biotechnology (Kuo, T.M. and Gardner, H.W., eds). New York, NY: Marcel Dekker, 293–318.
  • Schwab, W., R. Davidovich-Rikanati, and E. Lewinsohn. 2008. Biosynthesis of plant-derived flavor compounds. The Plant Journal: For Cell and Molecular Biology 54 (4):712–32. doi: 10.1111/j.1365-313x.2008.03446.x.
  • Schwartz, S. H., X. Qin, and M. C. Loewen. 2004. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. The Journal of Biological Chemistry 279 (45):46940–5. doi: 10.1074/jbc.m409004200.
  • Schwieterman, M. L., T. A. Colquhoun, E. A. Jaworski, L. M. Bartoshuk, J. L. Gilbert, D. M. Tieman, A. Z. Odabasi, H. R. Moskowitz, K. M. Folta, H. J. Klee, et al. 2014. Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS One 9 (2):e88446. doi: 10.1371/journal.pone.0088446.
  • Shang, Y., Y. Ma, Y. Zhou, H. Zhang, L. Duan, H. Chen, J. Zeng, Q. Zhou, S. Wang, W. Gu, et al. 2014. Plant science. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science (New York, N.Y.) 346 (6213):1084–8. doi: 10.1126/science.1259215.
  • Shui, M., T. Feng, Y. Tong, H. Zhuang, C. Lo, H. Sun, L. Chen, and S. Song. 2019. Characterization of key aroma compounds and construction of flavor base module of Chinese sweet oranges. Molecules 24 (13):2384. doi: 10.3390/molecules24132384.
  • Simkin, A. J., B. A. Underwood, M. Auldridge, H. M. Loucas, K. Shibuya, E. Schmelz, D. G. Clark, and H. J. Klee. 2004a. Klee HJ. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiology 136 (3):3504–14. doi: 10.1104/pp.104.049718.
  • Simkin, A. J., S. H. Schwartz, M. Auldridge, M. G. Taylor, and H. J. Klee. 2004b. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. The Plant Journal: For Cell and Molecular Biology 40 (6):882–92. doi: 10.1111/j.1365-313x.2004.02263.x.
  • Smit, B. A., W. J. Engels, and G. Smit. 2009. Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods. Applied Microbiology and Biotechnology 81 (6):987–99. doi: 10.1007/s00253-008-1758-x.
  • Stellari, G. M., M. Mazourek, and M. M. Jahn. 2010. Contrasting modes for loss of pungency between cultivated and wild species of Capsicum. Heredity 104 (5):460–71. doi: 10.1038/hdy.2009.131.
  • Stewart, C., B.-C. Kang, K. Liu, M. Mazourek, S. L. Moore, E. Y. Yoo, B.-D. Kim, I. Paran, and M. M. Jahn. 2005. The pun1 gene for pungency in pepper encodes a putative acyltransferase. The Plant Journal : For Cell and Molecular Biology 42 (5):675–88. doi: 10.1111/j.1365-313x.2005.02410.x.
  • Strazzer, P., C. E. Spelt, S. Li, M. Bliek, C. T. Federici, M. L. Roose, R. Koes, and F. M. Quattrocchio. 2019. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nature Communications 10 (1):744. doi: 10.1038/s41467-019-08516-3.
  • Sturm, A., D. Hess, H. Lee, and S. Lienhard. 1999. Neutral invertase is a novel type of sucrose‐cleaving enzyme. Physiologia Plantarum 107 (2):159–65. doi: 10.1034/j.1399-3054.1999.100202.x.
  • Sukrasno, N., and M. M. Yeoman. 1993. Phenylpropanoid metabolism during growth and development of Capsicum frutescens fruits. Phytochemistry 32 (4):839–44. doi: 10.1016/0031-9422(93)85217-F.
  • Sun, J. Q., T. Feng, S. Q. Song, L. Y. Yao, M. Sun, and H. T. Wang. 2020. Biochemical basis for the formation of flavor compounds in fruits and vegetables. Chinese Fruit and Vegetables 40 (8):10–17. doi: 10.19590/j.cnki.1008-1038.2020.06.002.
  • Surburg, H, and J. Panten. 2005. Common fragrance and flavor materials: preparation, properties and uses. Weinheim, Germany: Wiley-VCH. doi: 10.1002/3527608214.ch2.
  • Sweetman, C., L. G. Deluc, G. R. Cramer, C. M. Ford, and K. L. Soole. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70 (11-12):1329–44. doi: 10.1016/j.phytochem.2009.08.006.
  • Temussi, P. A. 2009. Sweet, bitter and umami receptors: a complex relationship. Trends in Biochemical Sciences 34 (6):296–302. doi: 10.1016/j.tibs.2009.02.005.
  • Tieman, D., M. Taylor, N. Schauer, A. R. Fernie, A. D. Hanson, and H. J. Klee. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences of the United States of America 103 (21):8287–92. doi: 10.1073/pnas.0602469103.
  • Tieman, D., P. Bliss, L. M. McIntyre, A. Blandon-Ubeda, D. Bies, A. Z. Odabasi, G. R. Rodríguez, E. van der Knaap, M. G. Taylor, C. Goulet, et al. 2012. The chemical interactions underlying tomato flavor preferences. Current Biology : CB 22 (11):1035–9. doi: 10.1016/j.cub.2012.04.016.
  • Tomás-Barberán, F. A., and J. C. Espín. 2001. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture 81 (9):853–76. doi: 10.1002/jsfa.885.
  • Umer, M. J., L. Bin Safdar, H. Gebremeskel, S. Zhao, P. Yuan, H. Zhu, M. O. Kaseb, M. Anees, X. Lu, N. He, et al. 2020. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles. Horticulture Research 7 (1):193. doi: 10.1038/s41438-020-00416-8.
  • Van Stokkom, V. L., A. E. Blok, O. Van Kooten, C. D. Graaf, and M. Stieger. 2018. The role of smell, taste, flavour and texture cues in the identification of vegetables. Appetite 121:69–76. doi: 10.1016/j.appet.2017.10.039.
  • Varming, C., K. Jensen, S. Møller, P. B. Brockhoff, T. Christiansen, M. Edelenbos, G. K. Bjørn, and L. Poll. 2004. Eating quality of raw carrots - correlations between flavour compounds, sensory profiling analysis and consumer liking test. Food Quality and Preference 15 (6):531–40. doi: 10.1016/j.foodqual.2003.11.004.
  • Vikram, A., G. K. Jayaprakasha, and B. S. Patil. 2007. Simultaneous determination of citrus limonoid aglycones and glucosides by high performance liquid chromatography. Analytica Chimica Acta 590 (2):180–6. doi: 10.1016/j.aca.2007.03.029.
  • Wallace, T. C., R. L. Bailey, J. B. Blumberg, B. Burton-Freeman, C.-Y O. Chen, K. M. Crowe-White, A. Drewnowski, S. Hooshmand, E. Johnson, R. Lewis, et al. 2020. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Critical Reviews in Food Science and Nutrition 60 (13):2174–211. doi: 10.1080/10408398.2019.1632258.
  • Wang, C., W. Zhang, H. Li, J. Mao, C. Guo, R. Ding, Y. Wang, L. Fang, Z. Chen, and G. Yang. 2019. Analysis of Volatile Compounds in Pears by HS-SPME-GC × GC-TOFMS. Molecules 24 (9):1795. doi: 10.3390/molecules24091795.
  • Wang, H. B., L. I. Lin-Guang, X. S. Chen, L. I. Hui-Feng, J. M. Yang, J. F. Liu, and C. Wang. 2010. Flavor compounds and flavor quality of fruits of mid-season apple cultivars[J]. Scientia Agricultura Sinica 43 (11):2300–6. doi: 10.4028/.www.scientific.net/AMM.37-38.1549.
  • Wang, L., C. Qian, J. Bai, W. Luo, C. Jin, and Z. Yu. 2018. Difference in volatile composition between the pericarp tissue and inner tissue of tomato (Solanum lycopersicum) fruit. Journal of Food Processing and Preservation 42 (1):e13387.1–e13387.8. doi: 10.1111/jfpp.13387.
  • Wang, R., P. Shu, C. Zhang, J. Zhang, Y. Chen, Y. Zhang, K. Du, Y. Xie, M. Li, T. Ma, et al. 2022. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). The New Phytologist 233 (1):373–89. doi: 10.1111/nph.17618.
  • Wang, Y., C. Yang, S. Li, L. Yang, Y. Wang, J. Zhao, and Q. Jiang. 2009. Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS. Food Chemistry 116 (1):356–64. doi: 10.1016/j.foodchem.2009.02.004.
  • Wei, X., F. Liu, C. Chen, F. Ma, and M. Li. 2014. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Frontiers in Plant Science 5:569. doi: 10.3389/fpls.2014.00569.
  • Wei, Z., P. Tao, L. Yin, X. Gu, C. Li, and W. Kang. 2013. Volatile constituents from three parts of cucurbita moschata duch.(miben) by head-space solid phase micro-extraction coupled with GC-MS. Modernization of Traditional Chinese Medicine and Materia Medica(World Science and Technology) 15:69–73. doi: 10.11842/wst.2013.04.012.
  • Wendakoon, S. K., Y. Ueda, Y. Imahori, and M. Ishimaru. 2006. Effect of short‐term anaerobic conditions on the production of volatiles, activity of alcohol acetyltransferase and other quality traits of ripened bananas. Journal of the Science of Food and Agriculture 86 (10):1475–80. doi: 10.1002/jsfa.2518.
  • Wise, M. L., and R. Croteau. 1999. Monoterpene biosynthesis. Comprehensive Natural Products Chemistry: Isoprenoids Including Carotenoids and Steroids 2:97–153. doi: WO1994012652 A1.
  • Wong, D. C., R. L. Gutierrez, N. Dimopoulos, G. A. Gambetta, and S. D. Castellarin. 2016. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. BMC Genomics 17:416. doi: 10.1186/s12864-016-2660-z.
  • Wu, W., Q. G. Zhu, W. Q. Wang, D. Grierson, and X. R. Yin. 2022. Molecular basis of the formation and removal of fruit astringency. Food Chemistry 372:131234. doi: 10.1016/j.foodchem.2021.131234.
  • Wu, Z. B. 2017. Development of Molecular Markers for Fruit Bitter in Luffa [dissertation]. South China Agricultural University
  • Yan, T. C., D. Shao, J. K. Li, P. Zhang, and S. H. Chen. 2015. Changes in quality and volatile substances of different varieties of grapes as evaluated by electronic nose combined with GC-MS technology. Modern Food Science and Technology 31 (11):304–311. doi: 10.13982/j.mfst.1673-9078.2015.11.044.
  • Yang, J. S. 2014. The aroma, health function and utilization of durian. Academic Periodical of Farm Products Processing 9:1671–9646. doi: 10.3969/jissn.1671-9646(X)2014.09.018.
  • Yang, S., N. Hao, Z. Meng, Y. Li, and Z. Zhao. 2021. Identification, comparison and classification of volatile compounds in peels of 40 apple cultivars by HS-SPME with GC-MS. Foods 10 (5):1051. doi: 10.3390/foods10051051.
  • Yilmaz, E., K. S. Tandon, J. W. Scott, E. A. Baldwin, and R. L. Shewfelt. 2001. Absence of a clear relationship between lipid pathway enzymes and volatile compounds in fresh tomatoes. Journal of Plant Physiology 158 (9):1111–6. doi: 10.1078/0176-1617-00482.
  • Young, J. E., Z. Xin, E. E. Carey, R. Welti, S. Yang, and W. Wang. 2010. Phytochemical phenolics in organically grown vegetables. Molecular Nutrition and Food Research 49 (12):1136–42. doi: 10.1002/mnfr.200500080.
  • Yu, L. I. 2010. Solid phase microextraction followed by gc-ms analysis of volatile flavor compounds in fresh pumpkin and pumpkin juice. Food Science 31:215–217. doi: 10.1080/00949651003724790.
  • Yuan, M., and S. Wang. 2013. Rice MtN3/Saliva/SWEET family genes and their homologs in cellular organisms. Molecular Plant 6 (3):665–74. doi: 10.1093/mp/sst035.
  • Yun, L. I., L. N. Xing, M. M. Zhou, J. Pei, and J. Luo. 2015. Correlative studies of content of hesperidin, limonin and nomilin in different parts of citrus with their antioxidant and anti-breast cancer cell activities. Shanghai Journal of Traditional Chinese Medicine 49:93–96. doi: 10.16305/j.7-1334.2015.06.031
  • Zeeman, S. C., J. Kossmann, and A. M. Smith. 2010. Starch: its metabolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology 61:209–34. doi: 10.1146/annurev-arplant-042809-112301.
  • Zhang, L., Z. F. Hu, J. C. Shao, and X. J. Geng. 2020. A review on the composition and influencing factors of flavor in tomato fruit. Gansu Agricultural Science and Technology 12:89–96. doi: 10.3969/j.issn.1001-1463.2020.12.020.
  • Zhang, Y., R. Li, and R. Cheng. 2010. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in 'Honeycrisp' apple flesh. Food Chemistry 123 (4):1013–8. doi: 10.1016/j.foodchem.2010.05.053.
  • Zhao, D., T. Jian, and X. Ding. 2007. Analysis of volatile components during potherb mustard (Brassica juncea, coss.) pickle fermentation using SPME–GC-MS. LWT - Food Science and Technology 40 (3):439–47. doi: 10.1016/j.lwt.2005.12.002.
  • Zhao, G., Q. Lian, Z. Zhang, Q. Fu, Y. He, S. Ma, V. Ruggieri, A. J. Monforte, P. Wang, I. Julca, et al. 2019. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics 51 (11):1607–15. doi: 10.1038/s41588-019-0522-8.
  • Zhao, G. T. 2015. Study on chemical constituents and biological activities of Momordica charantia seeds and pseudosour pulp [dissertation]. Kunming University of Science and Technology.
  • Zhao, N., X. O. Guo, and L. J. Wang. 2021. Analysis of fruit aroma components of six strawberry varieties. Journal of Hebei Agricultural University 44:61–70. doi: 10.13320/j.cnki.jauh.2021.0008.
  • Zhao, Q., C. T. Ho, and Q. Huang. 2013. Effect of ubiquinol-10 on citral stability and off-flavor formation in oil-in-water (O/W) nanoemulsions. Journal of Agricultural and Food Chemistry 61 (31):7462–9. doi: 10.1021/jf4017527.
  • Zheng, L., J. Nie, and Z. Yan. 2015. Advances in research on sugars, organic acids and their effects on taste of fruits. Journal of Fruit Science 32:304–12. doi: 10.13925/j.cnki.gsxb.20140271.
  • Zhu, Q.-G., Y. Xu, Y. Yang, C.-F. Guan, Q.-Y. Zhang, J.-W. Huang, D. Grierson, K.-S. Chen, B.-C. Gong, and X.-R. Yin. 2019. The persimmon (Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution. Horticulture Research 6:138. doi: 10.1038/s41438-019-0227-2.
  • Zhu, Z., B. Sun, W. Cai, X. Zhou, Y. Mao, C. Chen, J. Wei, B. Cao, C. Chen, G. Chen, et al. 2019. Natural variations in the MYB transcription factor MYB31 determine the evolution of extremely pungent peppers. The New Phytologist 223 (2):922–38. doi: 10.1111/nph.15853.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.